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Synopsis of the course

Monday, October 28 10:30-12:30
Lecture 1: Elementary principles of geophysical data assimilation. The Bayesian
standpoint. Classical methods of data assimilation: 3D-Var, the Kalman filter,
4D-Var.

Tuesday, October 29, 10:30-12:30
Lecture 2: The ensemble Kalman filter and its variants (focus on the
algorithmic/mathematical aspects.)

Thursday, October 31, 10:30-12:30
Lecture 3: Recent advances: hybrid and ensemble variational techniques.
Discussion on what to expect from machine learning/deep learning.

Followed next week by:

A course on data assimilation and stochastic filtering, particle filters by Dan Crisan
(Imperial College, London)

A course on big data and uncertainty quantification by Omar Ghattas (Uni. of
Texas, Austin)
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The ensemble Kalman filter

Outline
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The ensemble Kalman filter Reminder

Sequential Bayesian estimation

IRecall our HMM given by the dynamical model and observation model:

xk =Mk:k−1(xk−1,λ)+ηk , yk =Hk (xk )+εk .

IThe model and the observational errors, ηk ,εk : k = 1, ...,K are assumed to be
uncorrelated in time, mutually independent, and they follow the pdfs pη and pε.

Formal sequential Bayesian solution

IAn analysis step, in which the conditional pdf p(xk |yk:0) is updated using the latest
observation vector, yk ,

p(xk |yk:0)∝ pη (yk −Hk (xk ))p(xk |yk−1:0),

Iwhich alternates with a forecast step which propagates this pdf, using the
Chapman-Kolmogorov equation, forward in time until the new observation batch:

p(xk+1|yk:0) =

∫
dxpη (xk −Mk:k−1(xk−1))p(xk |yk:0).
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The ensemble Kalman filter Reminder

Sequential Bayesian estimation: the Kalman filter

IEven though these equations are well suited for sequential DA with chaotic models,
they are still impractical to solve. However, the Kalman filter solves them exactly under
the assumptions of linearity of the models and Gaussianity of the statistics.

IAnalysis step:

xa
k = xf

k +Kk

(
yk −Hkx

f
k

)
,

Kk = Pf
kH
>
k

(
Rk +HkP

fH>k

)−1
,

Pa
k = (Ix −KkHk )P

f
k .

IForecast step:

xf
k+1 =Mk+1:kx

a
k ,

Pf
k+1 =Mk+1:kP

a
kM
>
k+1:k +Qk+1.

Observation y,R
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The ensemble Kalman filter Reminder

The extended Kalman filter

IAs seen in lecture 1, the Kalman filter can be extended to handle nonlinear models:

xf
k+1 =Mk+1:k (x

a
k ),

Pf
k+1 =Mk+1:kP

a
kM
>
k+1:k +Qk+1,

where Mk+1:k is the tangent linear model (linearisation at xa
k) of Mk+1:k .

IDrawbacks 1 & 2: Extremely costly for large geophysical models: storage space
(storage of Pf) and computations (Mk+1:kP

f
kM
>
k+1:k requires 2Nx integrations of the

model).

IDrawback 3: The model linearisation in the error covariances is an approximation.

ISolutions: The reduced-rank / ensemble Kalman filters.
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The ensemble Kalman filter Principles

The ensemble Kalman filter

IThe idea [Evensen 1994; Houtekamer and Mitchell 1998] is to make the KF work in high
dimensions and replace P (Pa and Pf) with an ensemble of states x1, x2, . . . , xNe . The
moments of the error could theoretically be approximated by the sample/empirical
moments:

xf =
1

Ne

Ne∑
i=1

xf
i , Pf ≈ 1

Ne −1

Ne∑
i=1

(
xf
i −xf

)(
xf
i −xf

)>
.

IDefine the normalised anomaly or perturbation matrix ∈ RNx×Ne

[Xf]i =
xf
i −xf
√
Ne −1

=⇒ Pf ≈ XfX
>
f .

Likewise

xa =
1

Ne

Ne∑
i=1

xa
i , Pa ≈ XaX

>
a where [Xa]i =

xa
i −xa
√
Ne −1

.
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The ensemble Kalman filter Principles

The ensemble Kalman filter: Ansatz and mean update

IAn educated guess would suggest, for i = 1. . .Ne:

xa
i = xf

i +K
(
y−Hxf

i

)
.

but the correct answer is actually

xa
i = xf

i +K
(
y+εi −Hxf

i

)
.

where εi is a stochastic noise sampled from N(0,R), for each member.

