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Posing the problem: sequential inference

Posing the problem: sequential inference

I Inference is the process of taking a decision based on limited information.

ILimitations arise by incomplete and noisy data and by an approximate knowledge about the
laws (if any) governing the system evolution.

I Specifically (yet informally): the problem we intend to solve is the estimation of the state of a
system, at any arbitrary past, present and/or future times.

IWe will assume that the data are time-ordered and that the system is given under the form of a
time-evolving dynamics.

ISequential inference is the problem of updating our knowledge about the system each time new
data becomes available.
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Posing the problem: sequential inference

Posing the problem

An example: Palomares (Spain) incident

From Berkeley science review at
http://berkeleysciencereview.com/article/toolbox/

On January 17th, 1966, a US Air Force bomber flying
over the south of Spain, with four hydrogen bombs,
exploded in midair.

Three bombs were recovered, undetonated, on land,
while the fourth was lost.

According to a local fisherman, it splashed down
somewhere in the Mediterranean Sea.

How would you go about looking for the bomb in a way
that maximizes the chance you’ll find it?

IThis lecture treats the case of the discrete-model/discrete-observation estimation problem
(relevant in many practical cases such as climate science, biology or navigation among many
others).

IComplete treatments of the continuous-continuous and discrete-continuous cases can be found
in many textbooks on estimation theory (e.g., Jazwinski , 1970; Bain and Crisan, 2009).
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Our ingredients The model: deterministic or stochastic?

The model: what we know about the system physical-dynamical laws

We will assume that a model of the natural process of interest is available as a discrete
stochastic-dynamical system,

xk =Mk:k−1(xk−1,λ) + ηk. (1)

Ixk ∈ Rm and λ ∈ Rp are the model state and parameter vectors respectively.

IThe model parameters may include the external forcings or the boundary conditions.

IMk:k−1 : Rm → Rm is usually a nonlinear, possibly chaotic, function from time tk−1 to tk.

Iηk ∈ Rm is the model error, represented as a stochastic additive term.

Remark: ηk could be included into the parentheses without loss of generality.
Remark: The stochastic difference model, Eq. (1), has a continuous-time counterpart (∆t→ 0); it is
known as the Itô stochastic differential equation (see, e.g. Jazwinski , 1970; Reich and Cotter , 2015)

Carrassi, Talagrand, Bocquet Short Course on Data Assimilation - EGU 10th April 2018 6 / 27



Our ingredients The model: deterministic or stochastic?

The model: why stochastic?

I Imperfect model -Mk:k−1 embeds our knowledge about the laws governing the process =⇒
Such a knowledge is always (in realistic cases) partial and/or incorrect.

INumerical discretization -Mk:k−1 is often a spatio-temporal discretization of physical laws
(e.g., the Navier Stokes equations for fluids) expressed as partial differential equations on a
continuous media =⇒ The finite resolution (dictated by the computational power availability)
induces errors.

IChaos - Many natural systems are chaotic and exhibit extreme sensitivity to initial conditions
=⇒ Any (inevitable?) error in the knowledge of the system state at an arbitrary time
contaminates the prediction.

The sources of error are accounted for using a stochastic model

Carrassi, Talagrand, Bocquet Short Course on Data Assimilation - EGU 10th April 2018 7 / 27



Our ingredients The observations

The observations and their relation with the quantities of interest

INoisy observations, yk ∈ Rd, are available at discrete times and are related to the model state
vector through

yk = Hk(xk) + εk. (2)

with H : Rm → Rd the, generally nonlinear, observation operator mapping from model to
observational space.

IObservational error, εk, is represented as a stochastic term, accounting for the instrumental
error, deficiencies in the formulation of H and the representativity error.

IThe latter arises from the presence of unresolved scales and represents their effect on the
resolved scales - it is ubiquitous in physical science and inherent to the discretization procedure.

Remark: we assume the observation dimension is constant, so that dk = d (the generalization is trivial).
Remark: often d� m, i.e., the amount of available data is insufficient to fully describe the system.
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Our ingredients The observations

The observations and their relation with the quantities of interest

IThe stochastic model dynamics, Eq. (1), together with the stochastic observation model, Eq. (2)
define an Hidden Markov model (HMM)

x0 x1 x2 xt

y1 y2 yt

Markov model

Observations

M1:0 M2:1

HH

Direct 
problem

Inverse 
problem

IA stochastic model is said Markov if its future state depends only on the current state and not
on any states the models has attained before.

IWe focus here on the inverse problem ⇔ Estimate x by observing y.
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Bayesian formulation of the inference

Bayesian inference for the inverse problem

IWith the two complementary pieces of information in hand, model and data, we can move
forward and formalize their fusion.

