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Making EnKF work: localisation and inflation Diagnostic

Remedies to make EnKF working in high dimension

» Limited number N of anomalies: the sample covariance matrix is highly rank-deficient.

» If B is the true covariance matrix and P° is the (N-member) sample covariance
matrix which approximates B, then:
e 1
E ([P° - BJ;) = N1 ([B; + [Ba[Bly) -
In most geophysical systems, [B];; vanish exponentially with |/ — j| — oo.
The [B];i are the variances and remain finite, so that

1

v —1BlilBl;-

E ([P° - BJ3) o

» Since [B]; vanish exponentially with the distance, we want E ([PC — B]i) to also
vanish exponentially with the distance. Hence with N finite, the sample covariance
[P°]; is potentially a bad approximation especially for large distances |i — j|.

» The errors of such an approximation are usually referred to as sampling errors.
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Making EnKF work: localisation and inflation Localisation

Localisation

» Covariance localisation seeks to regularise the sample covariance to mitigate the
rank-deficiency of P° and the appearance of spurious correlations.

» Solution: compute the Schur product of P® with a well chosen smooth correlation
matrix p, that has exponentially vanishing correlations for distant parts.

The Schur product of p and B is defined by (tapering of covariances)

[p o P°]; = [p5[P°]y-

» The Schur product theorem ensures that this product is positive semi-definite, a
proper covariance matrix. For sufficiently regular p, p o P® turns out to be full-rank.
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EnKF work: locall n and infl Localisation

Covariance localisation with the Gaspari-Cohn function
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Panel (a): True covariance matrix. Panel (b): Sample covariance matrix.
Panel (c): Gaspari-Cohn correlation matrix used for covariance localisation.
Panel (d): Tapered covariance matrix.
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Making EnKF work: localisation and inflation Localisation

Domain localisation

» Domain localisation: divide & conquer. .

The DA analysis is performed in parallel in LTI

local domains. The outcomes of these
analyses are later sewed together. . ! Lotal update .

=

Applicable only if the long-range error
correlations are negligible. 5 . ;

® Observation

» Both localisation schemes have successfully been applied to the EnKF [Hamill et al, 2001;
Houtekamer and Mitchell, 2001; Evensen, 2003; Hunt et al., 2007].
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Making EnKF work: localisation and inflation Inflation

Inflation

» Localisation addresses the rank-deficiency issue, but sampling errors are not entirely
removed in the process: long EnKF runs may still diverge!

» Ad hoc means to counteract sampling errors is to inflate the error covariance
matrix by a multiplicative factor A > 1:

P — A\?P°,

or, alternatively,
X[n] — X+ A (X[n] — i) .

» Inflation can also come in an additive form: xj;) — X[n] + €[n]-

» Note that inflation is not only used to cure sampling errors, but is also often used to
counteract model error impact.

» As a drawback, inflation often needs to be tuned, which is numerically costly. Hence,
adaptive schemes have been developed to make the task more automatic.
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Making EnKF work: localisation and inflation [ INR SR S

Nonlinear chaotic models: the Lorenz-96 low-order model
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» It represents a mid-latitude zonal circle of the global atmosphere.
» Set of n = 40 ordinary differential equations [Lorenz and Emmanuel 1998]:

% = (Xit1 — Xi—2)xi—1 — x; + F,
where F = 8, and the boundary is cyclic.
» Conservative system except for a forcing term F and a dissipation term —x;.
» Chaotic dynamics, 13 positive and 1 neutral Lyapunov exponents, a doubling time of
about 0.42 time units.
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Making EnKF work: localisation and inflation [ INR SR S

[llustration with the Lorenz-96 model

5 7/ 1 EnKF no. loc. no infl.
L4 @----€) EnKF no loc. opt. infl.
g 3 4. ©----¢ EnKF opt. loc. no. infl.
3} 7 A——4A EnKF opt. loc. opt. infl.
° /

s 2 .

2 o}

= v

< \

15} g

E (6]

= v

I3 i

2 i

R \

2 L

= 0.5 ;

< 0. L

=1 &-.

