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Synopsis of the course

Monday, October 28 10:30-12:30
Lecture 1: Elementary principles of geophysical data assimilation. The Bayesian
standpoint. Classical methods of data assimilation: 3D-Var, the Kalman filter,
4D-Var.

Tuesday, October 29, 10:30-12:30
Lecture 2: The ensemble Kalman filter and its variants (focus on the
algorithmic/mathematical aspects.)

Thursday, October 31, 10:30-12:30
Lecture 3: Recent advances: hybrid and ensemble variational techniques.
Discussion on what to expect from machine learning/deep learning.

Followed next week by:

A course on data assimilation and stochastic filtering, particle filters by Dan Crisan
(Imperial College, London)

A course on big data and uncertainty quantification by Omar Ghattas (Uni. of
Texas, Austin)
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Data assimilation: principles Introduction

Data assimilation (DA) in the geosciences

Data assimilation
best combines

observations and models

An ongoing expansion from numerical weather prediction to the climate
science/geosciences:

Oceanography

Atmospheric chemistry

Climate prediction and assessment

Glaciology

Hydrology and hydraulics

Geology

Space weather

and many other fields
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Data assimilation: principles Introduction

Data assimilation: an inference problem

I Inference is the process of taking a decision based on limited information.

I Information comes from

an approximate knowledge about the laws (if any) governing the time evolution of
the dynamical system

imperfect (partial, noisy, indirect) observations of this system

ISequential inference is the problem of updating our knowledge about the system each
time a new batch of observations becomes available.
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Data assimilation: principles Introduction

First ingredient: the dynamical model

IWe will assume that a model of the natural process of interest is available as a
discrete stochastic dynamical system,

xk =Mk:k−1(xk−1,λ)+ηk .

I xk ∈ RNx and λ ∈ RNp are the model state and parameter vectors respectively.

IMk:k−1 : RNx → RNx is usually a nonlinear, possibly chaotic, map from tk−1 to tk .

Iηk ∈ RNx is the model error, represented as a stochastic additive term (more general
representations are possible).
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Data assimilation: principles Introduction

First ingredient: the dynamical model

I In the geosciences:

The state space dimension is huge (up to 109 for operational systems, up to 107

for research systems). A big data problem with costly models to integrate.

Numerical models (i.e. implementation of M) are often computationally very
costly.

The unstable dynamics of chaotic geofluids has implicit consequences on the
design of DA algorithms: One key reason why we use sequential inference.

ECMWF IFS: Geopotential at 500hPa E3SM Earth system model

and temperature at 850hPa
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Data assimilation: principles Introduction

Second ingredient: the observations

INoisy observations, yk ∈ RNy , are available at discrete times and are related to the
model state vector through

yk =Hk (xk )+εk ,

with H : RNx → RNy being the (generally nonlinear) observation operator mapping from
the model to the observational space.

IThe observation error, εk , is represented as a stochastic term. It account for the
instrumental error, for deficiencies in the formulation of H, and for the representation
error.

IThe representation error arises from the presence of unresolved scales and represents
their effect on the resolved scales – it is ubiquitous in physical science and inherent to
the discretisation procedure [Janjić et al. 2018].

IWe assume that the observation dimension is constant, so that Ny (k)≡ Ny (the
generalisation is simple). Remark: often Ny � Nx , i.e. the amount of available data is
insufficient to fully describe the system.
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Data assimilation: principles Introduction

Second ingredient: the observations

I In the geosciences: The observation space dimension is huge (up to 107 for
operational systems, up to 106 for research systems). A big data problem.

IThe Earth observations gather
measurements of many sources:
conventional and space-borne.

Conventional observations coverage used at ECMWF AMSUA observations used at ECMWF
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Data assimilation: principles Bayesian framework

Hidden Markov model

IConsidering the states and observations as random variables, the dynamical model,
together with the observation model, define a Hidden Markov model:

Markov model

x1 x2 x3 xk
M2:1 M3:2

y1 y2 y3 yk

H1 H2 H3 Hk

IThis is an inverse problem: Estimate the state x given the observation y.

IData assimilation for forecasting chaotic geofluids: sequential schemes

Observation

Model (forecast)

H
Analysis

Observation

Model (forecast)

H
Analysis

Observation

Model (forecast)

H
Analysis
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Data assimilation: principles Bayesian framework

Bayesian inference

IWhen making inference we have to decide how much we trust the uncertain
information. We need to quantify the uncertainty.