IWhen making inference we have to decide how much we trust the uncertain information. ⇒ We
need to quantify the uncertainty.

IGiven the stochastic nature of the problem

uncertainty quantification is done using probabilities.

IThe Bayesian approach offers a natural mathematical framework to understand and formalize
this problem.

I In particular, the goal of Bayesian inference is to estimate the uncertainty in x given y ⇔
Compute the conditional probability density function (PDF) p(x|y).
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Bayesian formulation of the inference

Bayes’ theorem

Bayes’ theorem

Let x and y be jointly distributed random vectors with joint PDF, p(x,y). Then

p(x|y) = p(y|x)p(x)
p(y)

. (3)

IAn algebraic equation for conditional probabilities ⇔ The probability that the event, x, occurs,
knowing that another one, y, has occurred.

IThe output of the estimation process is the posterior distribution p(x|y)

I p(x) is the prior PDF that gathers all the knowledge before assimilating the new observations.
It is a distinctive feature of the Bayesian approach.
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Bayesian formulation of the inference

Bayes’ theorem

I p(y|x) is the likelihood of the data
conditioned on the state x (i.e., it quantifies
the likelihood of observing y given a particular
value of x).

I p(y) is the marginal distribution of the data,
p(y) =

∫
dx p(y|x)p(x). It integrate to one and

is treated as a normalization coefficient.

Remark: The factor p(y) is relevant, for instance,
in model selection problems and is also referred to
as model evidence.

Figure: Courtesy of Geir Evensen
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Sequential Bayesian estimate

Sequential Bayesian estimate

IRecall our HMM given by the dynamical model, Eq. (1), data model, Eq. (2)

xk =Mk:k−1(xk−1) + ηk , yk = Hk(xk) + εk

IThe model and the observational errors, {ηk, εk : k = 1, . . . ,K} are assumed to be uncorrelated
in time, mutually independent, and distributed according to the PDFs pη and pε

ILet us define the sequences of system states and observations within the interval [t0, tK ] as
xK:0 = {xK ,xK−1, ...,x0} and yK:1 = {yK ,yK−1, ...,y1} respectively.

We wish to estimate the posterior p(xK:0|yK:1) for any arbitrary, sequentially increasing, tK .

Using Bayes’s law we have
p(xK:0|yK:1) ∝ p(yK:1|xK:0)p(xK:0) (4)

Carrassi, Talagrand, Bocquet Short Course on Data Assimilation - EGU 10th April 2018 13 / 27



Sequential Bayesian estimate

Sequential Bayesian estimate

I Since the observational errors are assumed to be uncorrelated in time we have
p(yk|xK:0) = p(yk|xk) and we can split the products of the probabilities

p(yK:1|xK:0) =

K∏
k=1

p(yk|xk) =

K∏
k=1

pε[yk −Hk(xk)], (5)

so that the mutual likelihood of all the observations in the interval tK − t0 is the product of the
individual likelihoods at each time.

IAlso, in virtue of the Markovian character we have p(xk+1|xk:0) = p(xk+1|xk) (prediction at
time tk+1 only depends on the state at tk), and we can split the prior PDF as

p(xK:0) = p(x0)

K∏
k=1

p(xk|xk−1) = p(x0)

K∏
k=1

pη[xk −Mk:k−1(xk−1)]. (6)
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Sequential Bayesian estimate The main result: recursive update

Sequential Bayesian estimate - The main result

By combining Eq. (5) and (6) using Bayes’ rule we get the posterior distribution

The recursive update

p(xK:0|yK:1) ∝ p(x0)

K∏
k=1

p(yk|xk)p(xk|xk−1) = p(x0)

K∏
k=1

pε[yk −Hk(xk)]pη[xk −Mk:k−1(xk−1)].

(7)

IEquation (7) is of central importance: it states that a new update can be obtained as soon
as new data is available.

I Sequential inference can be obtained by recursively estimating p(yk|xk)p(xk|xk−1).

Carrassi, Talagrand, Bocquet Short Course on Data Assimilation - EGU 10th April 2018 15 / 27



Sequential Bayesian estimate Prediction, filtering and smoothing

Prediction, filtering and smoothing

Depending on which time period is needed for
state estimation, it is possible to define three
estimation problems:

1 Prediction: estimate p(xl|yk:1) with l > k.
2 Filtering: estimate p(xk|yk:1).
3 Smoothing: estimate p(xK:0|yK:1), or

selected marginals of this PDF, such as
p(xl|yK:1), with 0 ≤ l < K.