IChecking the mean: on average, and summing over the ensemble members:

xa = xf +K
(
y−Hxf

)
,

which is the same as the Kalman filter’s mean update.
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The ensemble Kalman filter Principles

The ensemble Kalman filter: perturbations update

IChecking the ensemble update: on average, does it mimic the Kalman filter?
We define

ε=
1

Ne

Ne∑
i=1

εi , Θ=
1√

Ne −1
[ε1 −ε ε2 −ε · · · εNe −ε] .

The perturbations update then reads (ensemble minus the mean):

Xa = (Ix −KH)Xf +KΘ,

which yields the empirical analysis error covariances:

Pa = (Ix −KH)Pf(Ix −KH)>+KΘΘ>K>+(Ix −KH)XfΘ
>K>+KΘX>f (Ix −KH)>,

whose average on Θ is

E[Pa] = (Ix −KH)Pf(Ix −KH)>+KRK> = (Ix −KH)Pf.

The last identity is valid if K is the (optimal) Kalman gain.

I In the absence of the observation stochastic noise, the posterior error statistics
would be incorrect!
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The ensemble Kalman filter Principles

The ensemble Kalman filter: forecast

IKalman gain representations:

Empirical: denoting Yf =HXf +Θ, we have K= XfY
>
f

(
YfY

>
f

)−1

Deterministic: denoting Yf =HXf, we have K= XfY
>
f

(
R+YfY

>
f

)−1

IForecast step: The ensemble is propagated using the full nonlinear model

xf
i ,k+1 =Mk+1:k

(
xa
i ,k

)
,

whereas the extended Kalman filter uses the tangent linear model.

INumerically costly (Ne propagations) but

the forecast scheme is embarrassingly parallel,

no need to derive the tangent linear model of the full model.
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The ensemble Kalman filter Principles

The ensemble Kalman filter: surrogate for H

I Instead of estimating PfH> = XfY
>
f and HPfH> = YfY

>
f in the Kalman gain, we

can use the ensemble:

yf =
1

Ne

Ne∑
i=1

H(xf
i ),

PfH> =
1

Ne −1

Ne∑
i=1

(
xf
i −xf

)[
H(xt

i )−yf
]>

,

HPfH> =
1

Ne −1

Ne∑
i=1

[
H(xf

i )−yf
][

H(xf
i )−yf

]>
.

These approximations rely on the key assumption:

[Yf]i =H
(
xf
i −xf

)
≈H(xf

i )−yf.

IThis is sometimes called the secant method (alternative to finite-differences).
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The ensemble Kalman filter Principles

The ensemble Kalman filter: What’s nice about it?

The ensemble forecast has a complexity of Ne model runs

Yes, it is far better than the extended Kalman filter and game-changing.
But there will be a heavy tribute for this.

The ensemble forecast uses the nonlinear model in place of the tangent linear model

Yes, it’s nice and better from a Bayesian standpoint.
But not as critical as it was originally sold. In that respect, the EnKF is outperformed
by the iterative ensemble Kalman filter and smoother (→ lecture 3).

It emulates the tangent linear of the observation model

Definitely a good point and at the origin of nonlinear EnVar techniques (→ lecture 3).
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The ensemble Kalman filter Mathematical prerequisites

The ensemble Kalman filter: a bunch of methods

ITwo main flavors of EnKFs: stochastic and deterministic, but many variants.

EnKF

stochastic EnKF

deterministic EnKF

EnSRF/EAKF

serial EnSRF

ETKF

DEnKF

IBut several significant precursors and alternatives: reduced-rank square-root Kalman
filter, SEEK, SEIK, unscented Kalman filter, etc.
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The ensemble Kalman filter Mathematical prerequisites

Key algebraic identities

ISherman-Morrison-Woodbury (SMW) identity (A and C invertible):

(A+UCV)−1 = A−1 −A−1U
(
C−1 +VA−1U

)−1
VA−1.

ITypical applications:

Analysis error covariances:

Pa =
(
B−1 +H>R−1H

)−1
= B−BH>

(
R+HBH>

)−1
HB.

