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Plan of the talk 

■ Numerical Weather Prediction (NWP),
Data Assimilation (DA)

■ Observations (in-situ and remote sensing)

■ Error covariances : estimation and modelling



1. Numerical Weather Prediction and
    Data Assimilation
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Numerical Weather Prediction

Numerical   
 model    

Numerical   
 model    Forecast   

state   
Forecast   

state   
Initial   
state   

Initial   
state   

Numerical resolution of fluid mechanics equations 
(computer code), to forecast the atmospheric evolution
from an estimated initial state (which is called the « analysis »).



AROME (1.3 km)
1,4 x 109 model variables

ARPEGE (7 km - 40 km)
109 model variables

NWP models at Météo-France 
(in collaboration with e.g. ECMWF)

Equations of dynamics and physical parametrizations (radiation, convection, …)
to predict the evolution of temperature, wind, humidity, etc.

Lateral Boundary
Conditions
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AROME
1,4 x 109 model variables

2 x 105 observations / 6h
Up to 70 % radar, 10 % satellite

3D assimilation : 7 min

Data which are assimilated in NWP models

ARPEGE
109 model variables

5 x 106 observations / 6h
90 % satellite

4D assimilation : 40 min
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Spatial coverage & density of observations

SURFACE DATA GEOSAT. WINDS

SCATTEROMETER AIRCRAFT DATA



    6h                            12h                         18h     time

xb

xa

yo

xf

Data assimilation cycling :
temporal succession of analysis and forecast steps

Model
variable

=> The model state is propagated and then updated, e.g. every 6h :
the memory of DA system is updated ~ continuously in time, through cycling.

4-day 
forecast
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     6h                           12h                         18h     time

xb

xa

yo

xf

Uncertainties in observations, background, analysis

Model
variable

Uncertainties are often measured by error variances
(ex : accurate observation ↔ small observation error variance).

=> Use linear estimation theory to account for errors.



■ BLUE formalism : xa = xb + K ( yo – H[xb] )

■  H = non linear observation operator

    = projection from model space to observation space : y = H[x]

H ~ spatial interpolation : from model grid to obs locations (e.g. for radiosondes) ;

H ~ radiative transfer : from model temperature to satellite radiances ;

H ~ NWP model: for observations available at different times within DA window.

■ K ~ observation weights : K = B HT ( H B HT + R )-1

with    H = tangent linear version of H,

            B = background error covariance matrix,

            R = observation error covariance matrix.

=> K accounts for relative accuracy of observations,

and for spatial structures of background errors.

Analysis equation
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■ Variances
- Weighting/filtering of observations.

■ 3D spatial correlations
- Spatial propagation of observations.
- Spatial coherence of analysis. 
  

■ 4D spatio-temporal correlations
- Spatial and temporal propagation of observations.
- Spatial and temporal coherence of trajectory.

Background error covariances :
filtering and propagation of yo - H(xb)

yo

xa

xb

t
                  
         t+Dt
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Impact of one surface pressure observation
on the pressure and wind analysis (2D)

B contains & provides information about 

typical scales in the atmosphere and

mass/wind couplings (such as geostrophy)



■ Size of B is huge : square of model size ~ (109)2 = 1018

=> error covariances need to be estimated, simplified and modelled.

■ The matrix ( H B HT + R ) in K = B HT ( H B HT + R )-1

is too large to be explicitly inverted.

=> minimize distance J(xa) to xb and yo (4D-Var),

without explicit matrix inversions (e.g. Talagrand and Courtier 1987).
    

■ Some (weakly) non linear features are accounted for

in calculation of departures yo – H(xb) (e.g. non linear radiative transfer),
and by updating the non linear trajectory in 4D-Var.

Variational analysis
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Principle of 4D-Var assimilation

9h 12h 15h

6h assimilation window

Jb
Jo

Jo

Jo

obs

obs

obs

analysis

xa

xb
Updated
trajectory

Background
trajectory

Minimisation of J=Jb+Jo allows an updated trajectory to be computed, 

consistent with observations at different times.



■ Variational formulation :

cost function J(xa) = ||xa - xb||2
B

-1 + ||H(xa) - yo||2
R

-1
  

minimised when gradient J’(xa)=0 (equivalent to BLUE).

■ Computation of gradient J’ : development and use of adjoint operators
(i.e. transpose of tangent-linear operators).

■ Generalized observation operator H : includes NWP model M,
in order to assimilate observations distributed in time over a 6h window.
    

■ Reduction of computation cost : analysis increment dx = xa  -  xb 

can be computed at low resolution (Courtier et al 1994).

Implementation of 4D-Var



2. In-situ observations and
    remote sensing data
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Observation networks in meteorology :
in situ measurements

* Direct measurements of temperature, wind, humidity.
* Relatively easy to compare with the model, and to assimilate.
* High quality data, with relatively small biases. 
* Poor horizontal coverage over the globe.
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Observation networks in meteorology :
satellite data

Constellation of polar orbiting or geostationary satellites
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Geostationary satellites

Fix position / earth, at 36 000 km height, above equator.

Same area of the globe (disk) is always observed.

 Advantages

Very high temporal resolution (~ 15 min).

Useful for nowcasting 
(= very short range forecasts, e.g. within the next 2 hours).

Dynamics of meteorological structures
(e.g. fronts, tropical cyclones).

 Drawbacks

Insufficient spatial coverage of 1 satellite / whole globe.

