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A selection of smoothers Classical smoother

The classical smoother

IThere are smoothing variants of the Kalman filter [Anderson and Moore 1979], the Kalman
smoother which is used in the geosciences [Cohn et al. 1994].

IThey have been adapted to the EnKF and variants [Evensen and Leeuwen 2000; Evensen

2009], [Cosme et al. 2012], [Bocquet and Sakov 2014], etc.

IWhatever the EnKF flavour, the update is of the form (without localisation)

Ea
k = Ef

kTk ,

where Tk accounts for yk .
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A selection of smoothers Classical smoother

The classical smoother

IThe ensemble update at tl (tk 6 tl ) given an observation vector at tk is

Ea
l =Ml :kE

a
k =Ml :k (E

f
kTk ) = (Ml :kE

f
k )Tk = Ef

lTk

where Ml :k is the tangent linear model from tk to tl .

IThis can be generalised to the case tl 6 tk , where we need to define Mk:l =M−1
l :k .

IWithin a DAW [t0, . . . , tk , . . . , tK ], we therefore have the smoothing update:

Es
k = Ea

k

l=K∏
l=k

Tl .
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A selection of smoothers Classical smoother

The classical smoother

ITherefore, a simple variant parametrised by a lag L is based on two passes:

one filtering pass with an EnKF. Requires to store the ensembles over the lag L,

the second pass updates those ensembles using future observations (formula
above).
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A selection of smoothers Classical smoother

The classical smoother

ISynthetic experiment with the Lorenz-96 model, standard configuration.
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A selection of smoothers Asynchronous EnKF

Asynchronous data assimilation for the EnKF

IHow to simply and efficiently assimilate observations in between two update
steps of the EnKF (linear order)? [Hunt, Kostelich, et al. 2007; Sakov, Evensen, et al. 2010]

IHow to do so in presence of additive model error (linear order)?

J(x0, . . . ,xK ) =‖x0 −xa
0‖2

(Pa
0)

−1 +

K∑
k=0

‖yk −Hk(xk)‖2
R−1
k

+

K∑
k=1

‖xk −Mk:k−1(xk−1)‖2
Q−1
k

.

[Sakov and Bocquet 2018]
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A selection of smoothers Asynchronous EnKF

Asynchronous data assimilation for the EnKF

IEnsemble subspace representation, for k = 1, . . . ,K :

x0 = xa
0 +X0

aw0, X0
a(X

0
a)
> = Pa

0, X0
a1= 0,

xk =Mk:k−1(xk−1)+Xk
qwk , Xk

q(X
k
q)
> =Qk , Xk

q1= 0.

ICompactification:

w ≡ vec(w0, . . . ,wK ) ∈ RNw with Nw = Ne +

K∑
k=1

Nk
q .

ICost function in ensemble subspace [Desroziers, Camino, et al. 2014; Sakov and Bocquet

2018]:
J(w) = ‖w‖2 +‖y−H(x)‖2

R−1 .
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A selection of smoothers Asynchronous EnKF

Asynchronous data assimilation for the EnKF

I Linearisation (Gauss-Newton principle):

x= xf +Xw+O(‖w‖2),

with
xf ≡ vec

(
{Mk:0(x

a
0)}k=0,...,K

)
,

and

X≡ vec(X0, . . . ,XK ) ∈ R(K+1)Nx×Nw ,

Xk ≡


[X0

a ,0], k = 0

[Mk:k−1Xk−1,Xq
k ,0], k = 1, . . . ,K −1,

[Mk−1:kXk−1,Xq
k ], k = K .

[Sakov and Bocquet 2018]
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A selection of smoothers Asynchronous EnKF

Asynchronous data assimilation for the EnKF

ICost function expansion:

J(w) = ‖w‖2 +
∥∥y−H(xf)−Yw+O(‖w‖2)

∥∥2

R−1 ,

where Y ≡ vec
(
{HkXk }k=0,...,K

)
.