S04 b2 - 4

203 R SN \

8 Y- T Moty

>

z M~ haan, OO0
0.2 e S W

5 6 7 8 910 15 20 25 30 35 40 4550

Ensemble size

» Performance of the EnKF in the absence/presence of inflation/localisation.
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Ensemble variational methods
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Hybrid approaches
Hybrid of EnKF and Var methods

» Hybrid can refer to a combination of a variational method and of an EnKF method.

» Yet, it often refers to the hybridising of a static error covariance matrix with a
dynamical one sampled from an ensemble [Hamill and Snyder, 2000].

» Example: use the static covariance of a 3DVar and perform a variational analysis to
be used for the analysis step of an EnKF with the prior:

B =aC+(1-a)X (X",

where C is the static error covariance matrix, X! is the matrix of the forecast ensemble
anomalies, and « € [0, 1] is a scalar that weights the static and dynamical
contributions.

» Updated ensemble easily obtained in the framework of the stochastic EnKF. More
difficult to obtain in the framework of deterministic EnKFs [Sakov and Bertino, 2011; Bocquet
et al, 2015; Auligné et al., 2016]

» With an EnKF based on localisation:

B=aC+(1-a)pe X (X)7].
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SLEEDIEREEEEIEINYCOELER  Ensemble of data assimilation

Ensemble of data assimilation: EDA

» Methods known as ensemble of data assimilations (EDA) perform an ensemble of
analysis based on a given method and perturbed errors (observation and background):
e.g., En-3D-Var, En-4D-var, En-4D-En-Var. Mimics the stochastic EnKF.

» Stem from NWP centres (Météo-France and ECMWF) that operate 4D-Var and, by
offering an ensemble of analysis and forecast, can generate time-dependent error
statistics. [Raynaud et al., 2009-2012; Bonavita et al., 2011-2012]

» Each analysis, indexed by i, uses a different first guess xj, and observations perturbed
with &) ~ NM(0, Rx) to maintain statistical consistency. Hence, each analysis i carries
out the minimisation of

2

K
TEPA (x %z_;Hyk—f—ek—HkOMkO xo)HR 1+2”X0

» The background covariance B is typically hybrid because it still uses the static
covariances of the traditional 4DVar and incorporates the sample covariances from the
dynamical perturbations.
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Ensemble variational methods [JEIDE=RYETS

Four-dimensional ensemble variational: 4DEnVar

» NWP centres operating 4D-Var have difficulties maintaining the adjoint models.

» Generalises how the EnKF estimates the sensitivities of the observation to the state
variables to the dynamical model over the 4D-Var time window [Liu et al., 2008-2009]:
— an ensemble of N nonlinear trajectories within the 4D-Var window.

» The 4D-Var analysis is carried out in the subspace generated by the perturbations
[Robert et al., 2005]. No model adjoint. This yields 4DEnVar.

» In 4DEnVar, the perturbations are usually generated stochastically, for instance
resorting to a stochastic EnKF. Hence, flow-dependent error estimation is introduced.

» The prior is often hybrid since the method is based on a preceding 4D-Var system.

» Localisation is needed as in the EnKF. But more difficult problem than in 4D-Var
[Bocquet et al., 2016; Desroziers et al., 2016].

» Many variants of the 4DEnVar are possible depending on the way the perturbations are generated, or if the
adjoint model is available or not [Buehner et al. 2010; Zhang et al., 2012; Poterjoy et al., 2015]. Full
4DEnVar operational systems are now implemented or are in the course of being so [Buehner et al.
2013-2015, Gustafsson et al. 2014; Desroziers et al. 2014, Lorenc et al. 2015, kleist et al. 2015, bowler et al.
2017].
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(SLEEDIERVEEEELEINNCO LR  Iterative ensemble Kalman smoother

The iterative ensemble Kalman smoother: IEnKS

» The IEnKS is derived from Bayes' rule and provides an exemplar of deterministic
nonlinear four-dimensional EnVar method.

