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Abstract. The characteristics of the model dynamics are critical in the performance of (ensemble) Kalman
filters. In particular, as emphasized in the seminal work of Anna Trevisan and coauthors, the
error covariance matrix is asymptotically supported by the unstable-neutral subspace only, i.e., it
is spanned by the backward Lyapunov vectors with nonnegative exponents. This behavior is at the
core of algorithms known as assimilation in the unstable subspace, although a formal proof was still
missing. This paper provides the analytical proof of the convergence of the Kalman filter covariance
matrix onto the unstable-neutral subspace when the dynamics and the observation operator are linear
and when the dynamical model is error free, for any, possibly rank-deficient, initial error covariance
matrix. The rate of convergence is provided as well. The derivation is based on an expression that
explicitly relates the error covariances at an arbitrary time to the initial ones. It is also shown that
if the unstable and neutral directions of the model are sufficiently observed and if the column space
of the initial covariance matrix has a nonzero projection onto all of the forward Lyapunov vectors
associated with the unstable and neutral directions of the dynamics, the covariance matrix of the
Kalman filter collapses onto an asymptotic sequence which is independent of the initial covariances.
Numerical results are also shown to illustrate and support the theoretical findings.
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1. Introduction.

1.1. Context and objectives. Filtering methods are the techniques of estimation theory
that process measurements sequentially as they become available. In a probabilistic Bayesian
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framework, the output of a filter is a probability density function (pdf), the conditional
posterior pdf p(x|y) of the process x, given the data y and a prior distribution p(x). The
posterior pdf fully characterizes the state’s estimation and quantifies the uncertainty of the
estimate. However, its exact calculation is extremely difficult in practice, and most often
computationally intractable in high-dimensional, complex systems, such as numerical climate
and weather models.

For linear dynamics, measurements with a linear dependence on the state variables, and
Gaussian errors, the Kalman filter (KF) is the optimal filtering solution [15]. The Gaussian hy-
pothesis implies an enormous simplification: the pdfs are all completely characterized by their
first and second moments. In this case, the error covariance matrix quantifies the uncertainty
of the state’s estimate represented by the mean. The KF has been extremely successful for
decades in numerous fields including navigation, economy, robotics, tracking objects, adaptive
optics, and many computer vision applications.

A Monte Carlo formulation of the KF leads to the introduction of a class of Gaussian
algorithms referred to as ensemble Kalman filters (EnKFs) [10]. They have been widely applied
in atmospheric and oceanic contexts, where all methods designed for filtering or smoothing
are referred to as data assimilation (DA). In the EnKF the transition probability of the
process, as well as all the error covariances entering the assimilation of observations, are
approximated using an ensemble of realizations (members in the EnKF jargon) of the model
dynamics. The EnKF and its variants are currently among the most popular approaches for
DA in high-dimensional systems. Evidence has emerged that a small number of members,
typically 100, is sufficient in many applications, especially when using localization techniques
[25, and references therein], hence making the EnKF feasible in situations where the forward
step of DA is computationally expensive. The choice of the ensemble members is critical and
a key aspect in the EnKF setup. While a large ensemble is generally desirable to explain
and represent the actual uncertainty in the most realistic manner, their number is limited
by the computational resources at disposal. In the absence of localization, the EnKF error
covariances are thus degenerate (or rank deficient) by construction and it is then relevant
to adequately choose these few (much fewer than the system’s dimension) members so as to
maximize the representation of the actual uncertainty.

For nonlinear chaotic dynamics, the assimilation in the unstable subspace (AUS), intro-
duced by Anna Trevisan and collaborators [30, 7, 27, 28, 21], has shed light on an efficient
way to operate the assimilation of observations by using the unstable subspace to describe the
uncertainty in the estimate. AUS is based on two key properties of deterministic, typically
dissipative, chaotic systems: (i) the perturbations tend to project on the unstable manifold
of the dynamics, and (ii) the dimension of the unstable manifold is typically much smaller
than the full phase-space dimension. Applications to atmospheric, oceanic, and traffic models
[8, 31, 22] showed that even in high-dimensional systems, an efficient error control is achieved
by monitoring only the unstable directions, and sometimes even a subset of them, making
AUS a computationally efficient alternative to standard procedures.

The AUS approach has recently motivated a research effort toward a proper mathematical
formulation and assessment of its driving idea, i.e., the span of the estimation error covariance
matrices asymptotically (in time) tends to the subspace spanned by the unstable and neutral
backward Lyapunov vectors (BLVs). A proper statement of this latter property in precise
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mathematical terms is of vast importance for the design of efficient reduced-order uncertainty
quantification and DA methods.

The first recent result along this line is given in [13]. It is proved that for linear, discrete,
autonomous and nonautonomous, deterministic systems (perfect model) with noisy obser-
vations, the covariance equations in the KF asymptotically bound the rank of the forecast
and the analysis error covariance matrices to be less than or equal to the number of non-
negative Lyapunov exponents of the system. Further, the support of these error covariance
matrices is shown to be confined to the space spanned by the unstable and neutral BLVs.
The results in [13] were obtained assuming a full-rank covariance matrix at initial time. The
conditions that imply the convergence, for possibly degenerate (low-rank) initial matrices re-
mained unresolved, yet they are fundamental to link these mathematical findings with concrete
reduced-rank DA methods, particularly the EnKF.

This is the subject of the present work, which studies the convergence in the general
setting of degenerate covariance matrices. A pivotal result is the analytic proof of the KF
covariance collapse, for any initial error covariance (of arbitrary rank), onto the unstable-
neutral subspace. We also provide rigorous mathematical results for the rate of convergence
on the stable subspace and for the asymptotic rank of the error covariance matrix. Finally,
we derive an expression for the asymptotic error covariance matrix as a function of the initial
one. This in turn allows us to prove, under certain observability conditions, the existence
of an asymptotic sequence of error covariance matrices, which is independent of the initial
condition.

In the following, we set up the notations and discuss the organization of the paper.

1.2. Problem formulation. The purpose of this paper is the estimation of the unknown
state of a system based on partial and noisy observations. The dynamical and observational
models are both assumed to be linear, and expressible as

xk = Mkxk−1 + wk,(1)

yk = Hkxk + vk,(2)

with x ∈ Rn and y ∈ Rd being the system’s state and observation, respectively, related via
the linear observation operator Hk : Rn 7→ Rd. Throughout the entire text the conventional
notation k = 0, 1, 2, . . . is adopted to indicate that the quantity is defined at time tk. The
matrix Mk:l is taken to represent the resolvent of the linear forward model from time tl to time
tk, and is assumed to be nonsingular throughout this paper. In particular Mk:k = In, where
In is the identity matrix (of size n× n in this case). We designate Mk as the one-step matrix
resolvent of the forward model from tk−1 to tk: Mk , Mk:k−1 and, consequently, Mk:l =
MkMk−1 . . .Ml+1, with the symbol , used to signify that the expression is a definition. We
will assume that the Lyapunov spectrum of the dynamics defined by Mk:0 is nondegenerate,
i.e., the Lyapunov exponents are all distinct. This assumption substantially simplifies the
derivations that follow. Nonetheless, most of the results in this paper can be generalized to
the degenerate case.

The model and observation noise, wk and vk, are assumed mutually independent, unbiased
Gaussian white sequences with statistics

(3) E[vkv
T
l ] = δk,lRk, E[wkw

T
l ] = δk,lQk, E[vkw

T
l ] = 0,
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where Rk ∈ Rd×d is the observation error covariance matrix at time tk, and Qk ∈ Rn×n

stands for the model error covariance matrix. The error covariance matrix Rk can be assumed
invertible without losing generality.

The forecast error covariance matrix Pk of the KF satisfies the following recurrence, the
discrete-time dynamic Riccati equation [15, 13]

(4) Pk+1 = Mk+1 (In + PkΩk)−1 PkM
T
k+1 + Qk+1,

where

(5) Ωk , HT
k R−1k Hk

is the precision matrix of the observations transferred in state space. To avoid pathological
behaviors, we will assume in this paper that the {Ωk}k=0,1,... are uniformly bounded from
above, which is a very mild hypothesis.

Equation (4) highlights that the error covariance matrix, Pk+1, is the result of a two-step
process, consisting of the update or analysis step at time tk leading to the analysis error
covariance matrix Pa

k,

(6) Pa
k = (In + PkΩk)−1 Pk,

and the forecast step which consists of the forward propagation of the analysis error covariance,

(7) Pk+1 = Mk+1P
a
kM

T
k+1 + Qk+1.

It is worth mentioning that (4) still holds when Pk is degenerate, i.e., rank(Pk) < n. This
is the typical circumstance encountered in the EnKF [10, and references therein]. In this
case, assuming that the model is perfect (Qk = 0) and under the same hypotheses of linear
observation and evolution operators as well as of Gaussian statistics for the initial condition
and observational errors, (4) will apply to the EnKF too.

1.3. Outline of the paper. In the rest of the paper, we will refer to (4) as the recurrence
equation for Pk, although we will mostly study the perfect dynamical model case, in which
Qk = 0. In section 2 we demonstrate a relation between Pk at any arbitrary time, tk > t0, and
the initial error covariance matrix P0, in the general case with P0 possibly being degenerate.
An alternative proof based on the linear symplectic representation of the KF is proposed
in Appendix A. In the following section 3, we derive a useful bound that plays a central
role in all results and derivations discussed in this study. Then in section 4 we study the
asymptotic behavior of Pk (for k → ∞) along with other relevant properties. Section 5
provides a proof, using a condition on the initial P0 and certain observability conditions, that
the error covariances collapse onto an asymptotic sequence which is independent of the initial
covariance matrix P0. Section 6 describes the numerical results corroborating and illustrating
the theoretical findings while the conclusions are drawn in section 7.

2. Computation of the forecast error covariance matrix Pk. In this section we consider
the perfect model case, i.e., Qk = 0 for all k. The stochastic model case, Qk 6= 0, is briefly
considered in section 3.



308 BOCQUET, GURUMOORTHY, APTE, CARRASSI, GRUDZIEN, AND JONES

The recurrence equation (4) is rational in Pk. Furthermore if we assume that the Pk are
invertible, we can take the inverse of both sides of the recurrence and obtain

(8) P−1k+1 = M−T
k+1

(
P−1k + Ωk

)
M−1

k+1,

which shows that P−1k+1 is an affine function of P−1k . This relation is usually called the infor-
mation filter [26, section 3.2].