I Linear order analysis (AEnKF-Q):

x? = xf +Xw?,

X? = XT, T=D− 1
2 U,

w? =D−1Y>R−1
[
y−H(xf)

]
,

D≡ I+Y>R−1Y.

IA linearised smoothing solution in presence of additive model error.

[Sakov and Bocquet 2018]
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A selection of smoothers 4D-ETKF

4D-ETKF

I In the absence of model error, the AEnKF-Q drastically simplifies. In particular

w ∈ RNe , X≡ vec(X0,M1:0X0, . . . ,MK :0X0) ∈ R(K+1)Nx×Ne .

IThis yields the 4D-ETKF [Fertig et al. 2007] on an initial idea from [Hunt, Kalnay, et al. 2004].

IThe 4D-ETKF also coincides with the first iteration of the outer loop of the IEnKS
[Bocquet and Sakov 2014].
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Hybrid and ensemble variational techniques Hybrid techniques

Hybrids

IHybrid often refers to a combination of a variational method and of an EnKF.

IBut, in practice, refers to hybridising a static error covariance matrix with a
dynamical one sampled from an ensemble [Hamill and Snyder 2000], with the goal to use it
in the analysis step of an EnKF. Effective covariance matrix:

B= αC+(1−α)XfX
>
f ,

where C is the static error covariance matrix, Xf the matrix of the forecast ensemble
anomalies, and α ∈ [0,1].

I In a stochastic EnKF, the updated ensemble can be obtained using several
stochastically perturbed variational problems.

INote that, as with the EnKF, it may be necessary to enforce localisation of the
sample covariances:

B= αC+(1−α)ρ◦
[
XfX

>
f

]
.
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Hybrid and ensemble variational techniques Ensemble of data assimilation

Ensemble of data assimilation

IEnsemble of data assimilations (EDA) stems from NWP centres that operate a 4DVar
(Météo-France, the ECMWF, etc.)

I Idea: introduce dynamical errors that are absent in the traditional 4DVar.

I In order to build on the existing 4DVar systems, consider an ensemble of Ne 4D-Var
analyses. Each analysis, indexed by i , uses a different first guess xi0, and observations
perturbed with εik ∼ N(0,Rk ) to maintain statistical consistency. Hence, each analysis i
carries out the minimisation of

JEDA
i (x0) =

1

2

K∑
k=0

∥∥∥yk +εik −Hk ◦Mk:0(x0)
∥∥∥2

R−1
k

+
1

2

∥∥∥x0 −xi0

∥∥∥2

B−1
.

This yields an updated ensemble, from
which it is possible to assess a dynam-
ical part of the error covariance matrix.
Close to the idea of the hybrid EnKF-
3DVar, but with a 4DVar scheme. [Ray-

naud et al. 2009; Raynaud et al. 2011; Berre et al.

2015; Bonavita, Raynaud, et al. 2011; Bonavita,

Isaksen, et al. 2012; Jardak and Talagrand 2018].
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Hybrid and ensemble variational techniques 4DEnVar

4DEnVar

I 4DEnVar has been developed by NWP centres with a 4D-Var in operation.
Primary goal: avoid maintaining the adjoint of the forecast model.

The analysis is performed in the subspace spanned by the ensemble [Liu et al. 2008].

The perturbations are usually generated stochastically, for instance using a
stochastic EnKF [Liu et al. 2009; Buehner, Houtekamer, et al. 2010a].

The 4DEnVar implementations usually come with an hybrid background as they
have been developed in NWP centres with a 4D-Var

I Localisation is necessary and theoretically more challenging than with an EnKF
[Bocquet 2016; Desroziers, Arbogast, et al. 2016].