» It mimics a deterministic EnKF, in particular the ETKF. The analysis cost function
over a time window is:

L
1 1 -
Tw) =5 I+ D 5 llye = Ha o Muco (%o + Xow) [,

k=L—S+1

The minimisation can be carried out (i) with or without the adjoint model (ii) using any
efficient minimisation technique, usually Gauss-Newton, or Quasi-Newton,
Levenberg-Marquardt or trust region.

» It generates an updated ensemble consistent with the analysis, as opposed to
current implementations of 4DEnVar.

» It allows for overlapping time-windows (a technique contemplated by the ECMWF).

» But it does require localisation (for the exact same reason as 4DEnVar).
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SLEEDIEREGEEIEINCHELER  Numerical comparison

Numerical comparison
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» Measures the gain in accuracy obtained from a fully nonlinear 4D EnVar technique

(the IEnKS): combine a nonlinear variational analysis with time-dependent error
statistics.
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Principle
Taking the bull by the horns: the particle filter

» The particle filter is the Monte-Carlo solution of the Bayes’ equation. This is a
sequential Monte Carlo method.

» The most simple algorithm of Monte Carlo type that solves the Bayesian filtering
equations is called the bootstrap particle filter [Gordon et al. 1993].

Sampling: Particles {xl,xz, ... ,xN}.
Pdf at time tx: pr(x«|yx) =~ Z:L w,kd(xk — x;) d posterior
Analysis: Weights updated according to
wp o< w p(Yi|xk) -
posterior
Forecast: Particles propagated by ) ¢

likelihood

prior

N
Pr+1(Xer1lyn) =~ sz"s(xkﬂ — Xis1)
i=1

with x}, ;1 = Myg1(x).

» Analysis is carried out with only a few multiplications. No matrix inversion!
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Can they be useful in the geosciences?
Taking the bull by the horns: the particle filter

» These normalised statistical weights o
have a potentially large amplitude of
fluctuation. One particle will stand out
among the others (w; < 1). Then the
particle filter becomes very inefficient
as an estimating tool.
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This phenomenon is called degeneracy
of the particle filter [Kong et al. 1994].
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Resampling: One way to mitigate this phenomenon is to resample the particles by
redrawing a sample with uniform weights from the degenerate distribution. After
resampling, all particles have the same weight: w; = 1/N.

» Handles well very nonlinear low-dimensional systems. But, without modification,
very inefficient for high-dimensional models. Avoiding degeneracy requires a great
number of particles that scales exponentially with the size of the system.

—— This is a manifestation of the curse of dimensionality.
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Particle filters Can they be useful in the geosciences?

Application of the particle filter in the geosciences

» The applicability of particle filters to high-dimensional models has been investigated
in the geosciences [van Leeuwen, 2009; Bocquet, 2010]. The impact of the curse of
dimensionality has been quantitatively studied in [Snyder et al., 2008]. It was known [Mackay
et al., 2003] that using an importance proposal to guide the particles towards regions of
high probability will not change this trend, albeit with a reduced exponential scaling,
which was confirmed by [Snyder et al., 2015]: optimal importance sampling particle filter
[Doucet et al., 2000; Bocquet, 2010; Snyder; 2011].

» Particle smoother over a data assimilation window: alternative and more efficient
particle filters can be designed, such as the implicit particle filter [Morzfeld et al., 2012].

» Particle filters can nevertheless be useful for high-dimensional models if the significant
degrees of nonlinearity are confined to a small subspace of the state space, as in

Lagrangian data assimilation [Slivinski et al., 2015].

» It is possible possible to design nonlinear filters for high-dimensional models such as
the equal-weight particle filter [van Leeuwen & Ades, 2010-2017].
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Particle filters Can they be useful in the geosciences?

Application of the particle filter in the geosciences
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» Localisation can be (should be?) used in conjunction with the particle filter [Reich et al.
2013; Potterjoy, 2016; Penny & Miyoshi, 2016; Farchi & Bocquet, 2018].

» The particle filter has been applied in hydrology, convection, nivology, climate, etc

[Goosse, Dubinkina, Haslehner, van Leeuwen, etc.].
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