However, a relevant situation in applications is when the Pk are degenerate. In this case
the inverse of both sides of (8) are undefined, and a suitable generalization of (8) is required.
To that end, we introduce an analytic continuation of (4). A regularized P0 is defined as

(9) P0(ε) , P0 + εIn

with ε > 0 and we define the subsequent Pk(ε) via the recurrence

(10) Pk+1(ε) , Mk+1 (In + Pk(ε)Ωk)−1 Pk(ε)MT
k+1.

From (9), (10), Pk(ε) is seen to be full rank. Moreover, taking the limit ε→ 0+, leads P0(ε)
continuously back to P0 and (10) to (4), so that we have

(11) lim
ε→0+

Pk(ε) = Pk(0) = Pk.

Then, we take the inverse of both sides of (10),

P−1k+1(ε) = M−T
k+1P

−1
k (ε) (In + Pk(ε)Ωk) M−1

k+1

= M−T
k+1P

−1
k (ε)M−1

k+1 + M−T
k+1ΩkM

−1
k+1.(12)

This recurrence can easily be solved and it yields

(13) P−1k (ε) = M−T
k:0 P−10 (ε)M−1

k:0 + Γk,

where

(14) Γk ,
k−1∑
l=0

M−T
k:l ΩlM

−1
k:l .

This matrix, known as the information matrix [14], is a measure of the observability of the
system since it propagates the precision matrices Ωl up to tk, and (13) states that the precision
in the state estimate is the sum of the forecast precision in the initial condition plus the
precision of the observations transferred into the model space.

Let us now recall the partial order defined in the cone Cn of the symmetric positive semi-
definite matrices of Rn×n, of which we will make great use in this study. Similarly the partial
order acts in the cone Cn+ of the symmetric positive definite matrices of Rn×n. We will refer
to this partial order using the standard comparison symbols. In Appendix B, its definition is
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provided along with some additional properties that we rely on in this study. From (13) and
using this partial order, we have

(15) P−1k (ε) ≥ Γk.

Let us assume that the system is observable, a condition defined here as det(Γk) 6= 0 according
to [14] and references therein. This yields Pk(ε) ≤ Γ−1k (see Appendix B, point 3), which
implies

(16) Pk ≤ Γ−1k .

By taking the inverse of both sides of (13) we have

Pk(ε) =
(
M−T

k:0 P−10 (ε)M−1
k:0 + Γk

)−1
=
[(

In + ΓkMk:0P0(ε)M
T
k:0

)
M−T

k:0 P−10 (ε)M−1
k:0

]−1
= Mk:0P0(ε)M

T
k:0

(
In + ΓkMk:0P0(ε)M

T
k:0

)−1
.(17)

The limit ε→ 0+ finally leads to

(18) Pk = Mk:0P0M
T
k:0

(
In + ΓkMk:0P0M

T
k:0

)−1
.

Equation (18) is extremely important as it directly relates Pk to P0. In particular it shows
that Pk depends on two concurring factors, the matrix Γk encoding all information about
the observability of the system, and the matrix Mk:0P0M

T
k:0 representing the free forecast of

the initial covariances. The latter exemplifies the uncertainty propagation under the model
dynamics, the former the ability of the observations to counteract the error growth.

We now use the matrix shift lemma that asserts that for any matrices A ∈ Rl×m and
B ∈ Rm×l, we have Af(BA) = f(AB)A, with x 7→ f(x) being any function that can be
expressed as a formal power series. A derivation is recalled in Appendix C. Here, we choose
f(x) = (1 + x)−1, A = MT

k:0, and B = ΓkMk:0P0, to obtain an alternative formulation of
(18)

(19) Pk = Mk:0P0

[
In + MT

k:0ΓkMk:0P0

]−1
MT

k:0

or, in a more condensed form,

(20) Pk = Mk:0P0 [In + ΘkP0]
−1 MT

k:0,

where

(21) Θk , MT
k:0ΓkMk:0 =

k−1∑
l=0

MT
l:0ΩlMl:0.

This matrix is also related to the observability of the system but pulled back at the initial
time t0.

A more general, albeit less straightforward, proof of the expressions for Pk as a function
of P0 can be obtained using the underlying symplectic structure of the KF and is described
in Appendix A.
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3. Free forecast of P0 as an upper bound. In this section we demonstrate that an upper
bound for Pk is given by the free forecast of P0; the term free is used in this study to mean
without the observational forcing applied at analysis times. It is worth mentioning already
that, although the existence of this bound is indeed very intuitive, its formal proof is provided
here because it plays a pivotal role in all the convergence results that follow. The bound
can be derived directly from the general expression for Pk, (20), but we opted for showing a
different approach, independent of (20), that better highlights the relevance of the bound for
the results that follow.

The error covariance matrix Pk is symmetric and our purpose is to make the recurrence
equation look patently symmetric as well so that we can derive inequalities using the partial
ordering in Cn. As a positive semidefinite matrix, Pk can be decomposed into Pk = XkX

T
k

using, for instance, a Choleski decomposition, with Xk ∈ Rn×m (m ≤ n). Here, as opposed to
the rest of the paper and for the sake of generality, we consider the presence of model noise
given that it only represents a minor complication. The recurrence equation can be written
as

(22) Pk+1 = Mk+1

(
In + XkX

T
k Ωk

)−1
XkX

T
k MT

k+1 + Qk+1.

We use again the matrix shift lemma but this time with f(x) = (1 + x)−1, A = Xk, and
B = XT

k Ωk so that (4) becomes

(23) Pk+1 = Mk+1Xk

(
Im + XT

k ΩkXk

)−1
XT

k MT
k+1 + Qk+1.

Using the partial order in Cm, we have from

(24)
(
Im + XT

k ΩkXk

)−1 ≤ Im

and from (23) that

(25) Qk+1 ≤ Pk+1 ≤Mk+1PkM
T
k+1 + Qk+1.

Hence Pk is bounded from above by the free forecast P̃k that satisfies P̃0 = P0 and the
recurrence

(26) P̃k+1 = Mk+1P̃kM
T
k+1 + Qk+1

whose solution is, for k ≥ 0,

(27) P̃k = Mk:0P0M
T
k:0 + Ξk,

where

(28) Ξ0 , 0 and, for k ≥ 1, Ξk ,
k∑

l=1

Mk:lQlM
T
k:l

is known as the controllability matrix [14]. Therefore

(29) Qk ≤ Pk ≤Mk:0P0M
T
k:0 + Ξk.
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In particular, in the perfect model case, we obtain the pivotal inequality

(30) Pk ≤Mk:0P0M
T
k:0.

Under the aforementioned assumptions on linear dynamical and observational models and
Gaussian error statistics, the inequalities (29) and (30) state that DA will always reduce and,
in the worst case, leave unchanged, the state’s estimate uncertainty with respect to the free
run. This effect was already discussed in the context of nonlinear dynamics and in relation to
the stability properties of DA systems in [7], although an analytic proof in the nonlinear case
is not provided either in that work or in the present one.

4. Convergence of the error covariance matrix: Theoretical results. This section de-
scribes some of the implications of the recurrence equation and bounds described in the
previous section that are relevant for the design of reduced-order formulations of the Kalman
filter with unstable dynamics. We will assume here, again, to be in the perfect model scenario,
Qk = 0.

4.1. Rank of Pk. From the inequality (30), it is clear that the column space of Pk, i.e.,
the subspace Im(Pk) = {Pkx, x ∈ Rn} satisfies

(31) Im(Pk) ⊆Mk:0 (Im(P0)) .

Moreover, since from (4) (with Qk = 0)

(32) rank(Pk+1) = rank(Pk),

we infer that

(33) Im(Pk) = Mk:0 (Im(P0)) .

The moral is that the KF merely operates within the subspaces of the sequence Mk:0(Im(P0)),
which do not depend on the observations. In the absence of model error, the rank of Pk cannot
exceed that of P0 even if the dynamics are degenerate.

4.2. Collapse of the error covariance matrices onto the unstable-neutral subspace.
The unstable-neutral subspace is defined as the subspace Uk spanned by the n0 BLVs at tk
whose exponents, λi with i = 1, . . . , n0, are nonnegative. The stable subspace Sk is defined
as the subspace spanned by the n − n0 BLVs at tk associated with negative exponents. The
inequality equation (30), Pk ≤Mk:0P0M

T
k:0, provides the convergence onto Uk in a sense that

is made clear below. It also gives the rate of such convergence as shown in section 4.3.
Let us write the singular value decomposition (SVD) of Mk:0 = Uk:0Σk:0V

T
k:0, where Uk:0

and Vk:0 are both orthogonal matrices in Rn×n, and Σk:0 in Cn+ is the diagonal matrix of the
singular values. The left singular vectors are the columns of Uk:0 = [uk:0

1 , . . . ,uk:0
n ] and when

k →∞, they converge to the BLVs defined at tk, denoted here as uk
i . The right singular vectors

are the columns of Vk:0 = [vk:0
1 , . . . ,vk:0

n ] which converge to the forward Lyapunov vectors
(FLVs) at time t0 as k →∞ denoted here as v0

i [17, 29]. Let us write [Σk:0]i,i = exp(λki k) with
λki being real numbers and for large k ordered as λk1 > · · · > λkn0

≥ 0 > λkn0+1 > · · · > λkn,
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which is justified by the nondegeneracy hypothesis on the Lyapunov spectrum. Using the
SVD we have

(34) Mk:0P0M
T
k:0 = Uk:0Σk:0V

T
k:0P0Vk:0Σk:0U

T
k:0.

Define Sk as the set of indices i for which λki < 0 and Ss
k to be the set of indices

corresponding to the s smallest singular values in Σk:0. Note also that Sn−n0
k = Sk for large

k. Let the subspace Ssk:0 be the span of the left singular vectors uk:0
i , where i ∈ Ss

k. Let ΠSsk:0
be the orthogonal projector onto Ssk:0 which, owing to the orthonormality of the left singular
vectors, reads

(35) ΠSsk:0 =
∑
i∈Ss

k

uk:0
i

(
uk:0
i

)T
.