IMany variants of the 4DEnVar exists, depending on the availability of the adjoint
models and how the perturbations are generated [Buehner, Houtekamer, et al. 2010a; Buehner,

Houtekamer, et al. 2010b; M. Zhang and F. Zhang 2012; Clayton et al. 2013; Poterjoy and F. Zhang 2015].
Several 4DEnVar systems are now operational or on the verge or being so [Buehner,

Morneau, et al. 2013; Gustafsson et al. 2014; Desroziers, Camino, et al. 2014; Lorenc et al. 2015; Kleist and

Ide 2015; Buehner, McTaggart-Cowan, et al. 2015; Bannister 2017].

IA further recent sophistication is to create an EDA of 4DEnVar in order to generate
the perturbations [Bowler et al. 2017; Arbogast et al. 2017].
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The iterative ensemble Kalman smoother

Iterative ensemble Kalman filter/smoother: origin

IThe iterative extended Kalman filter [Wishner et al. 1969; Jazwinski 1970] IEKF
IThe iterative extended Kalman smoother [Bell 1994] IEKS

Much too costly + needs the TLM and the adjoint −→ ensemble methods

IThe iterative ensemble Kalman filter [Sakov, Oliver, et al. 2012; Bocquet and Sakov 2012]

IEnKF
IThe iterative ensemble Kalman smoother [Bocquet and Sakov 2014] IEnKS

TLM and adjoint free if need be, nonlinear analysis scheme, Gaussian consistent
updating of the perturbations

IAbout terminology: The IEnKS does both filtering and smoothing.
As in [Bell 1994], and as for 4D-Var, smoothing primarily means that the analysis is
smoothed out over a time-window. The distinction between filtering and smoothing is
not as clear cut as in the classical (non-iterative) EnKS.
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The iterative ensemble Kalman smoother

Iterative ensemble Kalman filter/smoother: contributions

I Jazwinksi and Bell’ ideas transposed to ensemble methods: a chain of papers:

[Zupanski 2005]: Nonlinear variational analysis in an EnKF framework.

[Gu and Oliver 2007]: Initial idea.

[Yang et al. 2012]: RIP: a closely related idea.

[Sakov, Oliver, et al. 2012]: The key idea.

[Bocquet and Sakov 2012]: Correction of the bundle and transform schemes.

[Bocquet and Sakov 2014]: 4D analysis scheme + richer cycling (overlapping DAWs).

[Bocquet 2016]: Localisation of the scheme, covariant localisation.

[Fillion, Bocquet, and Gratton 2018]: Quasi-static variant.

[Sakov and Bocquet 2018; Sakov, Haussaire, et al. 2018; Fillion, Bocquet, Sakov, et al. 2018]:
Extension to model error (IEnKF-Q and AEnKF-Q).

IThe IEnKS is a sleek archetype for most 4D-EnVar methods.
Derived from Bayes’ rule, it helps identify the fundamental approximations implicitly
made in 4D EnVar variants.
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The iterative ensemble Kalman smoother Theory

The IEnKS: the cycling

I L: length of the data assimilation window,

IS : shift of the data assimilation window in between two updates.
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The iterative ensemble Kalman smoother Theory

The IEnKS: a variational standpoint

IAnalysis IEnKS cost function in state space p(x0|yL:−∞)∝ exp(−J(x0)):

J(x0) =
1

2

L∑
k=1

‖yk −Fk:0(x0)‖2
βkR

−1
k

+
1

2
‖x0 −x0‖P−1

0
,

where Fk:0 =Hk ◦Mk:0 and {β0,β1, . . . ,βL} weight the observations within the window.

IReduced scheme in ensemble space, x0 = x0 +X0w, where X0 is the ensemble
anomaly matrix:

J(w) = J(x0 +X0w) .

I IEnKS cost function in ensemble subspace:

J(w) =
1

2

L∑
k=1

‖yk −Fk:0 (x0 +X0w)‖2
βkR

−1
k

+
1

2
‖w‖2 .
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The iterative ensemble Kalman smoother Theory

The IEnKS: minimisation schemes

IAs a variational reduced method, one can use Gauss-Newton [Sakov, Oliver, et al. 2012],
Levenberg-Marquardt [Sakov, Oliver, et al. 2012], quasi-Newton techniques, trust region,
etc., minimisation schemes.

