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Making EnKF work: localisation and inflation Diagnostic

Remedies to make EnKF work in high dimension

I Limited number N of anomalies: the sample covariance matrix is highly rank-deficient.

I If B is the true covariance matrix and Pe is the (N-member) sample covariance
matrix which approximates B, then:

E
(

[Pe − B]2
ij
)

= 1
N − 1

(
[B]2

ij + [B]ii [B]jj
)
.

In most geophysical systems, [B]ij vanish exponentially with |i − j| → ∞.
The [B]ii are the variances and remain finite, so that

E
(

[Pe − B]2
ij
)
∼

|i−j|→∞

1
N − 1 [B]ii [B]jj .

ISince [B]ij vanish exponentially with the distance, we want E
(

[Pe − B]2
ij
)

to also
vanish exponentially with the distance. Hence with N finite, the sample covariance
[Pe]ij is potentially a bad approximation especially for large distances |i − j|.

IThe errors of such an approximation are usually referred to as sampling errors.

Carrassi, Talagrand, Bocquet European Geosciences Union General Assembly, 7-12 April 2019, Vienna, Austria 4 / 22



Making EnKF work: localisation and inflation Localisation

Localisation

ICovariance localisation seeks to regularise the sample covariance to mitigate the
rank-deficiency of Pe and the appearance of spurious correlations.

ISolution: compute the Schur product of Pe with a well chosen smooth correlation
matrix ρ, that has exponentially vanishing correlations for distant parts.

The Schur product of ρ and B is defined by (tapering of covariances)

[ρ ◦ Pe]ij = [ρ]ij [Pe]ij .

IThe Schur product theorem ensures that this product is positive semi-definite, a
proper covariance matrix. For sufficiently regular ρ, ρ ◦ Pe turns out to be full-rank.
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Making EnKF work: localisation and inflation Localisation

Covariance localisation with the Gaspari-Cohn function
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Panel (a): True covariance matrix. Panel (b): Sample covariance matrix.
Panel (c): Gaspari-Cohn correlation matrix used for covariance localisation.
Panel (d): Tapered covariance matrix.

Carrassi, Talagrand, Bocquet European Geosciences Union General Assembly, 7-12 April 2019, Vienna, Austria 6 / 22



Making EnKF work: localisation and inflation Localisation

Domain localisation

IDomain localisation: divide & conquer.

The DA analysis is performed in parallel in
local domains. The outcomes of these
analyses are later sewed together.

Applicable only if the long-range error
correlations are negligible.

Elegant but nor suited for radiance
assimilation.

x

•

•

•

•

•

•

•

•

•

•

Local update

Observation

IBoth localisation schemes have successfully been applied to the EnKF [Hamill et al, 2001;
Houtekamer and Mitchell, 2001; Evensen, 2003; Hunt et al., 2007].
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Making EnKF work: localisation and inflation Inflation

Inflation

I Localisation addresses the rank-deficiency issue, but sampling errors are not entirely
removed in the process: long EnKF runs may still diverge!

IAd hoc means to counteract sampling errors is to inflate the error covariance
matrix by a multiplicative factor λ2 ≥ 1:

Pe −→ λ2Pe,

or, alternatively,
x[n] −→ x + λ

(
x[n] − x

)
.

I Inflation can also come in an additive form: x[n] −→ x[n] + ε[n].

INote that inflation is not only used to cure sampling errors, but is also often used to
counteract model error impact.

IAs a drawback, inflation often needs to be tuned, which is numerically costly. Hence,
adaptive schemes have been developed to make the task more automatic [El Gharmati,
2018; Raanes et al., 2019].
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Making EnKF work: localisation and inflation Why they are necessary

Nonlinear chaotic models: the Lorenz-96 low-order model
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I It represents a mid-latitude zonal circle of the global atmosphere.
ISet of n = 40 ordinary differential equations [Lorenz and Emmanuel 1998]:

dxi

dt = (xi+1 − xi−2)xi−1 − xi + F ,

where F = 8, and the boundary is cyclic.
IConservative system except for a forcing term F and a dissipation term −xi .
IChaotic dynamics, 13 positive and 1 neutral Lyapunov exponents, a doubling time of
about 0.42 time units.
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Making EnKF work: localisation and inflation Why they are necessary

Illustration with the Lorenz-96 model
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IPerformance of the EnKF in the absence/presence of inflation/localisation.
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Ensemble variational methods Hybrid approaches

Hybrid of EnKF and Var methods

IHybrid can refer to a combination of a variational method and of an EnKF method.