Figure from Carrassi et al., 2018
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Sequential Bayesian estimate Prediction, filtering and smoothing

Formal Bayesian solutions - Prediction

IGiven the conditional PDF p(xk|yk:0), we seek a law to propagate it forward in time under the
effect of the model dynamics, Eq. (1).

This leads to the Chapman-Kolmogorov equation for the propagation of a PDF under the
model dynamics, Eq. (1), as

p(xl|yk:1) =

∫
Rm

dxk p(xl|xk)p(xk|yk:1), (8)

where the initial PDF at tk is given by p(xk|yk:1), and p(xl|xk) = pη[xl −Ml:k(xk)] in our HMM
model.

IThe Prediction problem is addressed by solving the Chapman-Kolmogorov equation (8), given
the conditional PDF at time tk, p(xk|yk:1).

Remark: In case of model dynamics given as a stochastic differential equation, instead of a stochastic
difference equation as in Eq. (1), the Chapman-Kolmogorov equation becomes the Fokker-Planck equation.
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Sequential Bayesian estimate Prediction, filtering and smoothing

Formal Bayesian solutions - Filtering

IFiltering problem is the most common in applications, and is characterized by sequential
processing, in which measurements are utilized as they become available.

IAn analysis step, in which the conditional PDF p(xk|yk:1) is updated using the latest
observation, yk,

Analysis

p(xk|yk:1) ∝ pε[yk −Hk(xk)]p(xk|yk−1:1), (9)

I alternates with a forecast step which propagates this PDF, using Chapman-Kolmogorov
equation, forward until the time of a new observation,

Forecast

p(xk+1|yk:1) =

∫
Rm

dxk pη[xk+1 −Mk+1:k(xk)]p(xk|yk:1), (10)

to get p(xk+1|yk:1).

IThe process is then repeated, sequentially, with the outcome of the Chapman-Kolmogorov
equation providing the prior distribution for the next analysis step.
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Sequential Bayesian estimate Prediction, filtering and smoothing

Formal Bayesian solutions - Smoothing

I Smoothing is relevant when, for instance, one is interested in a retrospective analysis after the
observations have been collected.

IThe goal is to estimate the conditional PDF, p(xk|yK:1) of the state at any time tk, 0 ≤ k ≤ K,
based on all observations (past, present and future).

IFirst write the smoothing PDF at time tk by marginalizing over xk+1

p(xk|yK:1) =

∫
Rm

dxk+1 p(xk|xk+1,yK:1)p(xk+1|yK:1). (11)

Note that, using Bayes’ rule, the integrand in Eq. (11) can be written as

p(xk|xk+1,yK:1) = p(xk|xk+1,yk:1) ∝ p(xk+1|xk)p(xk|yk:1), (12)

given that the observations {yk+1, . . . ,yK} are independent of xk when xk+1 is known.

IFinally remark that p(xk|yk:1) in Eq. (12) is the filter solution at time tk.
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Sequential Bayesian estimate Prediction, filtering and smoothing

Formal Bayesian solutions - Smoothing

IThis implies that the smoothing PDFs can be obtained using a

forward-backward recursive algorithm.

IForward phase - Start from p(x0) then from k = 1 to k = K

Estimate and store the filter PDFs, p(xk|yk:1).

IBackward phase - From k = K − 1 to k = 1

Compute p(xk|xk+1,yk:1) with Eq. (12) using the stored filter PDFs, p(xk|yk:1) and
p(xk+1|xk).

Obtain the smoothing PDFs, p(xk|yK:1), from Eq. (11) making use of the smoothing PDF at
time tk+1, p(xk+1|yK:1) estimated at the previous iteration.

Carrassi, Talagrand, Bocquet Short Course on Data Assimilation - EGU 10th April 2018 20 / 27



Sequential Bayesian estimate Prediction, filtering and smoothing

Comments on Bayesian filter and smoother

IThe filter solution at an arbitrary tk (0 ≤ k ≤ K) is obtained by sequential updating until tk ⇒
it thus accounts for all observations until tk.

I In contrast, the smoothing solution at the same time tk also accounts for
future observations until tK ⇒ it is thus generally more accurate than the filtering one.

IAt the final time tK both solutions have incorporated the same amount of data ⇒ in the
absence of approximations, they will coincide.

I In general the filtering and smoothing do not possess a analytical solutions.

IHowever, when the dynamical and observational model are linear and all error PDFs are
Gaussian analytic solutions exists: the famous Kalman filter and Kalman smoother.
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A route to solution: the Gaussian approximation

The Gaussian and linear approximation

IThe huge dimension of models and datasets hampers the use of a fully Bayesian approach in
geosciences (see Part III for Particle Filters).

I It is usually assumed that observation and model error are Gaussian distributed =⇒ PDFs can
be described completely in terms of their mean and covariance.