IGiven the random nature of the problem,

uncertainty quantification is achieved using probabilities.

IThe Bayesian approach offers a natural mathematical framework to understand and
formalise this problem.

I In particular, the goal of Bayesian inference is to estimate the uncertainty in x given
y, i.e compute the conditional probability density function (pdf) p(x|y).
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Data assimilation: principles Bayesian framework

Bayesian inference

IBayes/Laplace’s rule:

p(x|y) =
p(y|x)p(x)

p(y)

with p(y|x) the likelihood of the observations, p(x) the prior/background on the
system’s state, and p(y) the evidence. The evidence is a normalisation factor that does
not depend on x:

p(y) =

∫
dxp(y|x)p(x) .

IThis is a probabilistic approach. It quantifies the uncertainty/the information. It does
not provide a deterministic estimator. This would require to make a choice on top of
Bayes’rule.

IThe Bayesian approach is very satisfactorily [Jaynes 2003]. Most DA methods can be
derived or comply with Bayes’rule.
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Data assimilation: principles Bayesian framework

Sequential Bayesian estimation

IRecall our HMM given by the dynamical model and observation model:

xk =Mk:k−1(xk−1,λ)+ηk , yk =Hk (xk )+εk .

IThe model and the observational errors, {ηk }k=1,...,K , {εk }k=0,...,K are assumed to be
uncorrelated in time, mutually independent, and distributed according to the pdfs pη
and pε.

I Let us define the sequences of system states and observations within the interval
[t0, · · · ,tK ] as xK :0 = {xK ,xK−1, · · · ,x0} and yK :0 = {yK ,yK−1, · · · ,y0} respectively.

We wish to estimate the posterior p(xK :0|yK :0) for increasing K . Using Bayes’rule:

p(xK :0|yK :0)∝ p(yK :0|xK :0)p(xK :0).

M. Bocquet CliMathParis2019, Course on big data, data assimilation and uncertainty quantification, IHP, Paris, France, 28 Oct.-8 Nov. 2019 13 / 43



Data assimilation: principles Bayesian framework

Sequential Bayesian estimation

ISince the observational errors are assumed to be uncorrelated in time we have
p(yk |xK :0) = p(yk |xk ) and we can split the global likelihood:

p(yK :0|xK :0) =

K∏
k=0

p(yk |xk ) =
K∏

k=0

pε (yk −Hk (xk )) .

IAlso, in virtue of the Markov property we have p(xk+1|xk:0) = p(xk+1|xk ) (prediction
at tk+1 only depends on the state at tk), and we can split the global prior as

p(xK :0) = p(x0)

K∏
k=1

p(xk |xk−1) = p(x1)

K∏
k=0

pη (xk −Mk:k−1(xk−1)) .
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Data assimilation: principles Bayesian framework

Sequential Bayesian estimation

IBy combining these equations using Bayes’rule we get the posterior distribution

p(xK :0|yK :0)∝ p(x0)p(y0|x0)

K∏
k=1

p(yk |xk )p(xk |xk−1)

∝ p(x0)pε (y0 −H0(x0))

K∏
k=1

pε (yk −Hk (xk ))pη (xk −Mk:k−1(xk−1)) .

IThis equation is of central importance: it states that a new update can be obtained
as soon as new observations are available.

ISequential inference can be obtained by recursively estimating p(yk |xk )p(xk |xk−1).

IThe Bayesian formalism has all the qualities we wish for except that it does not lend
to a closed form, analytically tractable solution.
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Data assimilation: principles Bayesian framework

Sequential Bayesian estimation

IThanks to the main result on the HMM:

p(xK :0|yK :0)∝ p(x0)p(y0|x0)

K∏
k=1

p(yk |xk )p(xk |xk−1)

we can define the following sequential algorithm to iteratively compute it:

p(xk:0|yk:0)∝ p(yk |xk )p(xk |xk−1)p(xk−1:0|yk−1:0). (1)

IAn analysis step, in which the conditional pdf p(xk |yk:0) is updated using the latest

observation vector, yk ,

p(xk |yk:0)∝ pη (yk −Hk (xk ))p(xk |yk−1:0),

Iwhich alternates with a forecast step that propagates this pdf, using the
Chapman-Kolmogorov equation, forward in time until the new observation batch:

p(xk+1|yk:0) =

∫
dxpη (xk −Mk:k−1(xk−1))p(xk |yk:0)

to get p(xk+1|yk:0).
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Data assimilation: principles Goals and practical tools of data assimilation

Main goals of data assimilation

t0 t1 t2 tK tK+1 tK+2

Past Future

IRecall xK :0 = {x0,x1, . . . ,xK }, yK :0 = {y0,y1, . . . ,yK }:

Prediction: Estimate xk for k > K , knowing yK :0,

Filtering: Estimate xK , knowing yK :0,

Smoothing: Estimate xK :0, knowing yK :0.