For large enough k, Sk gets progressively closer and eventually coincides with the set S of
indices i for which λi < 0 and each of its subsets Ss

k approaches its corresponding subset Ss

defined similarly. Note that Sn−n0 = S. Furthermore, the subspace Ssk:0 converges to Ssk
which is the span of the s most stable BLVs.

We are now interested in an upper bound in Cs for (Vs
k:0)

TP0V
s
k:0, with Vs

k:0 =
[vk:0

n−s+1, . . . ,v
k:0
n ] to be jointly used with (34). For this purpose we define

(36) αk
s = max

h∈Im(Vs
k:0), ‖h‖=1

hTP0h,

where ‖.‖ denotes the Euclidean norm. As a consequence, we have

(37) (Vs
k:0)

T P0V
s
k:0 ≤ αk

sIs.

From this inequality and from (34), we infer

(38) ΠSsk:0Mk:0P0M
T
k:0ΠSsk:0 ≤ α

k
sΠSsk:0Uk:0Σ

2
k:0U

T
k:0ΠSsk:0 .

Note that, if σ01 is the largest eigenvalue of P0, we have the uniform bound αk
s ≤ σ01 for any

k and s (see Appendix B, point 5). Hence, we can define a finite bound

(39) αs = sup
k≥0

αk
s

which satisfies for any k and s: αk
s ≤ αs ≤ σ01. Using this uniform bound, in conjunction with

(30) and (38), we obtain

(40) ΠSsk:0PkΠSsk:0 ≤ αs

∑
i∈Ss

k

exp
(

2λki k
)

uk:0
i

(
uk:0
i

)T
.

Hence, for every unit vector h ∈ Ssk:0

(41) hTPkh ≤ αs exp
(

2λkn−s+1k
)
.
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In particular, if i ∈ S, then (uk:0
i )TPku

k:0
i → 0+ as k → ∞. This defines a weak form of

collapse of Pk onto the unstable-neutral subspace Uk. A strong form of collapse is defined by
the stable subspace Sk being in the null space of Pk. This can be obtained under the hypothesis
that Pk is uniformly bounded, which can in turn be satisfied if the system is sufficiently
observed. Indeed, if Pk is uniformly bounded, and because of its positive semidefiniteness, it
can be shown that ‖Pku

k:0
i ‖ → 0 as k →∞ (see Appendix B, point 5). Hence, asymptotically,

the stable subspace Sk is in the null space of Pk. As described in the introduction, this property
is at the core of the class of DA algorithms referred to as AUS [20, and references therein].

4.3. Rate of convergence of the eigenvalues. In the case of weak—a fortiori strong—
collapse, the rate of convergence of each of the eigenvalues of Pk can be determined from (41)
as follows. Let σki for i = 1, . . . , n denote the eigenvalues of Pk ordered as σk1 ≥ σk2 · · · ≥ σkn.
Equation (41) guarantees that (Appendix B, point 6) Pk has at least s of its eigenvalues less
than or equal to αs exp(2λkn−s+1k). It follows that

(42) σki ≤ αi exp
(

2λki k
)

which gives us an upper bound for all eigenvalues of Pk and a rate of convergence for the
n− n0 smallest ones.

4.4. Asymptotic rank of the error covariance matrix. A consequence of (40) is the upper
bound of the asymptotic rank of the error covariance matrix Pk. In fact, the asymptotic rank
of Pk is bounded by the minimum between the rank of P0 and n0. This mathematically reads

(43) lim
k→∞

rank(Pk) ≤ min {rank(P0), n0} .

4.5. Observability and boundedness of the error statistics. As mentioned in section 2,
we define the system to be observable if det(Γk) 6= 0 or, equivalently, given that Mk:0 is
assumed to be nonsingular, det(Θk) 6= 0 [14]. If the system is observable, the inequalities (30)
and (16) can be combined to obtain

(44) Pk ≤ min
{
Mk:0P0M

T
k:0,Γ

−1
k

}
,

where the accurate definition of the minimum in Cn is given in Appendix B (point 4). We note
that if Γk is bounded by L in Cn+, Γk ≥ L, we have Pk ≤ Γ−1k ≤ L−1 which bounds the error
covariances. The existence of the bound L in Cn+ guarantees the observability of the system;
it forces the precision of the observations to be spread in space and time. Interestingly, the
inequality equation (44) reveals that the uncertainty in the state estimate cannot exceed that
associated with the most precise ingredient of the assimilation, the forecast initial conditions
or the observations. This is further explored in the following section.

5. Asymptotic behavior of Pk and its independence from P0. In this section, we study
the asymptotic behavior of the forecast error covariance matrix Pk when k → ∞. In partic-
ular, we are interested in the conditions for which the asymptotic sequence of Pk becomes
independent of P0. The authors of [24] have provided an appealing and yet heuristic derivation
of the asymptotic limit of Pk in the autonomous case, under some observability condition and
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assuming the absence of a neutral mode in the dynamics, but also assuming the nondegeneracy
of the eigenspectrum of the dynamics. Here, we are interested in a rigorous, nonautonomous
generalization in the possible presence of neutral modes using a generalized observability con-
dition. As in the previous section, we assume that the Lyapunov spectrum of the dynamics
is nondegenerate, i.e., there are n distinct Lyapunov exponents. The degenerate case will be
discussed at a more heuristic level at the end of the section.

If Ck is a matrix in Rn×n whose columns are the normalized-to-one covariant Lyapunov
vectors (CLVs) of the dynamics at tk we have the defining relationship

(45) Mk:lCl = CkΛk:l,

where Λk:l is a diagonal matrix because of the nondegeneracy of the Lyapunov spectrum. Its
diagonal entries are the exponential of the local Lyapunov exponents between tl and tk. We
will however distinguish between Λk:l and ΛT

k:l as if the matrix was not symmetric to ease the
discussion on the degeneracy case. Assuming that the columns of Ck are ordered according
to the associated decreasing Lyapunov exponents, we can decompose Ck into [ C+,k C−,k ],
where C+,k contains the unstable and neutral CLVs and C−,k contains the stable CLVs. The
transpose of the inverse of Ck which, by construction, forms a dual basis for the CLVs can be
decomposed accordingly:

(46) C̃k , C−Tk ,
[

C̃+,k C̃−,k

]
,

where C̃+,k ∈ Rn×n0 and C̃−,k ∈ Rn×(n−n0). We decompose Λk:l into

(47) Λk:l ,

[
Λ+,k:l 0

0 Λ−,k:l

]
,

where Λ+,k:l ∈ Rn0×n0 and Λ−,k:l ∈ R(n−n0)×(n−n0). Thus, one has

(48) Mk:l = C+,kΛ+,k:lC̃
T
+,l + C−,kΛ−,k:lC̃

T
−,l.

Recall that the FLVs and BLVs are the columns of Vk = limk→∞Vk:l and Uk = liml→−∞Uk:l,
respectively. Moreover, the FLVs and BLVs associated with the unstable and neutral directions
are the columns of V+,k ∈ Rn×n0 and U+,k ∈ Rn×n0 , respectively, which correspond to the first
n0 columns of Vk and Uk, respectively. Finally, the BLVs associated with the stable directions
are the columns of U−,k ∈ Rn×(n−n0), which correspond to the last n−n0 columns of Uk. From
[16], we have Ck = UkTk = VkLk, where Tk and Lk are an invertible upper triangular matrix
and an invertible lower triangular matrix, respectively. Hence, there is an invertible upper
triangular matrix, T+,k ∈ Rn0×n0 , such that C+,k = U+,kT+,k yielding Im(C+,k) = Im(U+,k).

Moreover, C̃k = UkT
−T
k = VkL

−T
k , which implies that there is an invertible lower triangular

matrix and an invertible upper triangular matrix, T−T−,k ∈ R(n−n0)×(n−n0) and L−T−,k ∈ Rn0×n0 ,

respectively, such that C̃−,k = U−,kT
−T
−,k and C̃+,k = V+,kL

−T
+,k. Consequently, Im(C̃−,k) =

Im(U−,k) and Im(C̃+,k) = Im(V+,k). These identities will be used in the following.
An asymptotic sequence Sk such that limk→∞(Pk − Sk) = 0 will be called an asymptote

for Pk in the following. Our goal is to prove that the two following conditions are sufficient
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for the existence of an asymptote for Pk which is independent of P0. An additional condition
may be required if neutral modes are present in the dynamics. Recall that P0 is possibly
degenerate of rank r0 ≤ n. As in section 3, P0 can be factorized into P0 = X0X

T
0 , where X0

is a matrix in Rn×r0 .
Condition 1. The condition reads

(49) rank
(
C̃T

+,0X0

)
= n0.

The idea is to make the column space of P0 large enough so that the unstable and neutral CLVs
at t0 have nonzero projections onto this space. Since we showed that Im(C̃+,k) = Im(V+,k),
the condition is equivalent to rank(VT

+,0X0) = n0. Consequently, the column space of Pk will
asymptotically contain the unstable-neutral subspace. Note that (49) implies r0 ≥ n0, but
r0 ≥ n0 does not imply (49).

Condition 2. The unstable and neutral directions of the model are uniformly observed,
i.e., for k large enough there is ε > 0 such that

(50) CT
+,kΓkC+,k > εIn0 .

The condition is equivalent to UT
+,kΓkU+,k > εIn0 with a possibly different ε > 0, since we

showed that Im(C+,k) = Im(U+,k).
We would like to project the degrees of freedom in P0 onto the unstable-neutral and stable

subspaces. Since C+,0C̃
T
+,0 + C−,0C̃

T
−,0 = In, we have

(51) X0 = C+,0C̃
T
+,0X0 + C−,0C̃

T
−,0X0.