IThe Gaussian approximation is at the core of most of the DA procedures successfully used in
the geosciences.

Let assume that the dynamical and observational models are both linear

xk = Mk:k−1xk−1 + ηk, ηk ∼ N (0,Qk), (13)
yk = Hkxk + εk, εk ∼ N (0,Rk), (14)

with Mk:k−1 and Hk being matrices in Rm×m and Rd×m, respectively.

IThe observational and model noises are assumed to be white-in-time, unbiased, and Gaussian
distributed with covariances Rk ∈ Rd×d and Qk ∈ Rm×m respectively.
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A route to solution: the Gaussian approximation The Kalman filter and smoother

The Kalman filter

The KF recursive equations reads

Forecast Step xf
k = Mk:k−1x

a
k−1, (15)

Pf
k = Mk:k−1P

a
k−1M

T
k:k−1 +Qk. (16)

Analysis step Kk = Pf
kH

T
k (HkP

f
kH

T
k +Rk)

−1, (17)

xa
k = xf

k +Kk(yk −Hkx
f
k), (18)

Pa
k = (Ik −KkHk)P

f
k. (19)

IGiven Qk, Rk, Hk and Mk, for k ≥ 1, and initial condition for the mean, xa
0 = x0, and error

covariance, Pa
0 = P0, Eqs. (15)–(19) estimate sequentially the state and the associated error

covariance at any future time k > 1.

IThe matrix Kk ∈ Rm×d is the Kalman gain and contains the coefficients of the linear
combination between the forecast xf

k, and the observations.

IThe resulting state estimate, the analysis xa
k, has minimum variance and is unbiased.
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A route to solution: the Gaussian approximation The Kalman filter and smoother

The Kalman smoother

IA recursive estimate of the PDFs p(xk|yK:1), can be obtained using a forward and backward
recursions, in which a forward-in-time filter is followed by a backward-in-time smoother.

IAssume that a forward in time KF has been implemented and the forecast and analysis means
and covariances, xf/a

k and P
f/a
k , have been computed and stored.

IWe can then run the KS recursion backward in time, for k = K − 1, . . . , 1, to compute the
smoothing mean and covariance, xsm

k and Psm
k , according to

Sk = Pa
kM

T
k+1:k(Mk+1:kP

a
kM

T
k+1:k +Qk+1)

−1 = Pa
kM

T
k+1:kP

−f
k+1, (20)

KS Mean xsm
k = xa

k + Sk(x
sm
k+1 − xf

k+1), (21)

KS Covariance Psm
k = Pa

k + Sk(P
sm
k+1 −Pf

k+1)S
T
k (22)
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A route to solution: the Gaussian approximation The Kalman filter and smoother

Some properties of the Kalman filter and smoother

ITime dependent prior - The KF/KS recursions provide a time-dependent estimate of the
prior that is highly desirable in chaotic systems, so that Pf

k is itself strongly time-dependent.

IFilter divergence - It happens when the solution of the KF deviates dramatically from the
true signal. When HkP

f
kH

T
k << Rk the filter solution may start to ignore the observations (see

Part III for countermeasures).

IA diagnostic tool - The innovation vector sequence, vk = yk −Hkx
f
k, is Gaussian and

white-in-time: one can thus keep monitoring the innovations to asses the KF optimality and,
possibly, to implement corrections.

IBias and covariance estimation - It is possible to estimate the error covariance and means
along with the system states.

IDependency on the initial condition - The criticality of the choice of the initial error
covariance, P0, is related to the filter’s stability. If the filter is unstable one must properly
initialized it to avoid divergence by correcting the error in the unstable directions.
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A route to solution: the Gaussian approximation The Kalman filter and smoother

The extended Kalman filter

IThe extended Kalman filter (EKF) is a first-order expansion of the KF to nonlinear
dynamics.

IThe mean state is propagated by the full nonlinear model, but the error covariance evolution is
approximated using the tangent linear one.

IThe linearization is taken around the nonlinear model solution, so that the Jacobian of the
model is evaluated upon it and it is state dependent.

IThe EKF assumes Gaussian errors, but under the action of the nonlinear dynamics, even an
initial Gaussian error covariance will not stay Gaussian, and the EKF will only provide an
approximate description of the actual estimation error distribution.

IThe EKF has been successful in a number of pioneering applications of DA for meteorology
(Ghil et al., 1981; Dee et al., 1985) and oceanography (Ghil and Malanotte-Rizzoli , 1991).

Carrassi, Talagrand, Bocquet Short Course on Data Assimilation - EGU 10th April 2018 26 / 27



A route to solution: the Gaussian approximation The Kalman filter and smoother
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