Kalman gain:

K= BH>
(
R+HBH>

)−1
=
(
B−1 +H>R−1H

)−1
H>R−1.
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The ensemble Kalman filter Mathematical prerequisites

Key algebraic identities

IMatrix shift lemma (SML): Let A and B two matrices of compatible dimensions and
x 7→ f (x) be a function defined on the spectra of AB and BA, then :

Af (BA) = f (AB)A.

→ Proof in [Higham 2008].

ITypical application, A ∈ RNx×Ny and B ∈ RNy×Nx are positive semi-definite:

A
(
Iy +BA

)−1
= (Ix +AB)−1A.
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The ensemble Kalman filter Mathematical prerequisites

Key algebraic identities

I Let f be a function such that f (0) = 1, and which is analytic in a connected domain
D of contour C in the complex plane C which encloses the eigenvalues of both AB and
AB. Define g(x) = (f (x)−1)/x . Then

f (AB) = I+Ag(BA)B.

→ Proof in [Higham 2008].

IApplication: let us assume that the eigenvalues of AB and BA have a non-negative
real part, then

(Ix +AB)−
1
2 = Ix −A

(
Iy +BA+

[
Iy +BA

] 1
2

)−1
B,

where we chose f (x) = (1+x)−
1
2 and g(x) = −(1+x +

√
1+x)−1.

→ Proof in [Bocquet and Farchi 2019].
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The ensemble Kalman filter Mathematical prerequisites

Deterministic Kalman filters and matrix square root definition

IThe deterministic EnKFs avoid the introduction of the stochastic perturbations by
updating the anomaly matrix Xf in

Pf = XfX
>
f ,

rather than updating Pf.

I In the following, Xf is called a factor of Pf, not a “square root” of Pf as sometimes
seen in geophysical data assimilation literature. This would clash with the mathematical
definition of a square root matrix.

I Let M be a diagonalisable matrix with non-negative eigenvalues, i.e. M= GDG−1,
where G is an invertible matrix and D is the diagonal matrix containing the
non-negative eigenvalues of M. Then the square root of M is

M
1
2 = GD

1
2 G−1,

where D
1
2 is the diagonal matrix with the square root of the eigenvalues of M.

INote that M does not have to be symmetric.
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The ensemble Kalman filter The ETKF

The ensemble transform Kalman filter: mean update

IOne of the variant (ETKF, [Hunt et al. 2007] on an idea by [Bishop, Etherton, et al. 2001])
operates the linear algebra in the space of the perturbations, or ensemble subspace:

xa = xf +Xfw
a.

I Inserting this decomposition into the Kalman state update equation:

xf +Xfw
a = xf +XfX

>
f H>

(
HXfX

>
f H>+R

)−1
δ, where δ= y−H(xf),

which suggests

wa ≡ X>f H>
(
HXfX

>
f H>+R

)−1
δ= Y>f

(
YfY

>
f +R

)−1
δ.

IUsing the SMW identity, we finally obtain:

wa =
(
Ie +Y>f R−1Yf

)−1
Y>f R−1δ.
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The ensemble Kalman filter The ETKF

The ensemble transform Kalman filter: perturbations update

IFrom the analysis error covariance matrix of the Kalman filter, let us infer what the
analysis anomaly matrix could be:

Pa = (Ix −KH)Pf

≈
(
Ix −XfY

>
f

(
YfY

>
f +R

)−1
H

)
XfX

>
f

≈ Xf

(
Ie −Y>f

(
YfY

>
f +R

)−1
Yf

)
X>f ,

which suggests to choose the following factor:

Xa = Xf

(
Ie −Y>f (YfY

>
f +R)−1Yf

)1/2
.
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The ensemble Kalman filter The ETKF

The ensemble transform Kalman filter: perturbations update

IThis expression can be simplified into

Xa = Xf

(
Ie −Y>f (YfY

>
f +R)−1Yf

)1/2

SMW
= Xf

(
Ie −

(
Ie +Y>f R−1Yf

)−1
Y>f R−1Yf

)1/2

= Xf

[(
Ie +Y>f R−1Yf

)−1(
Ie +Y>f R−1Yf −Y>f R−1Yf

)]1/2

= Xf

(
Ie +Y>f R−1Yf

)−1/2
.