Define Z+ , C̃T
+,0X0 ∈ Rn0×r0 which is of rank n0 by Condition 1. The column spaces of

C+,0Z+ and of C−,0C̃
T
−,0X0 are linearly independent and their sum spans the column space

of X0. Hence, they are complementary subspaces in Im(X0). That is why C−,0C̃
T
−,0X0

must be of dimension r0 − n0. Thus, a QR decomposition of rank r0 − n0 can be used:
C−,0C̃

T
−,0X0 = W−,0Z−, where W−,0 ∈ Rn×(r0−n0) is an orthonormal matrix such that

WT
−,0W−,0 = Ir0−n0 and Z− ∈ R(r0−n0)×r0 is a full-rank matrix. Note that C̃T

+,0W−,0 = 0.
Hence, we have

(52) X0 = C+,0Z+ + W−,0Z− =
[

C+,0 W−,0
]
Z, where Z ,

[
Z+

Z−

]
in Rr0×r0 is of rank r0 since rank(X0) = r0, and hence Z is invertible. Let us define

(53) W0 ,
[

C+,0 W−,0
]

and G , Z−TZ−1,

where G ∈ Cr0+ . Thus P0 = W0G
−1WT

0 . This factorization is applied to (20):

Pk = Mk:0W0G
−1WT

0

(
In + ΘkW0G

−1WT
0

)−1
MT

k:0

= Mk:0W0G
−1 (Ir0 + WT

0 ΘkW0G
−1)−1 WT

0 MT
k:0

= Mk:0W0

(
G + WT

0 ΘkW0

)−1
WT

0 MT
k:0,(54)

where Appendix C has been employed.
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We now focus on the projection of Pk onto the forward unstable-neutral subspace, which
reads, from (21), (48), (54),

C̃T
+,kPkC̃+,k = Λ+,k:0C̃

T
+,0W0

(
G + WT

0 ΘkW0

)−1
WT

0 C̃+,0Λ
T
+,k:0

= Λ+,k:0

[(
G + WT

0 ΘkW0

)−1]
++

ΛT
+,k:0

= Λ+,k:0

( G++ + Θ
++

k G+− + Θ
+−
k

G−+ + Θ
−+

k G−− + Θ
−−
k

)−1
++

ΛT
+,k:0

=

( Λ−T+,k:0G++Λ−1+,k:0 + Γ++,k Λ−T+,k:0G+− + Λ−T+,k:0Θ
+−
k

G−+Λ−1+,k:0 + Θ
−+

k Λ−1+,k:0 G−− + Θ
−−
k

)−1
++

,(55)

where [·]++ is the matrix block corresponding to the unstable-neutral modes, and

Γ++,k , CT
+,kΓkC+,k = Λ−T+,k:0Θ

++

k Λ−1+,k:0, Θ
++

k , CT
+,0ΘkC+,0,(56)

Θ
−+

k , WT
−,0ΘkC+,0, Θ

+−
k , CT

+,0ΘkW−,0, Θ
−−
k , WT

−,0ΘkW−,0.(57)

5.1. Asymptote in the absence of neutral modes. We first assume the absence of any
neutral mode in the dynamics. In (55), the term Λ−T+,k:0G++Λ−1+,k:0 asymptotically vanishes
since in the absence of neutral modes,

(58) lim
k→∞

∥∥∥Λ−1+,k:l

∥∥∥ = 0

for any matrix norm ‖ · ‖ and any l. The behavior of E+,k , G−+Λ−T+,k:0 + Θ
−+

k Λ−1+,k:0 and

ET
+,k as the unstable/stable off-diagonal blocks in (55) remain to be studied. To that end, we

choose a submultiplicative matrix norm, and obtain

‖E+,k‖ ≤
∥∥G−+

∥∥∥∥∥Λ−T+,k:0

∥∥∥
+

k−1∑
l=0

∥∥WT
−,0
∥∥∥∥∥C̃−,0∥∥∥∥∥ΛT

−,l:0
∥∥∥∥CT

−,l
∥∥ ‖Ωl‖ ‖C+,l‖

∥∥∥Λ−1+,k:l

∥∥∥ .(59)

Since Ωl has been assumed uniformly bounded from above, and given that matrices with
unitary columns are uniformly bounded (by

√
n in the Frobenius norm), there is a constant

c+ such that for all k

(60) ‖E+,k‖ ≤
∥∥G−+

∥∥∥∥∥Λ−T+,k:0

∥∥∥+ c+

k−1∑
l=0

‖Λ−,l:0‖
∥∥∥Λ−1+,k:l

∥∥∥ .
Here the matrix norm can be thought of as the spectral norm up to a multiplicative constant.
Because the sum is dominated by the convergent series

∑∞
l=0 ‖Λ−,l:0‖ and because of (58) for

each l, the majorant of E+,k asymptotically vanishes so that limk→∞ ‖E+,k‖ = 0.
As a consequence, the off-diagonal terms of G+WT

0 ΘkW0 in (55) asymptotically vanish.
Moreover, the diagonal blocks are uniformly bounded from below by εIn0 by Condition 2 for
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the top-left block and G−− ∈ C
n−n0
+ for the bottom-right block. Consequently, the inverse of

G+WT
0 ΘkW0 is asymptotically given by the inverse of the diagonal blocks, up to a vanishing

sequence of matrices, and for the unstable block one obtains

(61) lim
k→∞

{
C̃T

+,kPkC̃+,k −
(
CT

+,kΓkC+,k

)−1}
= 0.

This implies by Condition 2, that C̃T
+,kPkC̃+,k is asymptotically uniformly bounded. More-

over, we have proven in section 4 that limk→∞UT
−,kPkU−,k = 0, which by Im(C̃−,k) =

Im(U−,k), shows that limk→∞ C̃T
−,kPkC̃−,k = 0.1 As a consequence of Appendix B, point

5, and using the fact that C−1k PkC
−T
k is in Cn, its off-diagonal blocks C̃T

+,kPkC̃−,k and

C̃T
−,kPkC̃+,k also asymptotically vanish. We conclude (using the uniform boundedness of the

Ck)

(62) lim
k→∞

{Pk − Sk} = 0, where Sk = C+,k

(
CT

+,kΓkC+,k

)−1
CT

+,k.

Importantly, the asymptote Sk does not depend on P0. This generalizes the result in [24] to
the nonautonomous case. Moreover, we will see later that this also generalizes their result to
the case where the Lyapunov spectrum is degenerate.

The case where neutral modes are present is much more involved, and yet physically very
important [32]. Indeed, there is a wide range of possible asymptotic behaviors for neutral
CLVs, which could, for instance, grow, or decay, at a subexponential rate. They could inter-
mittently behave as unstable or stable modes. To go further in the case where neutral modes
are present, and only then, the neutral modes and their observability need to be characterized
more precisely. Thus, an additional condition that complements Condition 2 needs to be intro-
duced. Since several conditions are possible, we focus on one of them and discuss two others.

5.2. Asymptote in the presence of neutral modes. It is convenient to further split the
unstable from the neutral CLVs as

(63) Ck ,
[

C++,k C+0,k C−,k
]
.

Accordingly, we refine the decomposition

(64) Λk:l ,

 Λ++,k:l 0 0
0 Λ+0,k:l 0
0 0 Λ−,k:l

 ,
where Λ++,k:l ∈ Rn0+×n0+ and Λ+0,k:l ∈ Rn00×n00 are diagonal with n0+ + n00 = n0. Further-
more, Λ+0,k:l is factorized into growing and decaying contributions. First, Λ

+0↑,k:0 ∈ Rn00×n00

is a diagonal matrix with entries: for i = 1, . . . , n00,

(65) [Λ
+0↑,k:l]ii = [Λ+0,k:l]ii

k∏
q=l+1

max
(∣∣[Λ+0,q:q−1]ii

∣∣−1 , 1) .
This definition performs the factorization while transferring the transitivity property of Λk:l,

1Alternatively, this can be recovered from (54) including the rate of convergence.
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i.e., Λk:0 = Λk:lΛl:0 for k ≥ l ≥ 0, to Λ
+0↑,k:l, i.e., Λ

+0↑,k:0 = Λ
+0↑,k:lΛ+0↑,l:0 for k ≥ l ≥ 0.

Second, we also define Λ
+0↓,k:0 , Λ+0,k:0Λ

−1
+0↑,k:0

and

(66) Λ
+↑,k:0 ,

[
Λ++,k:0 0

0 Λ
+0↑,k:0

]
, Λ

+↓,k:0 ,

[
In0+ 0
0 Λ

+0↓,k:0

]
.

Let us suggest a possible condition that supplements Conditions 1 and 2, in order to obtain
an asymptote Sk for Pk which, in the presence of neutral modes, does not depend on P0.

Condition 3. We define

(67) Φk = Λ−T
+0↑,k:0

CT
+0,0ΘkC+0,0Λ

−1
+0↑,k:0

and require that for any v ∈ Rn00 , and using the Euclidean norm ‖ · ‖

(68) lim inf
k→∞

‖Φkv‖ = +∞.

Let us give the example of a realistic setup that leads to condition 3. Assume that the
dynamics is autonomous. Hence, there is at least one neutral CLV v for which the local
Lyapunov exponents are 0. Suppose that there is a sequence ωl of nonnegative numbers
such that Ωl ≥ ωlvvT, and assume

∑∞
l=0 ωl = ∞, then it is not difficult to show through

equations (21), (67) that Condition 3 is satisfied. In particular, if the observation process is
time invariant such that ω , ωl > 0, then ‖Φkv‖ = ωk‖v‖ which indeed diverges with k.