I Less formal names:

nowcasting and forecasting,

reanalysis,

parameter estimation.
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Data assimilation: principles Goals and practical tools of data assimilation

Mathematical methods in DA

I Introduction of mathematical methods in operational numerical weather prediction:

1950 1975 1998 2005 2015

Objective
Analysis

Optimal Interpolation
3D-Var

4D-Var EnKF Hybrid/EnVar

Optimisation Linear Regression Optimal Control
Kalman Filtering

Monte Carlo

Dynamics Model Forecast Adjoint Model Ensemble Forecast

IUsing increasingly complex mathematical methods and increasingly resolved
high-dimensional models.
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Focus on a key elementary derivation
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Focus on a key elementary derivation

Gaussian approximation

IA key to obtain a (approximate) solution is to truncate the errors to second-order
moments ∼ the Gaussian approximation. Most of DA methods are fully or partially
based on this assumption.

IThe elementary building block of DA schemes is the statistical BLUE (Best Linear
Unbiased Estimator) analysis. Time is considered fixed. H is assumed linear.

y =Hx+εo, xb = x+εb,

where εo ∼ N(0,R), and εb ∼ N(0,B).

ISolution:
xa = xb +K

(
y−Hxb)

K = BH> (R+HBH>)−1

Pa = (I−KH)B.

yxb xa
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Focus on a key elementary derivation

Error statistics – Assumptions and definitions

I xt is defined as the true unknown state.

IObservation error statistics:

εo = y−Hxt with E[εo] = 0, E
[
εoεo>

]
= R,

which is in particular satisfied if εo ∼ N(0,R).

IBackground error statistics:

εb = xb −xt with E[εb] = 0, E
[
εbεb>

]
= B, E

[
εbεo>

]
= 0.

IAnalysis error statistics:

εa = xa −xt with E[εa] = 0, E
[
εaεa>

]
= Pa.
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Focus on a key elementary derivation

Linear unbiased Ansatz for the estimate

IGeneral Ansatz, linear in the observation and the first guess:

xa = Lxb +Ky.

IWriting it in terms of errors:

xa −xt = L
(
xb −xt +xt

)
+K

(
Hxt +εo)−xt,

εa = Lεb +Kεo +(L+KH− I)xt.

Then E[εo] = 0 and E[εb] = 0 imply E[εa] = (L+KH− I)E[xt].
Hence, we wish to impose

L= I−KH.

IAs a result, we obtain a linear and unbiased Ansatz:

xa = (I−KH)xb +Ky,

xa = xb +K(y−Hxb)︸ ︷︷ ︸
innovation

.
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Focus on a key elementary derivation

Best linear unbiased estimator

IPosterior error:
εa = εb +K(εo −Hεb),

so that

Pa = E
[
(εa)(εa)>

]
= E

[(
εb +K(εo −Hεb)

)(
εb +K(εo −Hεb)

)>]
= E

[(
Lεb +Kεo

)(
Lεb +Kεo

)>]
= E

[
Lεb(εb)>L>)

]
+E

[
Kεo(εo)>K>

]
= LBL>+KRK>,

In summary:
Pa = (I−KH)B(I−KH)>+KRK>.

IWe look for a metric as a global measure of the error. For instance Tr(Pa). Let us
find the optimal K that minimises this metric.
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Focus on a key elementary derivation

Best linear unbiased estimator

IVariation of the metric with respect to a variation of K, i.e. δK:

δ(Tr(Pa)) = Tr
(
(−δKH)BL>+LB(−δKH)>+δKRK>+KRδK>

)
= Tr

(
(−LB>H>−LBH>+KR>+KR)(δK)>

)
= 2Tr

(
(−LBH>+KR)(δK)>

)
.

IAt optimality, one infers that −(I−K?H)BH>+K?R= 0, from which we obtain

K? = BH>(R+HBH>)−1,

from which we get the BLUE solution:
xa = xb +K

(
y−Hxb)

K = BH> (R+HBH>)−1

Pa = (I−KH)B.