IWe conclude

Xa = XfT, with T=
(
Ie +Y>f R−1Yf

)−1/2
.

INow, we can build the posterior ensemble as

i = 1, . . . ,Ne : xa
i = xa +

√
Ne −1Xf [T]i = xf +Xf

(
wa +

√
Ne −1 [T]i

)
.
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The ensemble Kalman filter The ETKF

The ensemble transform Kalman filter: rotation matrix

IA more general anomaly update is

Xa = XfTU, where U ∈ O(Ne).

I It is important to require:

U1= 1, where 1= [1, . . . ,1]> ∈ RNe .

This ensures that the updated ensemble is centred on xa [Livings et al. 2008; Sakov and Oke

2008b]. Indeed, we have

Xa1= XfTU1= XfT1= Xf1= 0,

and

1

Ne

Ne∑
i=1

xa
i = xa +

√
Ne −1

Ne
Xa1= xa.

IU= Ie minimises the distance between Xa and Xf [Ott et al. 2004].
However, choosing random U may make the update more Gaussian and hence be more
consistent with the EnKF assumptions [Lawson and Hansen 2004; Sakov and Oke 2008b].

IU= Ie in the following for the sake of simplicity.
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The ensemble Kalman filter The EnSRF

The ensemble square-root Kalman filter (EnSRF)

IThis is a variant of the deterministic EnKF where the update is carried out in state
space, rather than in ensemble subspace as for the ETKF.

IMean update: same as all the other EnKFs.

IPerturbation update [Sakov and Bertino 2011]:

Xa = Xf

(
Ie +Y>f R−1HXf

)− 1
2

SML
=
(
Ix +XfX

>
f H>R−1H

)− 1
2
Xf

=
(
Ix +PfH>R−1H

)− 1
2
Xf.

Very elegant formula though not practical!
Note that Ie +PfH>R−1H is in general not symmetric but it is diagonalisable with
positive spectrum hence, it has a square root, which is unique.

IThe EnSRF is algebraically equivalent and shares the left transform update with the
adjustment ensemble Kalman filter (EAKF) [J. L. Anderson 2001].
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The ensemble Kalman filter The DEnKF

DEnKF: the deterministic ensemble Kalman filter

IReformulation of the perturbation update on the left:

We use (Ix +AB)−
1
2 = Ix −A

(
Iy +BA+

[
Iy +BA

] 1
2

)−1
B with A= PfH> and

B= R−1H and we obtain:

Xa =
(
Ie +PfH>R−1H

) 1
2
Xf

=

{
Ix −PfH>

(
R+HPfH>+R

[
Iy +R−1HPfH>

] 1
2

)−1

H

}
Xf.

IEffective gain in a deterministic setup:
Mimicking the stochastic EnKF, the effective gain for the updated perturbations (not
the mean!) is

K̃= PfH>
(
R+HPfH>+R

[
Iy +R−1HPfH>

] 1
2

)−1

,

as shown by [Whitaker and Hamill 2002] following [Andrews 1968], [Farchi and Bocquet 2019].
This can be reformulated as

K̃=K

{
Iy +

(
Iy +HPfH>R−1

)− 1
2

}−1

.
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The ensemble Kalman filter The DEnKF

DEnKF: the deterministic ensemble Kalman filter

IAn approximation of the EnSRF that mimics the update of the stochastic EnKF.

IMean update: same as all the other EnKFs.

I In the weak assimilation regime, we have:{
Iy +

(
Iy +HPfH>R−1

)− 1
2

}−1

≈ 1

2
Iy.

which suggests that the effective gain matrix can be approximated as

K̂=
1

2
K,

i.e.

Xa ≈
(
Ix −

1

2
KH

)
Xf.

IAvoids the need to compute the square root → very similar to the stochastic EnKF
(but deterministic).
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The ensemble Kalman filter The DEnKF

DEnKF: the deterministic ensemble Kalman filter

IWhy this filter is robust:

P̂a = X̂aX̂
>
a =

(
Ix −

1

2
KH

)
XfX

>
f

(
Ix −

1

2
H>K>

)
= Pf −

1

2
KHPf −

1

2
PfH>K>+

1

4
KHPfH>K>

= (Ix −KH)Pf +
1

4
KHPfH>K>

> (Ix −KH)Pf = Pa,

i.e. the analysis error covariance matrix of the DEnKF (P̂a) is bounded by the exact one:

P̂a > Pa.

