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- Variational Methods

- Ensemble Kalman Filter Methods



Kalman Filter, forecast step
PPy = M PO M+ Oy

Multiplication by M, = one integration of the model between times k
and k+1.

Computation of M, P4, M,' =2n integrations of the model

Need for determining the temporal evolution of the
uncertainty on the state of the system is the major difficulty
in assimilation of meteorological and oceanographical
observations.



Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWEF, spectral
truncation T21, unit m. After F. Bouttier)
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.



Available data consist of

- Background estimate at time O

xob = X, + Cob E( Cob CobT) — Pob
- Observations at times k=0, ..., K
Ve = Hx + & E(gg") = R, 0y

- Model (supposed for the time being to be exact)
Xy = Mix;, k=0,...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear

Then objective function

5EE S —
J(&) = (172) (xy” - E)TIPPT (x” - &) + (1/2) Zylyy - HEIT R [y - Hi&l

subjectto &, = M, &, k=0,...,K-1



JE) = (1/2) (xy” - ENT[PPT (x? - &) + (172) Zilyy - HENT R [y - Hi 5
Minimizing ‘(&) is exactly equivalent to smoothing (with exact model).

Background 1s not necessary, if observations are in sufficient
number to overdetermine the problem. Nor is gaussianity, nor strict
linearity.

How to minimize objective function with respect to initial state u =
&, (u is called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires
the explicit knowledge of the local gradient V, /] = (9/]/0u;) of /] with
respect to u.



How to numerically compute the gradient V] ?

Direct perturbation, in order to obtain partial derivatives 0//du; by finite
differences ? That would require as many explicit computations of the
objective function /] as there are components in u. Practically impossible.

Gradient computed by adjoint method.



Adjoint Approach

ﬂ(?o) = (1/2) (xob - §0)T [Pob]_l (xob - §0) +(1/2) Zkb’k - Hkgk]TRk_l (Vi - Hk&k]
subjectto &§.,, = M, &, , k=0,...,K-1

Control variable E=u

Adjoint equation, integrated backwards in time from from time K

A= Hy' Ry [Hy &k - vl

)Lkz MA . +H'R[HE, -y,] k=K-1,...,1

Ao = MOT)Ll + HOTRO_I [Hy & - yol + [Pob]_1 (& - xob)

V.J =%

Result of direct integration (&,), which appears in quadratic terms in expression of
objective function, must be kept in memory from direct integration.



Adjoint Approach (continued 2)

Nonlinearities ?

J&) = (1/2) (xg” - E)TIPT! (%" - &) + (1/2) 2Ly, - Hi(EPIT R [y - H(E))]
subject to &, = M (&), k=0,...,K-1

Control variable E=u
Adjoint equation
A= Hi "Rt [H(8g) - ygl

M= M Xy + HT R TH(E - vy k=K-1,...,1

A= M, ’UH +H, ’TRo'l [Ho(go) - Yol + [Pob]'1 (50 - xob)

V.J =%

Not approximate (it gives the exact gradient V /), and really used as described here.



00 GMT 16 0CT 1987HEIGHT 500 M8
120W  140W 140°E 120°E

%

\&L}@)) NSRS
&%31(

A

{ I
:‘&a"&;&" 2 £ ;;
wqg/o O

FiG. 1. Background fields for 0000 UTC 15 October-0000 UTC 16 October 1987. Shown here are the Northern Hemisphere (a) 500-
WPa geopotential height and (b) mean sea level pressure for 15 October and the (¢) 500-hPa geopotential height and (d) mean sea level
pressure for 16 October. The ficlds for 15 October are from the initial estimate of the initial conditions for the 4DVAR minimization. The
fields for 16 October are from the 24-h T63 adiabatic model forecast from the initial conditions. Contour intervals are 80 m and 5 hPa.

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414




Initial state error reduction

HRes and ERA Interim 00,12UTC forecast sKill

500hPa geopotential
Lead time of Anomaly correlation reaching 99.5%
NHem Extratropics (iat 20.0 to 90.0, lon -180.0 to 180.0)
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Credit E. Kallén, ECMWF



Costliest part of computation
PPy = M Py M + O,

Multiplication by M, = one integration of the model between times k
and k+1.