M. Bocquet CliMathParis2019, Course on big data, data assimilation and uncertainty quantification, IHP, Paris, France, 28 Oct.-8 Nov. 2019 24 / 43



Main techniques
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Main techniques

3D-Var and BLUE in the linear case: derivation

I 3D-Var cost function:

J(x) =
1

2
‖x−xb‖2

B−1 +
1

2
‖y−Hx‖2

R−1 , with ‖x‖2
A = x>Ax.

I Let us minimise J and compute the variation of J(x) with respect to a variation of x:

δJ(x) =
1

2
(δx)>B−1

(
x−xb

)
+

1

2

(
x−xb

)>
B−1δx

+
1

2
(−Hδx)>R−1 (y−Hx)+

1

2

(
xb −Hx

)
R−1 (−Hδx)

= (δx)>B−1
(
x−xb

)
−(δx)>H>R−1 (y−Hx)

= (δx)>∇J .

IThe extremum condition is ∇J = B−1(x?−xb)−H>R−1(y−Hx?) = 0, which yields:

x? = xb +(B−1 +H>R−1H)−1H>R−1︸ ︷︷ ︸
K?

(y−Hxb) .

Thanks to the Sherman-Morrison-Woodbury identity,

K? = (B−1 +H>R−1H)−1H>R−1 = BH>
(
R+HBH>

)−1
.

−→ x? coincides with the BLUE optimal analysis xa.
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Main techniques 3D-Var and optimal interpolation

3D-Var and optimal interpolation

IVariational formulation of the same problem

J(x) =
1

2
‖x−xb‖2

B−1 +
1

2
‖y−Hx‖2

R−1 ,

which is equivalent to BLUE.

IProbabilistic/Bayesian interpretation:

p(x|y)∝ e−J(x)
yxb xa

ICapable of handling a nonlinear observation operator using standard nonlinear
optimisation methods:

J(x) =
1

2
‖x−xb‖2

B−1 +
1

2
‖y−H(x)‖2

R−1 .
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Main techniques 3D-Var and optimal interpolation

Chaining the analyses in time

IChaining the BLUE/3D-Var cycles:

1 Analysis with a forecast at tk : xf
k and with static information B: xa

k ,

2 Forecast to tk+1: xf
k+1 =Mk+1:k (x

a
k ).

IAlso known as optimal interpolation
(if the analysis step is BLUE).

IRelatively cheap. Used in oceanogra-
phy, atmospheric chemistry. Requires
a smart construction of B.

IBut the information about the errors
is not propagated in time. . .

t1 t2 t3 t4 t5

0.0

0.2

0.4

0.6

0.8

1.0
truth
3D-Var
observation
analysis
forecast

Observation y,R

xf

B

Analysis xa

Observation

Model

y,R

xf

B

Analysis xa

Observation

Model

y,R

xf

B

Analysis xa
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Main techniques The Kalman filter

The Kalman filter

ISimilar to optimal interpolation. But, now, we want to replace the static B with a
dynamic Pf which needs updating and propagating.

IAnalysis step:

xa
k = xf

k +Kk

(
yk −Hkx

f
k

)
,

Kk = Pf
kH

>
k

(
Rk +HkP

fH>
k

)−1
,

Pa
k = (I−KkHk )P

f
k .

IForecast step:

xf
k+1 =Mk+1:kx

a
k ,

Pf
k+1 =Mk+1:kP

a
kM

>
k+1:k +Qk+1.

Observation y,R

xf

Pf

Analysis xa

Pa

Observation

Model

TLM

y,R

xf

Pf

Analysis xa

Pa

Observation

Model

TLM

y,R

xf

Pf

Analysis xa

Pa
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Main techniques The Kalman filter

The extended Kalman filter

IOptimal if the model and observation operators are linear and if all the initial and
observations errors are Gaussian: it gives the exact Gaussian solution of Bayes’ rule.

ICan be extended to nonlinear models with:

xf
k+1 =Mk+1:k (x

a
k ),

Pf
k+1 =Mk+1:kP

a
kM

>
k+1:k +Qk+1,

where Mk+1:k is the tangent linear model (linearisation at xa
k) of Mk+1:k .

IExtremely costly for large geophysical models: storage space (storage of Pf) and
computations (Mk+1:kP

f
kM

>
k+1:k requires 2Nx integrations of the model).