IEnsemble update: In summary,

xa
i = xf

i +K

[
y−H

(
xf
i +xf

2

)]
.

This nicely mimics the stochastic EnKF – the update can be carried out in parallel.

IUsed in several intermediate and operational systems.
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The ensemble Kalman filter The serial EnKF

Serial EnKF

IAlternatively, the observations can be assimilated one at a time.

Drawback: can lead to suboptimality whenever an approximation is introduced.

Advantage: simple (especially the Potter scheme) and localisation is effective and
elegant in this framework.

→ Used in the NCAR DART DA suite, and in most of J. L. Anderson’s papers.

IMean update:

xa = xf +K(y −h(xf)) K= Pfh>/(r +hPfh>).

IPerturbation update:

K̃=
K

1+1/
√

1+ r−1hPfh>
.
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Making EnKF work: localisation and inflation
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Making EnKF work: localisation and inflation Diagnostic

Remedies to make EnKF work in high dimension

I Limited number Ne of anomalies: the sample covariance matrix is highly
rank-deficient.

I If B is the true covariance matrix and Pe is the (Ne-member) sample covariance
matrix which approximates B, then:

E
(
[Pe −B]2ij

)
=

1

Ne −1

(
[B]2ij +[B]ii [B]jj

)
. (1)

In most geophysical systems, [B]ij vanish exponentially with |i − j |→∞.
The [B]ii are the variances and remain finite, so that

E
(
[Pe −B]2ij

)
∼

|i−j |→∞ 1

Ne −1
[B]ii [B]jj . (2)

ISince [B]ij vanish exponentially with the distance, we expect E
(
[Pe −B]2ij

)
to also

vanish exponentially with the distance. Hence with Ne finite, the sample covariance
[Pe]ij is potentially a bad approximation especially for large distances |i − j |.

IThe errors of such an approximation are usually referred to as sampling errors.
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Making EnKF work: localisation and inflation Localisation

Localisation

ICovariance localisation seeks to regularise the sample covariance to mitigate the
rank-deficiency of Pe and the appearance of spurious correlations.

ISolution: compute the Schur product of Pe with a well chosen smooth correlation
matrix ρ, that has exponentially vanishing correlations for distant parts.

The Schur product of ρ and B is defined by (tapering of covariances)

[ρ◦Pe]ij = [ρ]ij [P
e]ij . (3)

Applicable only if the long-range error correlations are negligible.

IThe Schur product theorem ensures that this product is positive semi-definite, a
proper covariance matrix. For sufficiently regular ρ, ρ◦Pe turns out to be full-rank.
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Making EnKF work: localisation and inflation Localisation

Covariance localisation with the Gaspari-Cohn function
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Panel (a): True covariance matrix. Panel (b): Sample covariance matrix.
Panel (c): Gaspari-Cohn based correlation matrix used for covariance localisation.
Panel (d): Tapered covariance matrix.
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Making EnKF work: localisation and inflation Localisation

Domain localisation

IDomain localisation: divide & conquer.

The DA analysis is performed in parallel in
local domains. The outcomes of these
analyses are later sewed together.

Applicable only if the long-range error
correlations are negligible.

Elegant but nor suited for the assimilation
of non-local observations such as radiances.

x

•

•

•

•

•

•

•

•

•

•

Local update

Observation

IBoth localisation schemes have successfully been applied to the EnKF [Hamill et al. 2001;

Houtekamer and Mitchell 2001; Evensen 2003; Hunt et al. 2007].
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Making EnKF work: localisation and inflation Inflation

Inflation

I Localisation addresses the rank-deficiency issue, but sampling errors are not entirely
removed in the process: long EnKF runs may still diverge!

IAd hoc means to counteract sampling errors is to inflate the error covariance matrix
by a multiplicative factor λ2 > 1:

Pe −→ λ2Pe, (4)

or, alternatively,

x[n] −→ x+λ
(
x[n]−x

)
. (5)

I Inflation can also come in an additive form: x[n] −→ x[n]+ε[n].

INote that inflation is not only used to cure sampling errors, but is also often used to
counteract model error impact.