Gauss-Newton scheme (the Hessian is approximate)

w(p+1) =w(p)− H̃−1
(p)
∇J(p) ,

x
(p)
0 = x

(0)
0 +X0w

(p) ,

∇J(p) =−

L∑
k=1

YT
k,(p)βkR

−1
k

(
yk −Fk:0(x

(p)
0 )

)
+w(p) ,

H̃(p) = Ie +
L∑

k=1

YT
k,(p)βkR

−1
k Yk,(p) ,

Yk,(p) = [Fk:0]
′
|x

(p)
0

X0 .
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The iterative ensemble Kalman smoother Theory

The IEnKS: computing the sensitivities

ISensitivities Yk,(p) computed by ensemble propagation without TLM and adjoint [Gu

and Oliver 2007; Liu et al. 2008; Buehner, Houtekamer, et al. 2010a]

IFirst option [Sakov, Oliver, et al. 2012]: the transform scheme. The ensemble is
preconditioned before its propagation using the ensemble transform

Tk,(p) =

(
Ie +

L∑
k=1

βkY
>
k,(p)R

−1
k Yk,(p)

)−1/2

,

obtained at the previous iteration. The inverse transformation is applied after
propagation.

ISecond option [Bocquet and Sakov 2012]: the bundle scheme. It simply mimics the action
of the tangent linear by finite difference:

Yk,(p) ≈
1

ε
Fk:0

(
x(p)1>+εX0

)(
Ie −

11>

Ne

)
.

IWe found that the transform and the bundle variants perform almost equally well on
the tested cases, provided the nonlinearity is not too strong.
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The iterative ensemble Kalman smoother Theory

The IEnKS: ensemble update and the forecast step

IPerturbation update: same as the ETKF:

E?
0 = x?01

>+
√

Ne −1X0H̃
1
2
?U where U1= 1 .

(Alternative updates for state-space/stochastique/hybrid formulations.)

IForecast: propagate the updated ensemble from t0 to tS :

ES =MS :0(E0) .
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The iterative ensemble Kalman smoother Theory

The IEnKS: A prototype for nonlinear 4DEnVar schemes

IThe IEnKS offers a sleek prototype of nonlinear four-dimensional ensemble variational
methods. It can be derived from Bayes’rule.

IBecause H −→H ◦M, the MLEF can be seen as a subcase of the IEnKS.

I 4D-ETKF can be seen as a subcase of the IEnKS when using the one iteration and
the ensemble transform sensitivity estimation.

I 4DEnVar: can also be seen as a subcase of the IEnKS (when using the ensemble
transform sensitivity estimation).
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The iterative ensemble Kalman smoother Theory

The IEnKS: single vs multiple data assimilation (1/2)

IMore than 4D-Var, the IEnKS cycling questions the cycling of DA schemes: how to
chain the data assimilation windows? How to best overlap time-windows?
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ISDA IEnKS: The observation vectors are assimilated once and for all. Exact scheme.

IMDA IEnKS: The observation vectors are assimilated several times and pondered
with weights βk within the window.

M. Bocquet CliMathParis2019, Course on big data, data assimilation and uncertainty quantification, IHP, Paris, France, 28 Oct.-8 Nov. 2019 25 / 47



The iterative ensemble Kalman smoother Theory

The IEnKS: single vs multiple data assimilation (2/2)

ITwo flavors of Multiple Data Assimilation:

The splitting of observations: Following the partition 1 =
∑L

k=1βk , the
observation vector y with prior error covariance matrix is split into L partial
observation yβk , with prior error covariance matrix β−1

k Rk .
It is a consistent approach in the Gaussian/linear limit, and one hopes it is still so
in nonlinear conditions [Emerick and Reynolds, 2012].

The multiple assimilation of each observation with its original weights. It is
(heuristically) correct but the filtering/smoothing pdf (essentially) becomes a
power of the searched pdf!

