


- Variational Methods 

- Ensemble Kalman Filter Methods 



 	


	

 Kalman Filter, forecast step 	


	

 	

 	

 	


	

 	

 Pb

k+1 = Mk Pa
k Mk

T + Qk  

	

 Multiplication by Mk  =  one integration of  the model  between times k 
and k+1.	



	

 Computation of Mk Pa
k Mk

T  ≈ 2n integrations of the model 	



	

 Need  for  determining  the  temporal  evolution  of  the 
uncertainty on the state of the system is the major difficulty 
in  assimilation  of  meteorological  and  oceanographical 
observations.	





Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral 
truncation T21, unit m. After F. Bouttier)	





Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



	

 Available data consist of 	



	

 	

 - Background estimate at time 0	


	

 	

    x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

    yk = Hkxk + εk	

 E(εkεj

T) = Rk δkj	



	

 	

  - Model (supposed for the time being to be exact) 	


	

 	

    xk+1 = Mkxk  k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	



	

 Then objective function	


	

 	


ξ0 ∈  S  → 	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
 subject to ξk+1 = Mkξk ,	

 k = 0, …, K-1	



	

 	

 	





	

 	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
	

 Minimizing J(ξ0) is exactly equivalent to smoothing (with exact model).	



	

 Background  is  not  necessary,  if  observations are  in  sufficient 
number to overdetermine the problem. Nor is  gaussianity,  nor strict 
linearity. 

 How to  minimize  objective  function  with  respect  to  initial  state  u  = 
ξ0 (u is called the control variable of the problem) ?	



	

 Use  iterative  minimization  algorithm,  each  step  of  which  requires 
the explicit knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with 
respect to u.	





	

 How to numerically compute the gradient ∇u J ?	



	

 Direct  perturbation,  in  order  to  obtain  partial  derivatives  ∂J/∂ui  by  finite 
differences  ?  That  would  require  as  many  explicit  computations  of  the 
objective function J as there are components in u. Practically impossible.	



	

 Gradient computed by adjoint method.	





Adjoint Approach	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
 subject to ξk+1 = Mkξk ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation, integrated backwards in time from from time K  	



 λK = 	

        HK
T RK

-1 [HK ξK - yK]	


 ….	


 λk =  Mk

Tλk+1 + Hk
T Rk

-1 [Hk ξk - yk]	

 	

  	

 k = K-1, …, 1	


 ….	


 λ0 =  M0

Tλ1    + H0
T R0

-1 [H0 ξ0 - y0]   +  [P0
b]-1 (ξ0 - x0

b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Result of direct integration (ξk), which appears in quadratic terms in expression of	


objective function, must be kept in memory from direct integration.	





Adjoint Approach (continued 2)	



Nonlinearities ?	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
 subject to ξk+1 = Mk(ξk) ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation	



 λK = 	

        HK’T RK
-1 [HK(ξK) - yK]	



 ….	


 λk =  Mk’Tλk+1 + Hk’T Rk

-1 [Hk(ξk) - yk]	

 	

  	

 k = K-1, …, 1	


 ….	


λ0 =  M0’Tλ1      + H0’T R0

-1 [H0(ξ0) - y0]   +  [P0
b]-1 (ξ0 - x0

b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Not approximate (it gives the exact gradient ∇uJ), and really used as described here.	





Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Ini$al	
  state	
  error	
  reduc$on	
  

4DVar EDA 

Reforecasts from 
reanalysis 

Operational 
forecasts 

Credit E. Källén, ECMWF 



 	


	

 Costliest part of computation	


	

 	

 	

 	


	

 	

 Pb

k+1 = Mk Pa
k Mk

T + Qk  

	

 Multiplication by Mk  =  one integration of  the model  between times k 
and k+1.	



	

 Computation of Mk Pa
k Mk

T  ≈ 2n integrations of the model 	



	

 Need  for  determining  the  temporal  evolution  of  the 
uncertainty on the state of the system is the major difficulty 
in  assimilation  of  meteorological  and  oceanographical 
observations	





	

 Strong  Constraint  4D-Var  is  now  used  operationally  at 
several  meteorological  centres  (Météo-France,  UK 
Meteorological  Office,  Canadian  Meteorological  Centre, 
Japan Meteorological  Agency,  …) and,  until  recently,  at 
ECMWF.  The  latter  now  has  a  ‘weak  constraint’ 
component in its operational system. 	