Analysis of (55) in the presence of neutral modes is not straightforward, and instead we
use a Schur complement for the inverse of the top-left block,[(

G + WT
0 ΘkW0

)−1]−1
++

= G++ + Θ
++

k −
(
G+− + Θ

+−
k

)
×
(
G−− + Θ

−−
k

)−1 (
G−+ + Θ

−+

k

)
.(69)

Separating the growing and decaying trends of the neutral modes, this yields

ΛT
+↓,k:0

(
C̃T

+,kPkC̃+,k

)−1
Λ

+↓,k:0 = Λ−T
+↑,k:0

(
G++ + Θ

++

k

)
Λ−1

+↑,k:0

−ET
k

(
G−− + Θ

−−
k

)−1
Ek,(70)

where Ek , G−+Λ−1
+↑,k:0

+ Θ
−+

k Λ−1
+↑,k:0

. Ek can be split into Ek = [ E+,k E0,k ], where

E+,k , WT
−,0GC++,0Λ

−1
++,k:0 + WT

−,0ΘkC++,0Λ
−1
++,k:0 is the stable/unstable matrix block and

E0,k , WT
−,0GC+0,0Λ

−1
+0↑,k:0

+ WT
−,0ΘkC+0,0Λ

−1
+0↑,k:0

is the stable/neutral matrix block. This

definition of E+,k is consistent with that of E+,k in section 5.1. For the same reasons as in
section 5.1, we have limk→∞ ‖E+,k‖ = 0. Similarly, there is a constant c0 such that for all k

(71) ‖E0,k‖ ≤
∥∥G−+

∥∥∥∥∥Λ−1
+0↑,k:0

∥∥∥+ c0

k−1∑
l=0

‖Λ−,l:0‖
∥∥Λ

+0↓,l:0

∥∥∥∥∥Λ−1
+0↑,k:l

∥∥∥ ,
which, however, only ensures that ‖E0,k‖ is uniformly bounded from above. Note that, in
deriving (71), we used Λ+0,l:0Λ

−1
+0↑,k:0

= Λ+0,l:0Λ
−1
+0↑,l:0

Λ−1
+0↑,k:l

= Λ
+0↓,l:0Λ

−1
+0↑,k:l

. Hence, the
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only case where the last term of (70), as well as Λ−T
+↑,k:0

G++Λ−1
+↑,k:0

, do not asymptotically

vanish but are uniformly bounded is for entries related to the neutral modes alone. Yet, in
this case, the neutral subblock of Λ−T

+↑,k:0
Θ

++

k Λ−1
+↑,k:0

, which is Φk, asymptotically dominates

the bounded correction by Condition 3, so that, even in the presence of neutral modes, the
correction term is negligible. More precisely, (70) has the asymptote

(72)

[
CT

++,0ΓkC++,0 Λ−T
++,k:0C

T
++,0Θ

++

k C+0,0Λ
−1
+0↑,k:0

Λ−T
+0↑,k:0

CT
+0,0Θ

++

k C++,0Λ
−1
++,k:0 Φk + Bk

]
,

where Bk is a bounded sequence. Its inverse, i.e., Λ−1
+↓,k:0

C̃T
+,kPkC̃+,kΛ

−T
+↓,k:0

, is well-defined

and obtained by the formula of the inverse of a matrix with 2× 2 subblocks, which yields the
asymptote

(73)

[ (
CT

++,0ΓkC++,0

)−1
0

0 Φ−1k

]
.

We can conclude similarly to the end of section 5.1 that (62) is still valid in the presence of
neutral modes if Condition 3 is satisfied. In this case, the asymptotic sequence can further be
simplified into

(74) Sk = C++,0

(
CT

++,0ΓkC++,0

)−1
CT

++,0.

Note that we expect the rate of convergence to the neutral subspace to be possibly quite differ-
ent from the exponential convergence to the stable subspace. For instance, considering again
the example where ‖Φkvk‖ = ωk‖vk‖, C̃T

+0,kPkC̃+0,k asymptotically behaves like (ωk)−1In00 .
An alternative to Condition 3, but which does not exhaust all the possible behaviors of

neutral dynamics, is to assume that the sequence Λ−1
+0↑,k:0

has a limit and

(75) lim
k→∞

∥∥∥Λ−1
+0↑,k:0

∥∥∥ = 0.

If satisfied, E0,k and ΛT
+↑,k:0

G++Λ−1
+↑,k:0

in (70) both asymptotically vanish. Therefore, the

convergence is similar to that of section 5.1: the neutral modes are effectively unstable modes.
Equation (62) remains valid but the neutral modes may have a nonnegligible contribution to
Sk depending on the asymptotic behavior of Γ00,k = CT

+0,kΓkC+,0;k.

If the sequence ‖Λ−1
+0↑,k:0

‖ does not have a limit or if its limit is distinct from 0, then the se-

quence has an adherence point in ]0, 1].Then, the sequence ‖E0,k‖ does not necessarily asymp-
totically vanish. However, it can be seen that if the neutral modes are observed with an Ωl

bounded from below, Φk necessarily diverges, which leads back to the asymptote equation (74).
Note that we have discussed criteria applying to all neutral modes. However, Condition 3

or its alternatives could be individualized to each neutral mode.

5.3. Degeneracy of the Lyapunov spectrum. At a more heuristic level, we discuss the
case where there are multiplicities greater than one in the Lyapunov spectrum. In this case,
(45) remains valid, up to some qualifications. While the Oseledec subspaces themselves are co-



320 BOCQUET, GURUMOORTHY, APTE, CARRASSI, GRUDZIEN, AND JONES

variant, they may not be entirely decomposable into one dimensional covariant subspaces—one
should immediately consider the analogy with generalized eigenvectors for Jordan blocks. In-
deed, when there is a degenerate Lyapunov spectrum there may only be a single covariant vec-
tor per exponent. If we redefine Ck to be a matrix with columns composed of an ordered basis
for each covariant Oseledec subspace then Λk:l is not necessarily a diagonal matrix but rather
upper triangular over C. In that case, the transpose operators in the above derivations should
be understood as conjugate and transpose operators. This consideration only matters in the
derivation where norms of Λk:l are to be computed when studying the convergence of sequences
and sums. In this case, the spectral norm is not necessarily related to the eigenspectrum of Λk:l

which is not necessarily self-adjoint (something that has been overlooked in the derivation in
[24] in the autonomous case). However, we can heuristically expect a polynomial correction as
a function of k− l to the exponential growth or decay of Λk:l because of the impact of the Jor-
dan blocks. By the Oseledec theorem, ones knows that limk−l→∞(ΛT

k:lΛk:l)
1/2(k−l) = exp(D),

where D is the diagonal matrix of the Lyapunov exponents. Hence, ΛT
k:lΛk:l asymptotically

behaves like exp((k− l)D) up to a subexponential correction. To compute the matrix norm of
Λk:l, one can equivalently use the spectral norm and compute the square root of the spectral
radius ρ(ΛT

k:lΛk:l) which is asymptotically equivalent to ρ(exp((k− l)D)) up to a subexponen-
tial correction which could be absorbed into the exponential trend if need be. This shows that
the exponential trends in the above derivations are unchanged. As a consequence, we believe
that the main results of this section are likely to be unaltered by the Lyapunov spectrum
degeneracy. Only the neutral modes, that are not subject to exponential growth or decay,
could be impacted. This will be studied and reported in a separate paper.

5.4. Role of the neutral modes. It is finally worth mentioning the particular role played
by the neutral modes. In section 4, the exponential convergence to 0 of Pk for all stable
directions was proven. Provided the three conditions equations (49), (50), (68) are met, the
above discussion points to an exponential convergence of Pk onto Sk for all unstable direc-
tions. Nevertheless, the discussion also suggests a slower convergence of Pk to 0 for neutral
directions. The critical importance of the neutral modes was originally observed by [27] in
numerical experiments with assimilation in the unstable-neutral subspace in the context of
variational DA with nonlinear dynamics. They numerically showed that it was necessary to
include the neutral direction within the subspace where the assimilation was performed in
order to efficiently control the error growth. The analysis carried out in the present section
further corroborates their findings.

Moving away from the linear hypothesis towards nonlinear dynamics and in connection
with this slow convergence of the neutral modes, it was recently argued [4] that the region of
the Lyapunov spectrum around the neutral modes is critical in the convergence of the EnKF.
The misestimation of the uncertainty in this region of the spectrum was shown to be the
reason why the ad hoc technique known as inflation meant to stabilize the filter is very often
required.

6. Numerical results. We present here numerical results on the asymptotic properties of
the analysis error covariance Pa

k that corroborate and illustrate the theoretical findings. The
convergence results obtained for Pk can easily be transferred to Pa

k by (7), or by applying
Pa

k ≤ Pk which is readily obtained using the matrix shift lemma to (6) as in (23).



CONVERGENCE OF THE DEGENERATE KALMAN FILTER 321

Three different experimental setups are considered, with different choices of the dynamical
and observational models in (1), (2). In all cases the perfect model hypothesis is employed,
Qk = 0.

Exp1: Autonomous system. The state- and observation-space dimensions are n = 30
and d = 10, respectively. The time-invariant matrices Mk , M ∈ Rn×n, Hk , H ∈ Rd×n, and
Rk , R ∈ Rd×d are chosen randomly, i.e., with entries which are indepedently and identically
distributed (iid) standard normal random variables.

Exp2: Random nonautonomous system. The state- and observation-space dimen-
sions are n = 30 and d = 10, respectively. The time-varying, invertible, propagators Mk ∈
Rn×n, the observation error covariance matrices Rk ∈ Rd×d, and the observation matrices
Hk ∈ Rd×n are all randomly generated, i.e., the entries of these matrices are iid standard
normal random variables.

Exp3: Nonautonomous system obtained by linearization around a trajectory
of the Lorenz-95 model. The entries of the observation error covariance, Rk and Hk are
generated as in Exp2 but with the state- and observation-space dimensions being n = 40
and d = 15, respectively. The propagators Mk are taken to be the linearization around a
trajectory on the attractor of the n = 40-dimensional Lorenz-95 model [18], which is very
commonly used in DA literature; see, e.g., [9, and references therein]. The equations read

(76)
dxj
dt

= xj−1 (xj+1 − xj−2)− xj + F, j = 1, . . . , n,

with periodic boundary conditions, x0 = xn, x−1 = xn−1, and xn+1 = x1. The standard
value of the forcing, F = 8, is used in the following experiments. The observation interval is
∆t = 0.1.

In another numerical experiment, we used a simpler observational network, by choosing
Hk = [1, 0, . . . , 0], corresponding to observation of only the first component of the state vector.
The numerical results for Exp3 (with randomly chosen elements of Hk of dimension 15× 40)
and for this much simpler observational network were qualitatively the same and thus the
latter have not been presented here.

It must be emphasized that this case (Exp3) does not coincide with the nonlinear filtering
problem of the Lorenz-95 model but it makes use of the linearization of the model to build
up the propagator which is then used as a linear model in (1).

Note, furthermore, that in an extended Kalman filter (EKF, [14]) applied to a nonlinear
system such as the Lorenz-95, the only place where the state estimate enters the computation
of the covariance matrices is in the linearization of the model dynamics in which one needs to
estimate the Jacobian of the model dynamics evaluated on the system’s state. Therefore, for
the Lorenz-95 model, the analysis and forecast covariances of the EKF will show asymptotic
behavior similar to what is presented below. While this behavior was already observed and
exploited in a reduced-order formulation of the EKF based on the unstable subspace [28], it
does not give many hints about the asymptotic behavior of a fully nonlinear filter.