I [Optional] An extra step in the analysis:

MDA IEnKS does not immediately yield the filtering pdf.

To approach the correct filtering/smoothing pdf, one needs an extra step, that we
called the balancing step which reweights the observations within the data
assimilation window, and perform a final analysis.
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The iterative ensemble Kalman smoother Numerical experiments

Application to the Lorenz-96 model

IChaotic low-order model: Lorenz-96, Nx = 40, Ne = 20, ∆t = 0.05, R= I.

IComparison of 4D-Var S = 1, EnKS S = 1, SDA IEnKS S = 1, SDA IEnKS S = L, and
MDA IEnKS S = 1 [Bocquet and Sakov 2013].
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The iterative ensemble Kalman smoother Numerical experiments

Application to the Lorenz-96 model
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ISystematic outperformance of the IEnKS over the EnKF, 4D-Var, EnKS in all regimes
for chaotic models (L63, L96, NEDYM, L96-T, L96-GRS, 2D forced turbulence, QG
model) in perfect model conditions [Bocquet and Sakov 2013].
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The iterative ensemble Kalman smoother Numerical experiments

Quasi-static IEnKS

I Idea inspired from [Pires et al. 1996]: Assimilate progressively the observations within the
DAW so that the cost function gradually changes and that one can track its global
minimum. This only changes the initial point of the minimisation.

IExtension to the IEnKS is natural [Fillion, Bocquet, and Gratton 2018], and, to a large
extend, avoids the need for MDA.
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Machine learning and data assimilation Emergence of machine learning in data assimilation

Emergence of machine learning techniques

IMachine learning and data assimilation are both part of estimation theory.
They are glorified regression techniques.

IThey both intent to make generalisations/predictions.

IThey share standpoints (Bayesian statistics) and some techniques (regression,
optimisation).

IHowever,

Data assimilation uses large dataset and costly models.

Machine learning uses huge/large datasets and cheap parametrised models.
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Machine learning and data assimilation Emergence of machine learning in data assimilation

Emergence of machine learning techniques

Artificial intelligence

Machine learning

Artificial neural network

Deep learning

Propositional logic Expert system

Random forest
Support vector machine

Regression
Reinforcement learning

Autoencoder Generative adversarial network

Perceptron

RNN LSTM CNN
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Machine learning and data assimilation Emergence of machine learning in data assimilation

Emergence of machine learning techniques

IWhy this ML tsunami?

New sparse representations of data that yields better and numerically affordable
optimisation.

Relies on deep learning libraries (Tensorflow, Pytorch, Keras, etc.) powered by
Google, Facebook, Microsoft, Nvidia, etc.

IWhy this ongoing ML hype in geophysical data assimilation?

Huge success of deep learning in vision, speech recognition and AI in general. This
makes it fashionable in geophysics.

Forces to reconsider difficult questions (model error). Gives an alibi to reconsider
those questions!

Some of the application in vision, speech can be straightforwardly extrapolated to
geosciences.
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Machine learning and data assimilation Emergence of machine learning in data assimilation

What can ML bring to NWP and data assimilation?

IAdvanced quality control of observations and forecasts.

IEmulate, build surrogate models for subpart of the main forecast model, for instance
subgrid scale parametrisations, microphysics, convection parametrisations, etc.

I Improvement of existing DA schemes, especially ensemble-based methods. Substitute
for the analysis, refinement and regularisation of existing DA schemes.

IBias correction, residual model error correction with application to forecasting and
re-analysis.

IGenerate tangent linear and adjoint of emulated components of the model.

IPostprocessing, downscaling: advanced and nonlinear statistical adaptation and
correction, downscaling, feature detection, feature extraction.

[Dueben and Bauer 2018; Reichstein et al. 2019; Bolton and Zanna 2019] and many others.
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Machine learning and data assimilation Numerical example

ODE representation for the surrogate model

IOrdinary differential equations (ODEs) representation of the surrogate dynamics

dx
dt

=φA(x), φA(x) = Ar(x),

where

A is a matrix of coefficients of size Nx ×Np ,

r(x) is a vector of nonlinear regressors of size Np .