IAs a drawback, inflation often needs to be tuned, which is numerically costly. Hence,
adaptive schemes have been developed to make the task more automatic [El Gharamti

2018; Raanes et al. 2019].
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Making EnKF work: localisation and inflation Why they are necessary

Nonlinear chaotic models: the Lorenz-96 low-order model
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I It represents a mid-latitude zonal circle of the global atmosphere.
ISet of Nx = 40 ordinary differential equations [Lorenz and Emanuel 1998]:

dxn
dt

= (xn+1 −xn−2)xn−1 −xn+F , (6)

where F = 8, and the boundary is cyclic.
IConservative system except for a forcing term F and a dissipation term −xn.
IChaotic dynamics, 13 positive and 1 neutral Lyapunov exponents, a doubling time of
about 0.42 time units.
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Making EnKF work: localisation and inflation Why they are necessary

Illustration with the Lorenz-96 model
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IPerformance of the EnKF in the absence/presence of inflation/localisation.
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Making EnKF work: localisation and inflation Why they are necessary

The local ensemble transform Kalman filter (LETKF)

ISince the ETKF update is carried out in ensemble subspace, only domain localisation
can be used. Hence an ETKF update is performed for each local domain.

IAdvantages: The scheme is simple. Local ETKF updates are computed in parallel.

IDrawback: it is not possible to assimilate nonlocal observations such as radiances,
without drastic approximations.

IUpdating Nx variables with an ETKF could be seen as a formidable task.
However, (i) the updates are parallel (ii) each local update operates on a reduce
observation vector which drastically reduces the local numerical cost.
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Making EnKF work: localisation and inflation Why they are necessary

Mean update of the local EnKF (except for the LETKF)

IThe mean analysis in the local EnKF is carried out using the Kalman gain matrix

K= BH>
(
R+HBH>

)−1
, (7)

where H is the observation operator (or tangent-linear thereof), and where the
regularised

B= ρ◦Pe (8)

is used in place of the sample Pe.

→ numerically very costly!

IUsually applied in observation space whenever the observations can be seen as
point-wise, i.e. local. Then BH> ≈ ρxy ◦

(
PeH>

)
and HBH> ≈ ρyy ◦

(
HPeH>

)
where

ρxy represents ρ acting in the cross product of the state and observations spaces and
ρyy represents ρ acting in the observations space. As a result:

K≈ ρxy ◦
(
PeH>

)[
R+ρyy ◦

(
HPeH>

)]−1
. (9)
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Making EnKF work: localisation and inflation Why they are necessary

The local ensemble square root Kalman filter (LEnSRF)

IPerturbation update of the global EnSRF (in state space by definition):

Xa = TXf with Tx =
(
Ix +XfX

>
f H>R−1H

)− 1
2

.

ICovariance localisation: XfX
>
f −→ B= ρ◦

(
XfX

>
f
)
,

Xa = TXf with Tx =
(
Ix +BH>R−1H

)− 1
2

.
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Making EnKF work: localisation and inflation Why they are necessary

The LEnSRF: mode expansion

IThe LSEnSRF requires the inverse square root of an Nx ×Nx matrix. Too costly!

IWe wish to make a mode expansion B= ρ◦
(
XfX

>
f
)
≈ XrX

>
r , where Xr ∈ RNx×Nr .

If we can do so, we will be able to make a perturbation à la ETKF in the expansion
mode subspace rather than in the ensemble subspace.

IFor high-dimensional chaotic models, we would typically have: Ne� Nr� Nx .

IThe mathematical problem
Given the matrix B= ρ◦

(
XfX

>
f
)
, we want to construct a matrix Xr ∈ RNx×Nr such that

XrX
>
r ≈ B and Xr1= 0.
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Making EnKF work: localisation and inflation Why they are necessary

The LEnSRF: modulation

ISuppose that there is a matrix W with Nr columns such that ρ≈WW>.

IWe define the modulation product of W and Xf as the matrix with NrNe columns:

[W∆Xf]
jNe+i
n = [W]jn [Xf]

i
n .

This is a mix between a Schur product (for the state variable index n) and a tensor
product (for the ensemble indices i and j) [Buehner 2005].

The matrix Xr =W∆Xf is a solution with Nr = NmNe columns to the problem

XmX
>
m ≈ B and Xm1= 0.