Each of the three experimental setups is representative of a class of systems. Numerical
results (not shown) for other choices of the system and observational dimension as well as for
other realizations of the random matrices Mk,Hk,Rk were found to be qualitatively equivalent
to the results reported below.
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For the three numerical experiments described above, it is very difficult to check the
observability condition det(Γk) 6= 0 because the matrices Γk soon become very ill-conditioned.
But we expect that the system would be observable with probability 1 for Exp1 and Exp2,
while in Exp3 (the case of the Lorenz-95 model), we expect the system to be observable even
with a single variable being observed, since each variable is coupled to those around it. Note
that we are unable to numerically verify the above statements.

The QR method [23, 17] is adopted to numerically compute the Lyapunov vectors and
exponents. Starting from a random positive semidefinite Pa

0, the sequence (Pk,P
a
k) for k > 0

of forecast and analysis error covariance matrices was generated based on the KF equations (6),
(7).

Recall that n0 stands for the number of nonnegative Lyapunov exponents: in most cases,
n0 will correspond to the number of positive plus one zero exponent. Numerically, this zero
Lyapunov exponent will not be exactly zero but it will fluctuate around it. Also recall that
r0 is the rank of the initial covariance matrices P0, or Pa

0.

6.1. Rate of convergence of the eigenvalues. The following numerical experiments show
the relation between the rates of convergence of eigenvalues, σki , of the error covariance matrix
Pk, and the Lyapunov exponents of the dynamical system of (1), (2). The eigenvalues are
ordered so that σk1 ≥ σk2 · · · ≥ σkn.

When r0 < n0, the rank of Pk as k → ∞ generically remains r0 for almost all initial
conditions with no eigenvalues decaying to zero. Thus we consider here the relevant situation
r0 ≥ n0. From section 4.1, we know that in this case, σkr0+1 = · · · = σkn = 0. Moreover, from
section 4.4, (43), we know that σk1 , . . . , σ

k
n0

will remain nonzero even in the limit k → ∞—
except maybe for the neutral directions as discussed in section 5—whereas σkn0+1, . . . , σ

k
r0 will

decay to zero. Recall from section 4.2 that exp(λki k) is a singular value of Mk:0 so that λki
approaches the Lyapunov exponent λi as k → ∞; the Lyapunov exponents are ordered so
that the first n0 are nonnegative, λ1 > λ2 > · · · > λn0 ≥ 0, whereas the rest are negative with
decreasing value, 0 > λn0+1 > λn0+2 > · · · > λn.

The results of section 4.3 and the inequality (42) can be used to derive the rate of con-
vergence of the smallest r0 − n0 eigenvalues σki with i = n0 + 1, . . . , r0. Using the largest
eigenvalue at the initial time, σ01, as for αi in (42) we have

(77) σki ≤ σ01 exp
(

2λki k
)

which implies that, asymptotically,

(78) ln(σki ) ≤ ln(σ01) + 2λki k ∼
k→∞

ln(σ01) + 2λik.

The equivalence in (78) is valid in the limit k → ∞ since λki → λi as k → ∞. Therefore
for i = n0 + 1, . . . , r0, the eigenvalues σki of Pk decay to zero exponentially fast with the
exponential decay rate asymptotically being at least twice the Lyapunov exponent λi. Note
that, as mentioned above, Pa

k ≤ Pk, so the aforementioned decay rate is also valid for the
eigenvalues of the analysis error covariance matrix, Pa

k.
Figure 1(a) illustrates the decay of some of the eigenvalues of the analysis error covariance

matrix in Exp3. Similar graphs have been obtained for Exp1 and Exp2 (not shown). Fig-
ure 1(b) shows the slopes of the best fit lines for the semi-log plot of σki versus k for the full
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Figure 1. Panel (a) shows the eigenvalues of Pa
k in Exp3 and the decay of part of its spectrum. Panel (b)

shows the comparison between the decay rate of the eigenvalues of the analysis covariance matrix (red lines)
with twice the absolute value of the negative Lyapunov exponents (blue lines), for the autonomous system (solid
line, n = 30, n0 = 16), and for two examples of nonautonomous systems with random propagators (dash-dot
line, n = 30, n0 = 16) and with propagators derived from the Lorenz-95 system (dashed line, n = 40, n0 = 14),
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Figure 2. Rank of Pa
k as a function of k for several choices of the rank r0 of Pa

0 (various colors) for
two systems, one with random propagators Mk (a) with n0 = 16 and another with propagators which are a
linearization of Lorenz-95 around a trajectory on the attractor (b) with n0 = 14.

rank P0 (red dots), for all three experiments described above. The blue dots show the values
of twice the absolute value of the corresponding negative Lyapunov exponents. We see that,
indeed, the inequality (78) is saturated.

6.2. Existence of asymptotic sequences of low-rank covariance matrices. The next
set of numerical results corroborate the results in section 4.2 about the projections of the
covariance matrices onto the stable subspace vanishing and the results in section 5 about
their asymptotic behavior.

Figure 2 plots the rank of Pa
k as a function of k, where various choices of the rank r0

of Pa
0 are shown by various colors in the figure. Note that we actually plot the number of

eigenvalues greater than a threshold of 10−10.
Panel (a) of Figure 2 shows the case of random propagators (Exp2) Mk, which has n = 30

and n0 = 16, i.e., the number of nonnegative Lyapunov exponents is 16. Panel (b) refers to
the case Exp3 of linearization of Lorenz-95 with F = 8 around a trajectory on its attractor
with n = 40 and n0 = 14. We see that if r0 < n0, then the rank of Pa

k is constant and
equal to the initial rank r0. On the other hand, if r0 ≥ n0, then r0 − n0 eigenvalues values
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Figure 3. Frobenius norm of the difference, i.e., ‖Pa
k − P

′a
k ‖ for two sequences of analysis covariances

matrices starting with different initial conditions Pa
0 and P

′a
0 for the case of random propagators (a) with

n0 = 16 and Lorenz-95 linearization (b) with n0 = 14.

approach zero, n0 − 1 eigenvalues remain nonzero, while one eigenvalue fluctuates and it is
unclear whether it will approach zero or indeed remain nonzero. It very likely corresponds
to the neutral direction along which convergence of Pk is very slow even if well observed, as
discussed in section 5.

In the next numerical experiment, we generate two sequences of analysis covariances Pa
k

and P
′a
k starting from two different initial conditions Pa

0 and P
′a
0 , respectively. Figure 3 shows

the Frobenius norm of the difference between analysis covariances, i.e., ‖Pa
k − P

′a
k ‖, as a

function of k. Four cases are considered in Figure 3:
1. r0 = r′0 = n when the initial ranks are the same and equal to the state dimension

(blue line);
2. n0 < r0 = r′0 < n when the initial covariance matrices are rank deficient with the same

rank greater than n0 (green line);
3. r0 6= r′0 and n0 < r0, r

′
0 < n when the initial ranks are unequal but both ranks are

greater than n0 (red line);
4. r0 = r′0 < n0 when the initial ranks are the same and less than n0 (teal line).

In all these cases, we see that the norm of the difference approaches zero within the numerical
accuracy, fluctuating between 10−8 and 10−3, i.e., for large k, Pa

k ≈ P
′a
k . Thus the sequence

Pa
k is equivalent to a sequence of covariance matrices all of rank s = min{r0, n0}, independent

of the initial condition Pa
0, but of course dependent on the dynamics Mk, the observations

Hk, and their error covariances Rk.
The asymptotic covariance matrices are most easily represented in the basis of the BLVs.

As proven mathematically in section 4.2 in the case of strong collapse which occurs here
because the systems are sufficiently observed, these covariance matrices have column spaces
corresponding to the span of the most unstable BLVs and their null space subsumes the span
of the stable BLVs. This can be seen by looking at the projection of these covariance matrices
Pa

k onto the BLVs uk
1, . . . ,u

k
n at time tk.

Figure 4 shows these projections for four different values of k = 2500, 3000, 3500, 4000
for the cases r0 ≥ n0 (top row) and r0 < n0 (middle row). The Exp2 and Exp3 cases are
displayed in the left and right column panels, respectively. Note that the Lyapunov vectors are
ordered from the largest to the smallest Lyapunov exponents. This is also clearly seen from
the bottom row of the same Figure 4 which shows these projections at a fixed time k = 5000
for various initial ranks r0 which are equal to or less than n0.
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Figure 4. Projections of covariance matrices Pa
k onto the BLVs uk

1 , . . . ,u
k
n for system with random propa-

gators (left column, n = 30, n0 = 16) and linearization of Lorenz-95 (right column, n = 40, n0 = 14).

6.3. Low-rank asymptotic covariance for autonomous systems. The last set of numer-
ical results illustrates the asymptotic convergence of the analysis covariances for the case of
autonomous systems. The results are very similar to those of the nonautonomous systems
and a summary is presented in Figure 5. The left panel shows the Frobenius norm of the
difference Pa

k+1 − Pa
k of the analysis covariance matrices at consecutive time instances. The

figure clearly shows this difference going to zero and thus by Cauchy’s convergence criterion,
the sequence of the analysis covariance matrices converges. Different lines are meant for cases
of different initial ranks. The right panel shows the projections onto the BLVs which also
span the generalized eigenspace of MT [13], for four cases with different initial rank r0, and
these results are very similar to those shown in the bottom row of Figure 4.

7. Conclusion. We have shown that, for perfect linear dynamics and observation opera-
tor, and for any initial error covariance matrix, the solution of the KF covariance equation
converges onto the unstable-neutral subspace of the dynamics. The rate of such convergence
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Figure 5. Frobenius norm of the consecutive difference, i.e., ‖Pa
k −Pa

k−1‖ for several choices of rank r0 of
the initial condition Pa

0 (left panel) and projections onto the generalized eigenspace of MT (right panel) for the
autonomous system with n = 30, n0 = 13.

has also been provided. Moreover, we have shown that under reasonable assumptions there
exists a universal sequence, independent of the initial condition, toward which the KF error
covariance converges if the system is sufficiently observed and if the column space of the ini-
tial error covariance has a nonzero projection on all the unstable and neutral FLVs. These
results were obtained after proving an analytical expression of the covariances at any time in
terms of the initial covariances. Numerical experiments were used to further corroborate and
illustrate the mathematical statements. These results complete and generalize those in [13]
and altogether lay the mathematical foundation of the methods that rely on the assimilation
in the unstable subspace [20].