IYet, it often refers to the hybridising of a static error covariance matrix with a
dynamical one sampled from an ensemble [Hamill and Snyder, 2000].

IExample: use the static covariance of a 3DVar and perform a variational analysis to
be used for the analysis step of an EnKF with the prior:

B = αC + (1− α)Xf (Xf)T
,

where C is the static error covariance matrix, Xf is the matrix of the forecast ensemble
anomalies, and α ∈ [0, 1] is a scalar that weights the static and dynamical
contributions.

IUpdated ensemble easily obtained in the framework of the stochastic EnKF. More
difficult to obtain in the framework of deterministic EnKFs [Sakov and Bertino, 2011; Bocquet
et al, 2015; Auligné et al., 2016]

IWith an EnKF based on localisation:

B = αC + (1− α)ρ ◦
[

Xf (Xf)T
]
.
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Ensemble variational methods Ensemble of data assimilation

Ensemble of data assimilation: EDA

IMethods known as ensemble of data assimilations (EDA) perform an ensemble of
analysis based on a given method and perturbed errors (observation and background):
e.g., En-3D-Var, En-4D-Var, En-4D-En-Var. Mimics the stochastic EnKF.

IStem from NWP centres (Météo-France and ECMWF) that operate 4D-Var and, by
offering an ensemble of analysis and forecast, can generate time-dependent error
statistics. [Raynaud et al., 2009-2012; Bonavita et al., 2011-2012]

IEach analysis, indexed by i , uses a different first guess xi
0, and observations perturbed

with εi
k ∼ N (0,Rk ) to maintain statistical consistency. Hence, each analysis i carries

out the minimisation of

J EDA
i (x0) = 1

2

K∑
k=0

∥∥yk + εi
k −Hk ◦Mk:0(x0)

∥∥2
R−1

k
+ 1

2
∥∥x0 − xi

0
∥∥2

B−1 .

IThe background covariance B is typically hybrid because it still uses the static
covariances of the traditional 4D-Var and incorporates the sample covariances from the
dynamical perturbations.
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Ensemble variational methods 4D-En-Var

Four-dimensional ensemble variational: 4DEnVar

INWP centres operating 4D-Var have difficulties maintaining the adjoint models.

IGeneralises how the EnKF estimates the sensitivities of the observation to the state
variables to the dynamical model over the 4D-Var time window [Liu et al., 2008-2009]:
−→ an ensemble of N nonlinear trajectories within the 4D-Var window.

IThe 4D-Var analysis is carried out in the subspace generated by the perturbations
[Robert et al., 2005]. No model adjoint. This yields 4DEnVar.

I In 4DEnVar, the perturbations are usually generated stochastically, for instance
resorting to a stochastic EnKF. Hence, flow-dependent error estimation is introduced.

IThe prior is often hybrid since the method is based on a preceding 4D-Var system.

ILocalisation is needed as in the EnKF. But more difficult problem than in 4D-Var
[Bocquet et al., 2016; Desroziers et al., 2016].

IMany variants of the 4DEnVar are possible depending on the way the perturbations are generated, or if the
adjoint model is available or not [Buehner et al. 2010; Zhang et al., 2012; Poterjoy et al., 2015]. Full
4DEnVar operational systems are now implemented or are in the course of being so [Buehner et al.
2013-2015, Gustafsson et al. 2014; Desroziers et al. 2014, Lorenc et al. 2015, kleist et al. 2015, bowler et al.
2017].
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Ensemble variational methods Iterative ensemble Kalman smoother

The iterative ensemble Kalman smoother: IEnKS

IThe IEnKS is derived from Bayes’ rule and provides an exemplar of deterministic
nonlinear four-dimensional EnVar method.

I It mimics a deterministic EnKF, in particular the ETKF. The analysis cost function
over a time window is:

J (w) = 1
2 ‖w‖

2 +
L∑

k=L−S+1

1
2 ‖yk −Hk ◦Mk:0 (x0 + X0w)‖2

R−1
k
,

The minimisation can be carried out (i) with or without the adjoint model (ii) using any
efficient minimisation technique, usually Gauss-Newton, or Quasi-Newton,
Levenberg-Marquardt or trust region.