IThe modulation product is based on a factorisation property shown by [Lorenc 2003]

and is currently used for covariance localisation [Bishop, Whitaker, et al. 2017], including in
operational centres [Arbogast et al. 2017].
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Making EnKF work: localisation and inflation Why they are necessary

The LEnSRF: the randomised SVD approach

IDirect mode expansion of ρ◦Pe: a singular value decomposition (SVD) is unfeasable!

IThe randomised SVD is an alternative to the Lanczos method.
(i) It defines a reduced random subspace in the column-space of ρ◦Pe.
This subspace is generated by the application of ρ ·Pe on random vectors v: ρ ·Pe ·v.
(ii) A regular svd is then performed in the generated subspace.

IRigorous probilistic bounds can be obtained on the SVD, given the number of desired
modes [Halko et al. 2011].

ICritical advantage: the application of ρ◦Pe on the random vectors v are independent
and are hence carried out in parallel.

I It was applied to the local EnSRF in [Farchi and Bocquet 2019] .

−→ Much more on randomised SVD in Omar Ghattas’ lectures next week!

M. Bocquet CliMathParis2019, Course on big data, data assimilation and uncertainty quantification, IHP, Paris, France, 28 Oct.-8 Nov. 2019 40 / 47



Making EnKF work: localisation and inflation Why they are necessary

The LEnSRF: mode expansion

I Let us assume a mode expansion B= ρ◦
(
XfX

>
f
)
≈ XrX>r .

Xa ≈ TXf with Tx =
(
Ix +XrX

>
r H>R−1H

)− 1
2

.

Let us use the last algebraic identity and obtain

Xa = TrXf with Tr = Ix −Xr

(
Ir +Y>r R−1Yr +

[
Ir +Y>r R−1Yr

] 1
2

)−1

Y>r R−1H.

Now, the algebra is performed in the reduced/mode subspace. It has been proposed in
[Bocquet 2016] and later called the Gain Form of the ensemble transform Kalman filter in
[Bishop, Whitaker, et al. 2017].

IAn approximation which avoids the square root, similar to the DEnKF, is

Xa ≈ Xf −
1

2

(
Ir +Y>r R−1Yr

)−1
Y>r R−1HXf.
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Making EnKF work: localisation and inflation Hybrid localisation

A multilayer extension of the L96 model

IWe introduce the mL96 model, which consists of Pz = 32 coupled layers of the L96
model with Ph = 40 variables:

dx(z,h)

dt
=
(
x(z,h+1)−x(z,h−2)

)
x(z,h−1)−x(z,h)+Fz

+δ{z>0}

(
x(z−1,h)−x(z,h)

)
︸ ︷︷ ︸

Coupling from below

+δ{z<Pz }

(
x(z+1,h)−x(z,h)

)
︸ ︷︷ ︸

Coupling from above

.

IThe forcing term linearly (and realistically) decreases from F1 = 8 to F32 = 4.
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Making EnKF work: localisation and inflation Hybrid localisation

Satellite observations for the mL96 model

IEach column is observed independently via:

yc,h =

Pz∑
z=1

[Ω]c,z xz,h+vc,h, vc,h ∼ N (0,1) ,

where Ω is a weighting matrix with Nc = 8 channels that
is designed to mimic satellite radiances.

IThe 8×40 observations are available every ∆t = 0.05.

IThe runs are 104∆t long.

IAll algorithms use an ensemble of Ne = 8 members.

0.0 0.1 0.2 0.3 0.4

Weight

1

8

16

24

32

V
e
rt

ic
a
l

la
y
e
r

in
d
e
x
z

Covariance localisation (with augmented ensembles) is used only in the vertical
direction. Domain localisation (LETKF-like) is used in the horizontal direction.
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Making EnKF work: localisation and inflation Hybrid localisation

Results with the mL96 model

IUsing covariance localisation in the vertical
direction yields better RMSE scores than the
LETKF.

IThe modulation method requires a larger
augmented ensemble size to yield similar RMSE
scores as the randomised SVD method.

IBoth methods benefit from the parallelisation
of the local analyses, but the parallelisation
potential of the randomised SVD method is not
fully exploited because of a limited number of
threads.

[Farchi and Bocquet 2019]
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