It should be stressed in this conclusion that we have also obtained alternative square root
formulas for equations (18), (20), (30), (62), which means that those are written in terms
of Xk the square root factor of Pk = XkX

T
k rather than Pk. Those would have made an

even stronger connection with ensemble filters since the columns of Xk can be seen as state
perturbations associated with an ensemble of state vectors. However, the derivations that
use the square root factors turned out to be equivalent or longer compared to working on
Pk directly. They do not bring in new insights for the purposes of this paper compared to
the derivations presented here. That is why we did not opt for the square root approach in
this paper. Square root generalizations of these formulas will be introduced elsewhere [2] in a
nonlinear context where they are more relevant.

Yet, this work leaves unresolved some key issues that are worth investigating in the per-
spective of the design of reduced-order algorithms applicable to practical situations. Specific
lines of development include the treatment of model error and the extension to nonlinear
dynamics. This latter problem stimulates indeed an intriguing, albeit necessary, direction of
study whose main difficulty stands on the fact that the unstable subspace is, in this nonlin-
ear case, no longer globally defined but a function of the underlying trajectory. Both lines
of research may lead to interesting methodological and mathematical developments and are
central in DA.

In our view the present results are also relevant to the field of ensemble-based DA al-
gorithms for the geosciences or, more generally, to the uncertainty quantification and DA
methods in complex high-dimensional and big data problems, of which DA for the geosciences
is a prototypical example. We believe so for two distinctive reasons. First the present findings
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on the error covariance projection onto the unstable-neutral subspace provide a natural ratio-
nale to interpret a stream of numerical evidence that relates the minimum ensemble size to
achieve a satisfactorily estimate of the system’s state, with the number of unstable directions
of the underlying dynamics [9, 19, 5]. Second, this study encourages a research effort toward
EnKF formulations that incorporate the information on the unstable subspace explicitly in
the design and choice of the ensemble, possibly in combination with localization techniques
widely used to artificially increase the rank of the ensemble-based error covariance matrices.

While a specific recipe for a formulation of the EnKF under this framework is still part
of the authors’ ongoing research, some preliminary considerations can nevertheless be put
forward. First, the convergence onto the unstable subspace for EnKF covariance can only
be obtained for the class of the deterministic EnKFs, as confirmed by the numerical results
performed by the authors [2]. Second, for the sake of the feasibility, the explicit use of the
unstable subspace in the filter design for high-dimensional applications, must necessarily rely
on an efficient computation of such a subspace. Recent developments along this line [34, 12]
thus appear favorable and further support our current research.

It is finally worth mentioning another appealing research direction: the extension of the
present framework to fully Bayesian DA methods typically preferable in the presence of strong
nonlinearities and/or non-Gaussian error [3]. Besides the aforesaid difficulty inherent to non-
linear dynamics, the additional problem here is on how to link the geometrical (in the phase-
space) features of the unstable subspace to the conditioning of a pdf, that is, the generalization
to the fully Bayesian framework, of projecting the error covariances onto the unstable sub-
space.

Appendix A. Deriving Pk using the symplectic symmetry. This appendix gives an
account of the linear representation of the recurrence equation (4), which had initially been
developed as a way to solve the Riccati equation in the autonomous case [1, and references
therein]. We use it to give an alternative derivation of (18) and to discuss in more detail the
analytic expression in the autonomous case. The underlying symplectic structure of the KF
has been, for instance, explored in [6, 33].

A.1. General linear representation using symplectic matrices. Let us rewrite the recur-
rence equation (4):

Pk = Mk (In + Pk−1Ωk−1)
−1 Pk−1M

T
k + Qk

= MkPk−1 (In + Ωk−1Pk−1)
−1 MT

k + Qk

= MkPk−1

(
M−T

k + M−T
k Ωk−1Pk−1

)−1
+ Qk

=
(
MkPk−1 + Qk

{
M−T

k + M−T
k Ωk−1Pk−1

})(
M−T

k + M−T
k Ωk−1Pk−1

)−1
=
({

Mk + QkM
−T
k Ωk−1

}
Pk−1 + QkM

−T
k

)(
M−T

k Ωk−1Pk−1 + M−T
k

)−1
, (AkPk−1 + Bk) (CkPk−1 + Dk)−1 ,(79)

where we used the matrix shift lemma from the first to the second line, and we defined block
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matrices Ak, Bk, Ck, Dk in the fourth line. Let us define [1]

(80) Zk ,

(
Ak Bk

Ck Dk

)
=

(
Mk + QkM

−T
k Ωk−1 QkM

−T
k

M−T
k Ωk−1 M−T

k

)
,

which is valid in the presence of model noise. This matrix belongs to the symplectic group
Sp(2n,R) since Z−1k = −JZT

k J, where J = ( 0 In
−In 0 ). It has a simple expression in the perfect

model case:

(81) Zk ,

(
Ak Bk

Ck Dk

)
=

(
Mk 0

M−T
k Ωk−1 M−T

k

)
.

Furthermore, let us introduce the following matrix in R2n×n:

(82) Wk =

(
Xk

Yk

)
,

where Yk is assumed to be invertible, which can and will be checked a posteriori, and we
define the ratio ωk = XkY

−1
k in Rn×n. The Wk are related by the defining recurrence

(83) Wk+1 , ZkWk.

We explicitly have

(84)

(
Xk+1

Yk+1

)
, ZkWk =

(
Ak Bk

Ck Dk

)(
Xk

Yk

)
=

(
AkXk + BkYk

CkXk + DkYk

)
,

from which it is possible to infer the following recurrence on ωk:

ωk+1 = Xk+1Y
−1
k+1 = (AkXk + BkYk)(CkXk + DkYk)−1

= (AkXkY
−1
k + Bk)(CkXkY

−1
k + Dk)−1

= (Akωk + Bk)(Ckωk + Dk)−1.(85)

Hence, we can represent the nonlinear update of ωk by the linear recurrence equation (83).
Now, we choose

(86) X0 = P0 and Y0 = In

in order to have ωk = Pk for all k ≥ 0, which implies that the nonlinear recurrence on Pk

can be represented by the linear recurrence equation (83).
Insofar, no assumption on the rank of Pk was required and, even in the presence of model

noise, the linear representation implies that Pk has the following dependence on P0:

(87) Pk = (A(k)P0 + B(k))(C(k)P0 + D(k))−1,

where the A(k), B(k), C(k), D(k) only depend on Ωl, Ql, and Ml, 1 ≤ l ≤ k. Our purpose
now is to compute Pk for any tk in the perfect model case using the linear representation
equation (81). This is the focus of the rest of this appendix.
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A.2. Solution in the autonomous case. We consider first the autonomous case, where
Mk, Ωk, and Zk are all independent of time, and we can suppress the time index from the
notation. Hence, we would compute the power iterates Zk of Z (not to be confused with the
Zk defined in (81). Let us assume that Zk has the form

(88) Zk ,

(
Mk 0(

Mk
)−T

Θ′k
(
Mk
)−T) .

Note that we want Z0 =
(
In 0
0 In

)
, so that Θ′0 = 0. Then the recurrence on Zk imposes the

recurrence on the Θ′k:

(89) Θ′k+1 = MTΘ′kM + Ω,

which identifies Θ′k with Θk as defined by (21). Because Θ0 and Ω are symmetric, all Θk for
k ≥ 1 are also symmetric. We can see it as an arithmetico-geometric recurrence and to solve
it define by Ψ the solution of

(90) Ψ = MTΨM + Ω.

This is the so-called discrete algebraic Lyapunov equation. Because a solution of this equation
does not always exist [11], we consider instead the recurrence

(91) eiεΘε
k+1 = MTΘε

kM + Ω,

where 0 < ε < 2π. By continuity, Θk = limε→0+ Θε
k. The corresponding Lyapunov equation

is

(92) eiεΨε = MTΨεM + Ω.

It is formally equivalent to

(93)
(
eiεIn −MT ⊗MT

)
vec (Ψ) = vec (Ω),

where vec(Ψ) is the vector made from the stacked columns of Ψ. Since

(94) det
(
eiεIn −MT ⊗MT

)
6= 0

for any real M and 0 < ε < 2π, there exists a unique solution Ψε of (93) in C. Then, we
obtain

(95) Θε
k = Ψε − (Mk)TΨεM

k,

by subtracting (92) from (91) and then iterating. As a consequence, the following construction
of a solution is always valid:

(96) Θk = lim
ε→0+

{
Ψε − e−ikε

(
Mk
)T

ΨεM
k

}
.
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Hence,

(97) Zk =

(
Mk 0(

Mk
)−T

Θk

(
Mk
)−T) .

Using the linear representation leads to(
Xk

Yk

)
=

(
Mk 0(

Mk
)−T

Θk

(
Mk
)−T)(P0

In

)

=

(
MkP0(

Mk
)−T

ΘkP0 +
(
Mk
)−T) .(98)

Using Pk = XkY
−1
k , we conclude

(99) Pk = MkP0 [ΘkP0 + In]−1
(
Mk
)T

.

A.3. Solution in the nonautonomous case. In the nonautonomous case, we need to
define

(100) Z(k) , ZkZk−1 · · ·Z0.

The product is still in the symplectic group and of the form

(101) Z(k) ,

(
Mk:0 0

Γ′kMk:0 M−T
k:0

)
,

which leads to the following recurrence on Γ′k:

(102) Γ′k+1 = M−T
k+1

(
Γ′k + Ωk

)
M−1

k+1.

The finite-time solution to this recurrence is

(103) Γ′k =
k−1∑
l=0

M−T
k:l ΩlM

−1
k:l

which coincides with the definition of Γk in (14). Hence, we have an expression for Z(k). We
can use it to obtain a solution for the recurrence on Pk using the linear representation

(104) Z(k)

(
P0

In

)
=

(
Mk:0P0

ΓkMk:0P0 + M−T
k:0

)
from which we obtain

Pk = Mk:0P0

[
ΓkMk:0P0 + M−T

k:0

]−1
= Mk:0P0M

T
k:0

[
In + ΓkMk:0P0M

T
k:0

]−1
= Mk:0P0

[
In + MT

k:0ΓkMk:0P0

]−1
MT

k:0(105)

which coincides with (18) and (19).
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Appendix B. A few useful properties of the symmetric positive (semi)definite matri-
ces. Here we provide a selection of definitions and results about the symmetric positive
(semi)definite matrices that we use in this paper. An introduction and detailed proofs of
several of these results can be found in [35, chapter 6].