I It generates an updated ensemble consistent with the analysis, as opposed to
current implementations of 4DEnVar.

I It allows for overlapping time-windows and quasi-static implementations
(techniques contemplated by the ECMWF).

IBut it does require localisation (for the exact same reason as 4DEnVar).
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Ensemble variational methods Numerical comparison

Numerical comparison (Lorenz’ 96)

Filtering Smoothing
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IMeasures the gain in accuracy obtained from a fully nonlinear 4D EnVar technique
(the IEnKS): combine a nonlinear variational analysis with time-dependent error
statistics.

[Sakov et al. 2012; Bocquet and Sakov 2012-2014; Bocquet 2016; Fillion et al. 2018]
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Particle filters Principle

Taking the bull by the horns: the particle filter

IThe particle filter is the Monte-Carlo solution of the Bayes’ equation. This is a
sequential Monte Carlo method.

IThe most simple algorithm of Monte Carlo type that solves the Bayesian filtering
equations is called the bootstrap particle filter [Gordon et al. 1993].

Sampling: Particles
{

x1, x2, . . . , xN}.
Pdf at time tk : pk (xk |yk ) '

∑N
i=1 ω

i
kδ(xk − xi

k ).
Analysis: Weights updated according to

ωa,i
k ∝ ω

f,i
k p(yk |xi

k ) .

Forecast: Particles propagated by

pk+1(xk+1|yk ) '
N∑

i=1

ωa,i
k δ(xk+1 − xi

k+1)

with xi
k+1 = Mk+1(xi

k ).

prior likelihood

posterior

posterior

weighting

resampling

IAnalysis is carried out with only a few multiplications. No matrix inversion!
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Particle filters Can they be useful in the geosciences?

Taking the bull by the horns: the particle filter

IThese normalised statistical weights
have a potentially large amplitude of
fluctuation. One particle will stand out
among the others (ωi . 1). Then the
particle filter becomes very inefficient
as an estimating tool.

This phenomenon is called degeneracy
of the particle filter [Kong et al. 1994].
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Resampling: One way to mitigate this phenomenon is to resample the particles by
redrawing a sample with uniform weights from the degenerate distribution. After
resampling, all particles have the same weight: ωi

k = 1/N.

IHandles well very nonlinear low-dimensional systems. But, without modification,
very inefficient for high-dimensional models. Avoiding degeneracy requires a great
number of particles that scales exponentially with the size of the system.
−→ This is a manifestation of the curse of dimensionality.
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Particle filters Can they be useful in the geosciences?

Application of the particle filter in the geosciences

IThe applicability of particle filters to high-dimensional models has been investigated
in the geosciences [van Leeuwen, 2009; Bocquet, 2010]. The impact of the curse of
dimensionality has been quantitatively studied in [Snyder et al., 2008]. It was known [Mackay
et al., 2003] that using an importance proposal to guide the particles towards regions of
high probability will not change this trend, albeit with a reduced exponential scaling,
which was confirmed by [Snyder et al., 2015]: optimal importance sampling particle filter
[Doucet et al., 2000; Bocquet, 2010; Snyder; 2011].

IParticle smoother over a data assimilation window: alternative and more efficient
particle filters can be designed, such as the implicit particle filter [Morzfeld et al., 2012].

IParticle filters can nevertheless be useful for high-dimensional models if the significant
degrees of nonlinearity are confined to a small subspace of the state space, as in
Lagrangian data assimilation [Slivinski et al., 2015].

I It is possible possible to design nonlinear filters for high-dimensional models such as
the equal-weight particle filter [van Leeuwen & Ades, 2010-2017].
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Particle filters Can they be useful in the geosciences?

Application of the particle filter in the geosciences
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I Localisation can be (should be?) used in conjunction with the particle filter [Reich et al.
2013; Potterjoy, 2016; Penny & Miyoshi, 2016; Farchi & Bocquet, 2018].

IThe particle filter has been applied in hydrology, convection, nivology, climate, etc
[Goosse, Dubinkina, Haslehner, van Leeuwen, etc.].
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