Computation of M, P4, M,' =2n integrations of the model

Need for determining the temporal evolution of the
uncertainty on the state of the system is the major difficulty
in assimilation of meteorological and oceanographical
observations



Strong Constraint 4D-Var 1s now used operationally at
several meteorological centres (Météo-France, UK
Meteorological Office, Canadian Meteorological Centre,
Japan Meteorological Agency, ...) and, until recently, at
ECMWFEF. The Ilatter now has a ‘weak constraint’
component in its operational system.



Weak constraint variational assimilation

Allows for errors in the assimilating model

* Data
- Background estimate at time O

X = xy+ &P E(ELELT) = PP
- Observations at times k=0, ..., K

Vi = Hx + &, E(gg’) =Ry
- Model

Xer = Mipx + 1, E(mnD) = 0, k=0,...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear



Then objective function

(o> 515 s Ek) —
J(&, &5 - Ek)
= (1/2) (xo" - &) [P"1" (%" - &)
+(1/2) Zic, .kl - HEN R i - Hi&il

+(172) 2, xilEeer - MUELT Ot 8y - ML

Exactly equivalent to smoothing in the linear case
Can include nonlinear M, and/or H,.

Implemented operationally at ECMWF for the assimilation in the stratosphere.



In the linear case, and if errors are uncorrelated in time, Kalman
Smoother and Variational Assimilation are algorithmically equivalent.
They produce the BLUE of the state of the system from all available
data, over the whole assimilation window (Kalman Filter produces the
BLUE only at the final time of the window). If in addition errors are
Gaussian, both algorithms achieve Bayesian estimation.

Variational assimilation can easily take into account temporal
correlations between errors (done oprationally by Jarvinen et al., 1999).

Requires adjoint of the assimilating model. Must be developed in
case one must implement variational assimilation on a model which has
not been written with that purpose in mind. But adjoint, once it is
available, can be used to other applications (sensitivity studies)



P = M, PYM,™+ Q,

Represent uncertainty, not by a covariance matrix, but by an
ensemble of point estimates in state space that are meant to

sample the conditional probability distribution for the state of
the system (dimension L = O(10-100)).

Ensemble is evolved in time through the full model, which

eliminates any need for linear hypothesis as to the temporal
evolution.

Ensemble Kalman Filter (EnKF, Evensen, Anderson, ...)



How to update predicted ensemble with new observations ?

Predicted ensemble at time & : {x”}, [=1,...,L

Observation vector at same time : y = Hx + ¢
e ‘Gaussian’ approach
Produce sample of probability distribution for real observed quantity Hx
YiI=y-¢§
where ¢1s distributed according to probability distribution for observation error ¢.
Then use Kalman formula to produce sample of ‘analysed’ states
x4 =xP,+ PPHY[HPPH" + R]! (y, - Hx?) , I=1,...,L (2)

where P’ is the sample covariance matrix of predicted ensemble {x” }.

Remark. In case of Gaussian errors, if P’ was exact covariance matrix of
background error, (2) would achieve Bayesian estimation, in the sense that {x}
would be a sample of conditional probability distribution for x, given all data up to
time k.
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Month-long Performance of EnKF vs. 3Dvar with WRF

— EnKF —3DVar (prior, solid; posterior, dotted)
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Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior
analysis in terms of root-mean square difference averaged over the entire month

(Meng and Zhang 2007c, MWR, in review )



The case of a nonlinear observation operator ?

Predicted ensemble at time k : {xbl}, [=1,...,L
Observation vector at same time : y = H(x) + € H nonlinear

Two possibilities
1. Take tangent linear approximation (as in Extended KF) and introduce jacobian H’
2. Formula
x* = x>+ PPHY[HP’H" + R]"! (y - Hx?)
is basically

xt=xt+C, [C,I" [y - Hx"]

where C, is the covariance matrix between the background error and the innovation y - Hx,,, and
C,, 1s the covariance matrix of the innovation.

Solution. Compute C,, and C,, as sample covariances matrices of the ensembles {x”} and {y,-
H(x")}, where the y,’s are, as before, the perturbed observations y, =y - €.



There are specific problems with EnKF, resulting from the fact
that the background sample covariance matrix has low rank.

There are many variants for it.

Does not easily take into account temporal correlations between
eITors.

Does not require an adjoint (makes things easier if one wants to
use an existing model that does not already have an
adajoint).

See next lecture by Marc Bocquet.