ISolutions: The reduced-rank / ensemble Kalman filters. Wait for lecture 2!
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Main techniques The Kalman filter

The extended Kalman filter: numerical illustration

IAnharmonic oscillator:
d2x

dt2
−Ω2 x +Λ2 x3 = 0,

whose numerical implementation is

x0 = 0, x1 = 1 and for 1 6 k 6 N : xk+1 −2xk +xk−1 =ω2 xk −λ
2 x3

k .

−→ Equations for a material dot in a double well potential V (x) = − 1
2Ω

2x2 + 1
4Λ

2x4.

IMarkovian dynamics with an augmented state vector:

uk =

[
xk

xk−1

]
,

with the augmented dynamics

Mk+1:k =

[
2+ω2 −λ2x2

k −1
1 0

]
,

yields
uk+1 =Mk+1:k (uk ).

IHk = [1,0]. The observation equation is yk =Hkuk +εk .

M. Bocquet CliMathParis2019, Course on big data, data assimilation and uncertainty quantification, IHP, Paris, France, 28 Oct.-8 Nov. 2019 31 / 43



Main techniques The Kalman filter

The extended Kalman filter: numerical illustration

IComparison with the EnKF that does not rely on the tangent linear approximation.
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Main techniques The Kalman filter

The extended Kalman filter: numerical illustration

IComparison with the EnKF that does not rely on the tangent linear approximation.
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Main techniques 4D-Var

4D-Var

IStrongly constrained 4D-Var, i.e. assuming the model is perfect (no model error)

J(x0) =
1

2
‖x0 −xb0‖2

B−1 +
1

2

K∑
k=0

‖yk −Hk (xk )‖2
R−1
k

,

under the constraints that xk+1 =Mk+1:k (xk ) for k = 0, . . . ,K −1.

IFits a model trajectory through the 4D data points.

t1 t2 t3 t4 t5

0.0

0.2

0.4

0.6

0.8

1.0
truth
4D-Var
observation
analysis
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Main techniques 4D-Var

4D-Var: algorithm

I Lagrangian for 4D-Var:

L(xK :0,λk:0) =
1

2
‖x0 −xb0‖2

B−1 +
1

2

K∑
k=0

‖yk −Hk (xk )‖2
R−1
k

+

K∑
k=1

λ>k (xk −Mk:k−1(xk−1)) .

IGradient of the Lagrangian with respect to xK :0:

∇x0L(x0) = B−1
(
x0 −xb0

)
−H>

0 R−1
0 (y0 −H0(x0))−M>

1:0λ1,

∇xkL(x0) = −H>
k R−1

k (yk −Hk (xk ))−M>
k+1:kλk+1 +λk ,

∇xK L(x0) = −H>
KR−1

K (yK −HK (xK ))+λK .

IRequires the computation of the tangent linear and adjoint of Hk and Mk+1:k .

INo perfect (general purpose) automatic differentiation tool: developing and
maintaining the adjoint codes is computationally very costly!
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Main techniques 4D-Var

4D-Var: algorithm

IAlgorithm: one outer loop

1 Given the initial condition x0, compute the trajectory xK :0 with the dynamical
model M.

2 Compute the adjoint trajectory backwards in time:

λK =H>
KR−1

K (yK −HK (xK )) ,

λk =H>
k R−1

k (yk −Hk (xk ))−M>
k+1:kλk+1,

λ0 =H>
0 R−1

0 (y0 −H0(x0))−M>
1:0λ1.

3 This finally yields:

∇x0J(x0) = B−1
(
x0 −xb0

)
−λ0.

ICan be used to feed any gradient-based minimisation scheme (Newton,
Gauss-Newton, L-BFGS, conjugate-gradient, Levenberg-Marquardt, trust region
methods).
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Main techniques 4D-Var

4D-Var: algorithm

IFor high-dimensional systems: incremental strategy with outer/inner loops.
The inner-loop Lagrangian, which is quadratic in δxK :0, is

L(p)(δxK :0,λk:0) =
1

2
‖x(p)0 −xb

0 +δx0‖2
B−1 +

1

2

K∑
k=0

‖yk −Hk (x
(p)
k )+H(p)(δxk )‖2

R−1
k

+

K∑
k=1

λ>k

(
x
(p)
k+1 −Mk+1:k (x

(p)
k )−M

(p)
k:k−1(δxk−1)

)
.