[Bocquet, Brajard, et al. 2019; J. Brajard et al. 2019]
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Machine learning and data assimilation Numerical example

Integration scheme and cycling

ICompositions of integration schemes:

xk+1 = Fk
A(xk ) where Fk

A ≡ f
Nk

c
A ≡ fA ◦ . . .◦ fA︸ ︷︷ ︸

Nk
c times

,

x0 xk xk+1 xK

xk,0 xk,l xk,l+1 xk,Nk
c

y0 yk yk+1 yK

Fk−1
A ◦ · · · ◦ F0

A Fk
A FK−1

A ◦ · · · ◦ Fk+1
A

f lA fA f
Nk

c −l−1
A
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Machine learning and data assimilation Numerical example

Bayesian analysis of the problem

IBayesian view on state and model estimation:

p(A,x0:K |y0:K ) =
p(y0:K |x0:K ,A)p(x0:K |A)p(A)

p(y0:K )
.

IData assimilation cost function assuming Gaussian error statistics and Markovian
dynamics:

J(A,x0:K ) =
1

2

K∑
k=0

‖yk −Hk (xk )‖2
R−1
k

+
1

2

K∑
k=1

∥∥∥xk −Fk−1
A (xk−1)

∥∥∥2

Q−1
k

− lnp(x0,A).

−→ Allows to handle partial and noisy observations.

ITypical machine learning cost function with Hk = Ik in the limit Rk −→ 0:

J(A)≈ 1

2

K∑
k=1

∥∥∥yk −Fk−1
A (yk−1)

∥∥∥2

Q−1
k

− lnp(y0,A).

[Abarbanel et al. 2018; Bocquet, Brajard, et al. 2019; Hsieh and Tang 1998]
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Machine learning and data assimilation Numerical example

Experiment plan

IThe reference model, the surrogate model and the forecasting system

δtr

δta

δtf

∆t

t0 tK

t0 tK

T + TfT

y0 yK

generating physical states

training step

forecast step

yk yk+1

IMetrics of comparison:

Model: ODE coefficients norm ‖Aa −Ar‖∞
RMSE between the reference and the surrogate forecasts as a function of the lead
time (averaged over many initial conditions).
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Machine learning and data assimilation Numerical example

Identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of identifiable models

The Lorenz 63 model (L63, 3 variables):

dx0

dt
= σ(x1 −x0),

dx1

dt
= ρx0 −x1 −x0x2,

dx2

dt
= ρx0x1 −βx2,

−→ ‖Aa −Ar‖∞ ∼ 10−13 almost perfect reconstruction at machine precision.

The Lorenz 96 model (L96, 40 variables)

dxn
dt

= (xn+1 −xn−2)xn−1 −xn+F ,

−→ ‖Aa −Ar‖∞ ∼ 10−13 close to perfect reconstruction at machine precision.
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Machine learning and data assimilation Numerical example

Example of dynamics reconstruction

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Lorenz 96 model (40 variables). Surrogate model based on an RK2 scheme.
Analysis of the modelling depth as a function of Nc.
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Machine learning and data assimilation Numerical example

Example of dynamics reconstruction

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).
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Machine learning and data assimilation Numerical example

Example of dynamics reconstruction

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).
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Machine learning and data assimilation Challenges

Challenges

IDifficulties to extract physical knowledge from tuned NNs.

IHow to enforce physical constraints (energy, vorticity conservation laws) in NN
architectures?

IHow to enforce local and global symmetries?

ITuning statistical hyperparameters is difficult and costly (∼ DA).

INonlinear optimisation issues (underlying cost function may have local minima: not
as safe as in sequential DA).

IHow to interface NNs (mostly developed in python) with legacy codes (mostly
developed in fortran, at best in C++)?

[Dueben and Bauer 2018]
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