1. The partial ordering on Cn is defined by, for any A and B in Cn, A ≤ B if and only
if for all x ∈ Rn, xTAx ≤ xTBx.

2. If A and B are in Cn and G is in Rq×n, q ∈ N, we have that A ≤ B implies GAGT ≤
GBGT which is immediate from the previous definition of the partial ordering.

3. If A and B are in Cn+, A ≤ B is equivalent to A−1 ≥ B−1. This can be shown using
the double diagonalization theorem which states that there exists an invertible matrix
G such that GAGT and GBGT are both diagonal.

4. If A, B, and C are in Cn, by A ≤ min{B,C} we mean that for all x ∈ Rn, xTAx ≤
min{xTBx,xTCx}.

5. If A is in Cn, it has the eigendecomposition A =
∑n

i=1 σiviv
T
i , with σi ≥ 0 and

{vi}1≤i≤n an orthonormal basis. Let σmax = max1≤i≤n σi and σmin = min1≤i≤n σi.
Any x in Rn can decompose on the eigenvectors of A: x =

∑n
i=1(v

T
i x)vi. As a

consequence, one has

xTAx =
n∑

i=1

σi
(
vT
i x
)2 ≤ σmax

n∑
i=1

(
vT
i x
)2

= σmaxx
Tx

≥ σmin

n∑
i=1

(
vT
i x
)2

= σminx
Tx(106)

which leads to σminIn ≤ A ≤ σmaxIn. Further, as

(107) ‖Ax‖2 =
n∑

i=1

σ2i
(
vT
i x
)2
,

it follows that xTAx = 0 ⇐⇒ Ax = 0.
Now, assume {Ak}k∈N is a uniformly bounded sequence in Cn and {xk}k∈N is a uni-
formly bounded sequence in Rn. Then limk→∞Akxk = 0 implies that limk→∞ xT

k Akxk =
0 by virtue of the boundedness of xk. Owing to the uniform boundedness of Ak, we
introduce σ = supk∈N,1≤i≤n σk,i <∞ and obtain

‖Akxk‖2 =

n∑
i=1

σ2k,i
(
vT
k,ixk

)2
≤σ

n∑
i=1

σk,i
(
vT
k,ixk

)2 ≤ σxT
k Akxk.(108)

Hence, limk→∞ xT
k Akxk = 0 implies that limk→∞Akxk = 0. It follows that

limk→∞ xT
k Akxk = 0 ⇐⇒ limk→∞Akxk = 0. In particular, if the diagonal entry

[Ak]ii asymptotically vanishes, the associated row [Ak]i· and column [Ak]·i asymptoti-
cally vanish. Accordingly, if a given diagonal block of the Ak asymptotically vanishes,
the off-diagonal blocks with the same row and column indices as the diagonal block
asymptotically vanish.



332 BOCQUET, GURUMOORTHY, APTE, CARRASSI, GRUDZIEN, AND JONES

6. Let A ∈ Cn and α ≥ 0 be a constant. If there is a subspace W ⊆ Rn of dimension
s ≥ 1 such that for all unit vectors h ∈ W, hTAh ≤ α, then A has at least s of its
eigenvalues less than or equal to α.
To see this, decompose A =

∑n
i=1 σiviv

T
i in its orthonormal eigenbasis, where σi ≥ 0

and ordered as σ1 ≥ σ2 ≥ · · · ≥ σn. Consider V the (s − 1)-dimensional subspace
span of {vn−s+2, . . . ,vn}, which we take to be the null space if s = 1. The orthogonal
subspace V⊥ of V is of dimension n− s+ 1. The intersection W ∩V⊥ is of dimension
at least 1. Let us pick h of Euclidean norm 1 in this intersection. We have

α ≥ hTAh =
n∑

i=1

σi(h
Tvi)

2 =
n−s+1∑
i=1

σi(h
Tvi)

2

≥ σn−s+1

n−s+1∑
i=1

(hTvi)
2 = σn−s+1.(109)

Hence α ≥ σn−s+1 ≥ · · · ≥ σn.

Appendix C. Matrix shift lemma. Let A ∈ Rn×m and B ∈ Rm×n. Assuming x 7→
f(x) can be written as a formal power series, i.e., f(x) =

∑∞
i=0 aix

i, one has Af(BA) =∑∞
i=0 aiA(BA)i =

∑∞
i=0 ai(AB)iA = f(AB)A. This proves the matrix shift lemma, i.e.,

Af(BA) = f(AB)A. In the special case that f(x) = (1+x)−1, this property in fact holds for
any matrix without consideration of the radius of convergence of the power series. Assuming
(Im + BA)−1 and (In + AB)−1 exist then

(110) A(Im + BA)−1 = (In + AB)−1(A + ABA)(Im + BA)−1 = (In + AB)−1A.
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[12] F. Ginelli, H. Chaté, R. Livi, and A. Politi, Covariant Lyapunov vectors, J. Phys. A, 46 (2013),

254005.
[13] K. S. Gurumoorthy, C. Grudzien, A. Apte, A. Carrassi, and C. K. R. T. Jones, Rank deficiency

of Kalman error covariance matrices in linear time-varying system with deterministic evolution, SIAM
J. Control Optim., to appear.

[14] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.
[15] R. E. Kalman, A new approach to linear filtering and prediction problems, J. Fluids Eng., 82 (1960),

pp. 35–45.
[16] P. V. Kuptsov and U. Parlitz, Theory and computation of covariant Lyapunov vectors, J. Nonlinear

Sci., 22 (2012), pp. 727–762.
[17] B. Legras and R. Vautard, A guide to Lyapunov vectors, in ECMWF Workshop on Predictability,

European Centre for Medium Range Weather Forecasts, Reading, UK, 1996, pp. 135–146.
[18] E. N. Lorenz and K. A. Emanuel, Optimal sites for supplementary weather observations: Simulation

with a small model, J. Atmos. Sci., 55 (1998), pp. 399–414.
[19] G.-H. C. Ng, D. McLaughlin, D. Entekhabi, and A. Ahanin, The role of model dynamics in ensemble

Kalman filter performance for chaotic systems, Tellus A, 63 (2011), pp. 958–977.
[20] L. Palatella, A. Carrassi, and A. Trevisan, Lyapunov vectors and assimilation in the unstable

subspace: Theory and applications, J. Phys. A, 46 (2013), 254020.
[21] L. Palatella and A. Trevisan, Interaction of Lyapunov vectors in the formulation of the nonlinear

extension of the Kalman filter, Phys. Rev. E (3), 91 (2015), 042905.
[22] L. Palatella, A. Trevisan, and S. Rambaldi, Nonlinear stability of traffic models and the use of

Lyapunov vectors for estimating the traffic state, Phys. Rev. E (3), 88 (2013), 022901.
[23] T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer, New

York, 1989.
[24] D. T. Pham, J. Verron, and M. C. Roubaud, A singular evolutive extended Kalman filter for data

assimilation in oceanography, J. Marine Syst., 16 (1998), pp. 323–340.
[25] P. Sakov and L. Bertino, Relation between two common localisation methods for the EnKF, Comput.

Geosci., 15 (2011), pp. 225–237.
[26] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, Wiley, Hoboken,

NJ, 2006.
[27] A. Trevisan, M. D’Isidoro, and O. Talagrand, Four-dimensional variational assimilation in the

unstable subspace and the optimal subspace dimension, Quart. J. Roy. Meteorol. Soc., 136 (2010),
pp. 487–496.

[28] A. Trevisan and L. Palatella, On the Kalman filter error covariance collapse into the unstable sub-
space, Nonlinear Process. Geophys., 18 (2011), pp. 243–250.

[29] A. Trevisan and F. Pancotti, Periodic orbits, Lyapunov vectors, and singular vectors in the Lorenz
system, J. Atmos. Sci., 55 (1998), pp. 390–398.

[30] A. Trevisan and F. Uboldi, Assimilation of standard and targeted observations within the unstable
subspace of the observation-analysis-forecast cycle, J. Atmos. Sci., 61 (2004), pp. 103–113.

[31] F. Uboldi and A. Trevisan, Detecting unstable structures and controlling error growth by assimilation of
standard and adaptive observations in a primitive equation ocean model, Nonlinear Process. Geophys.,
16 (2006), pp. 67–81.

[32] S. Vannitsem and V. Lucarini, Statistical and dynamical properties of covariant Lyapunov vectors in
a coupled atmosphere-ocean model-multiscale effects, geometric degeneracy, and error dynamics, J.
Phys. A, 49 (2016), 224001.

[33] M. P. Wojtowski, Geometry of Kalman fiters, J. Geom. Symmetry Phys., 9 (2007), pp. 83–95.
[34] C. L. Wolfe and R. M. Samelson, An efficient method for recovering Lyapunov vectors from singular

vectors, Tellus A, 59 (2007), pp. 355–366.
[35] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer, New York, 1999.


	Introduction
	Context and objectives
	Problem formulation
	Outline of the paper

	Computation of the forecast error covariance matrix Pk
	Free forecast of P0 as an upper bound
	Convergence of the error covariance matrix: Theoretical results
	Rank of Pk
	Collapse of the error covariance matrices onto the unstable-neutral subspace
	Rate of convergence of the eigenvalues
	Asymptotic rank of the error covariance matrix
	Observability and boundedness of the error statistics

	Asymptotic behavior of Pk and its independence from P0
	Asymptote in the absence of neutral modes
	Asymptote in the presence of neutral modes
	Degeneracy of the Lyapunov spectrum
	Role of the neutral modes

	Numerical results
	Rate of convergence of the eigenvalues
	Existence of asymptotic sequences of low-rank covariance matrices
	Low-rank asymptotic covariance for autonomous systems

	Conclusion
	Appendix A. Deriving Pk using the symplectic symmetry
	General linear representation using symplectic matrices
	Solution in the autonomous case
	Solution in the nonautonomous case

	Appendix B. A few useful properties of the symmetric positive (semi)definite matrices
	Appendix C. Matrix shift lemma