It can efficiently be solved using a conjugate-gradient algorithm.
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Main techniques 4D-Var

4D-Var: algorithm

I Let us assume Gaussian model error:

xk =Mk:k−1(xk−1)+ηk , ηk ∼ N(0,Qk ).

IWeakly constrained 4D-Var, i.e. assuming the model is imperfect [Trémolet 2006]

J(xK :0) =
1

2
‖x0 −xb0‖2

B−1 +
1

2

K∑
k=0

‖yk −Hk (xk )‖2
R−1
k

+
1

2

K∑
k=1

‖xk −Mk:k−1(xk−1)‖2
Q−1

k
.

IAdds much flexibility to trajectory fitting.

IHuge control variables (K times bigger) for a very specific form of model error. . .
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Main techniques Particle filters

Taking the bull by the horns: the particle filter

IThe particle filter is the Monte-Carlo solution of the Bayes’equation. This is a
sequential Monte Carlo method.

IThe most simple algorithm of Monte Carlo type that solves the Bayesian filtering
equations is called the bootstrap particle filter [Gordon et al. 1993].

Sampling: Particles {x1,x2, . . . ,xM }.

Pdf at time tk : pk (x)'
∑M

i=1ω
k
i δ(x−xik ).

Forecast: Particles propagated by

pk+1(x)'
M∑
i=1

ωi
kδ(x−xik+1)

with xik+1 =Mk+1(xk ).

Analysis: Weights updated according to

ωa,i
k+1 ∝ω

f,i
k+1p(yk+1|x

i
k+1) .

prior

likelihood

posterior

IAnalysis is carried out with only a few multiplications. No matrix inversion!
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Main techniques Particle filters

The particle filter: degeneracy

IThese normalised statistical weights have a potentially large amplitude of fluctuation.
One particle will stand out among the others. Its weight will largely dominate the others
(ωi . 1). This phenomenon is called degeneracy of the particle filter [Kong et al. 1994].
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Main techniques Particle filters

The particle filter: the curse of dimensionality

IHandles very well, very nonlinear low-dimensional systems. But, without modification,
very inefficient for high-dimensional models. Avoiding degeneracy requires a great
number of particles that scales exponentially with the size of the system [Snyder et al.

2008]. This is a manifestation of the curse of dimensionality.

IAre there solutions to circumvent this curse of dimensionality?

Resampling the particles to reset the weights.

Introduce diversity by adding jitter to the particles.

Localisation can be (should be?) used in conjunction with the particle filter [Reich

2013; Poterjoy 2016; Penny and Miyoshi 2016; Farchi and Bocquet 2018].

−→ Much more on particle filters in Dan Crisan’s lectures next week!

M. Bocquet CliMathParis2019, Course on big data, data assimilation and uncertainty quantification, IHP, Paris, France, 28 Oct.-8 Nov. 2019 41 / 43



References

References I

[1] M. Asch, M. Bocquet, and M. Nodet. Data Assimilation: Methods, Algorithms, and Applications. Fundamentals of Algorithms. SIAM,
Philadelphia, 2016, p. 324.

[2] A. Carrassi et al. “Data Assimilation in the Geosciences: An overview on methods, issues, and perspectives”. In: WIREs Climate Change 9
(2018), e535.

[3] R. Daley. Atmospheric Data Analysis. Cambridge University Press, New-York, 1991, p. 472.

[4] G. Evensen. Data Assimilation: The Ensemble Kalman Filter. Second. Springer-Verlag Berlin Heildelberg, 2009, p. 307.

[5] A. Farchi and M. Bocquet. “Review article: Comparison of local particle filters and new implementations”. In: Nonlin. Processes Geophys. 25
(2018), pp. 765–807.

[6] S. J. Fletcher. Data assimilation for the geosciences: From theory to application. Elsevier, 2017.

[7] M. Ghil and P. Malanotte-Rizzoli. “Data assimilation in meteorological and oceanography”. In: Advanc. in Geophys. 33 (1991), pp. 141–266.

[8] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. “Novel approach to nonlinear/non-Gaussian Bayesian state estimation”. In: IEE Proc.-F 140
(1993), pp. 107–113.
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Looking for a textbook in data assimilation?

Thank you for your attention!

IPart I: A gentle introduction to DA.

IPart II: More advanced topics including EnKF
and EnVar.

IPart III: Applications of DA including emerging
ones such as: glaciology, biology, geomagnetism,
medicine, imaging and acoustics, economics and
finance, traffic control, etc.
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