	

 	





Weak constraint variational assimilation 	



Allows for errors in the assimilating model	



•  Data	


	

 	

 - Background estimate at time 0	


	

 	

 	


	

 	

   x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

 	


	

 	

    yk = Hkxk + εk	

 E(εkεk

T) = Rk	



	

 	

  - Model	


	

 	

  	


	

 	

   xk+1 = Mkxk + ηk 	

  E(ηkηk

T) = Qk k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	





	

 Then objective function	


	

 	



	

 (ξ0, ξ1, ..., ξK) → 	



	

 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	



	

 	

     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	



	

 	

     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

  
 Exactly equivalent to smoothing in the linear case	



  Can include nonlinear Mk and/or Hk.	



	

  Implemented operationally at ECMWF for the assimilation in the stratosphere.	



	

  

       



	

 In  the  linear  case,  and  if  errors  are  uncorrelated  in  time,  Kalman 
Smoother and Variational Assimilation are algorithmically equivalent. 
They produce the BLUE of the state of the system from all available 
data, over the whole assimilation window (Kalman Filter produces the 
BLUE only at the final time of the window). If in addition errors are 
Gaussian, both algorithms achieve Bayesian estimation.	



	

 Variational  assimilation  can  easily  take  into  account  temporal 
correlations between errors (done oprationally by Järvinen et al., 1999).	



	

 Requires  adjoint  of  the  assimilating  model.  Must  be  developed  in 
case one must implement variational assimilation on a model which has 
not  been  written  with  that  purpose  in  mind.  But  adjoint,  once  it  is 
available, can be used to other applications (sensitivity studies)     	



	

 	





Pb
k+1 = Mk Pa

k Mk
T + Qk	



	

 Represent uncertainty,  not by a covariance matrix,  but by an 
ensemble of point estimates in state space that are meant to 
sample the conditional probability distribution for the state of 
the system (dimension L  ≈ O(10-100)).	



	

 	


	

 Ensemble  is  evolved  in  time  through  the  full  model,  which 

eliminates any need for linear hypothesis as to the temporal 
evolution.	



	

 Ensemble Kalman Filter (EnKF, Evensen, Anderson, …)	





How to update predicted ensemble with new observations ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time : y = Hx + ε	



•  ‘Gaussian’ approach	


 	

 	


	

 Produce sample of probability distribution for real observed quantity Hx 	


	

 yl = y - εl 

	

 where εl is distributed according to probability distribution for observation error ε.   	

 	



	

 Then use Kalman formula to produce sample of ‘analysed’ states	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 l = 1, …, L	

	

 (2)	



	

 where Pb
 is the sample covariance matrix of predicted ensemble {xb

l}.	



	

 Remark.  In  case  of  Gaussian  errors,  if  Pb  was  exact  covariance  matrix  of 
background error, (2) would achieve Bayesian estimation, in the sense that {xa

l} 
would be a sample of conditional probability distribution for x, given all data up to 
time k.	





C. Snyder 



⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang 2007c, MWR, in review ) 



The case of a nonlinear observation operator ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time :   y = H(x) + ε  	

    H nonlinear	



Two possibilities	



1. Take tangent linear approximation (as in Extended KF) and introduce jacobian H’ 	



2. Formula	


	

 	

 	

                  xa = xb + Pb

 HT
 [HPbHT 

 + R]-1 (y - Hxb)	


is basically 	



xa = xb + Cxy [Cyy]-1 [y - Hxb]	



where Cxy is the covariance matrix between the background error and the innovation y - Hxb,  and 
Cyy is the covariance matrix of the innovation. 	



Solution. Compute Cxy and Cyy as sample covariances matrices of the ensembles {xb
l} and {yl - 

H(xb
l)}, where the yl’s  are, as before, the perturbed observations yl = y - εl.     	





There are specific problems with EnKF, resulting from the fact 
that the background sample covariance matrix has low rank. 	



There are many variants for it.	



Does not easily take into account temporal correlations between 
errors.	



Does not require an adjoint (makes things easier if one wants to 
use  an  existing  model  that  does  not  already  have  an 
adajoint). 	



See next lecture by Marc Bocquet.	