Not adapted to polar regions, due to position.
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Polar orbiting satellites

Low orbit satellites (800 km height) :

 Advantages 

High spatial resolution (~10 km).

Global spatial coverage (twice a day)

Sounding instruments 
(over several vertical layers)

 Drawbacks

Insufficient temporal resolution :
a given location is only observed every 12h

(several satellites are needed, to have
frequent observations over the same area)
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Two types of satellite measurements

Passive measures

(no energy is emitted from instrument) 

Active measures

(energy is emitted from instrument)

Measures natural radiation emitted 

by Earth or Atmosphere (with Sun origin)

Measures radiation emitted by satellite and then

 reflected or diffused by Earth or Atmosphere
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GNSS radio-occultation data 
(1st example of active remote sensing)

• GNSS is the Global Navigation Satellite System 
= GPS (USA) or Galileo (Europe).

• Low-Earth Orbit (LEO) satellites receive a signal 
from a GNSS satellite.

• The GNSS signal passes through the atmosphere and 
it gets refracted along the way.

• The magnitude of the refraction depends on 
temperature, moisture and pressure.

• The relative position of GNSS and LEO changes over time 
=> vertical scanning of the atmosphere,
      with information on temperature and humidity.

GNSS

GNSS
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Ground-based data from GNSS
(2nd example of active remote sensing)

 Propagation of GNSS signal is slowed by atmosphere (dry air and water vapour) :

the propagation delay provides information about humidity in particular.

 More than 900 GNSS stations over Europe provide an estimation of 

Zenith Total Delay (ZTD) in real time to weather centres. 

– All weather instrument
– High temporal resolution
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Scatterometers

They send out a microwave signal towards a sea target.
The fraction of energy returned to the satellite depends on wind speed and direction.

Smooth sea

Emitted signal
Reflected signal

Small waves Larger waves

=> Measurements of near surface wind over the ocean, 
      through backscattering of microwave signal reflected by waves.



Passive remote sensing :
what is measured by satellite sensors ?

 Sensors do not measure directly atmospheric temperature and humidity,
 but electromagnetic radiation : brightness temperature or radiance.

 Depending on wave length, indirect information on gas concentration (e.g.
 humidity) or on physical properties of atmosphere (temperature or pressure).

 Observations are made in « atmospheric windows » (in white, below) : 
 frequencies with « low atmospheric transmittance » (= « low opacity »), 
 e.g. in microwave and some infrared. 

100 %

Atmospheric
Transmittance

0 %
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■ What is observed is a radiance = quantity of energy per time unit, 
going through a surface, in a solid angle, and for a wave number interval of the radiation. 
Unit [ W/m2Sr.cm-1 ] 

■ Planck function: 
Bυ(T)= radiance emitted by a black body at temperature T, for wave number .υ

■ Intensity of the radiation, emitted by the atmosphere at wave number υ:

Rυ =( I0 )υ τυ(z0) + z0 Bυ(T(z)) (dτυ(z)/dz) dz

( I0 )υ is the surface emission at altitude z0.

τυ(z) is the transmittance from z to the top of the atmosphere ;
it accounts for atmospheric absorption of radiation. 

Kυ(z) = dτυ(z)/dz is called weighting function :                                                               
it weights the Planck function in the radiance equation, and it determines                     
the vertical layer of the atmosphere that is sounded at this frequency.

Passive remote sensing : 
radiative transfer equation
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Retrieval of temperature vertical profiles

i=1

i=2

Z or p
Z or p

Temperature (T)Contributions to radiances R
i

(for a given channel i, with
specific weighting function)

Inversion
(e.g. through DA)

Ri  =  Bi[T(p0)].τi(p0) + ∫p  Bi[T(p)].[dτi(p)/dz].dz 

Radiative transfer
(observation operator)
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IASI : infra-red interforemeter
developed by CNES and EUMETSAT

IASI offers a very high spectral resolution (~ 8000 channels)

Temperature ozone Water vapor
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Number of observations used in ARPEGE
(global DA at Météo-France)

Total ~ 20 million obs    
               per day 
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How do observations meet global NWP 
requirements ?

■ Surface observations
good coverage over land, sparse coverage over sea; 
observations not suited to describe upper levels.

■ Aircraft observations
good accuracy, 
but do not describe the 3D state of the atmosphere 
(except near airports).

■ Radiosonde data
good accuracy, good vertical resolution, 
but poor horizontal coverage over the globe.

■ Satellite data
good horizontal coverage over the globe, 
but poor vertical resolution (reduced to 1 level for satellite winds or imagers).
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Radar network in France

•.•.•.

•.•.•.•.

•.•.•.•.•.•.•.•.•.•.

0 100 km

10 km Observations assimilated 

as vertical profiles,

after estimating the pixel altitude

( Pixel altitude is computed using 
  a constant refractivity index along the path )        

(= effective radius approximation)

• 30 radars (19 C-band, 5S, 6X)        

 every 15 minutes, at 1 km resolution.

• Observations :

reflectivities Z (related to precipitation) ;

radial winds Vr (doppler effect) : 

the emitted microwave signal returns to the radar with a 
modified frequency, when the target is moving.

 => invert Doppler equation to obtain a wind observation.
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Assimilation of radar 
radial winds

Wind gust at 10 m (kt)
Forecast +1h (19 UTC)

OBS

CONTROL 
(no Radar)

RADAR



Bayesian inversion of 
reflectivity profiles

Caumont, 2006:  use model profiles in the
neighborhood of each observation (in 3 steps)

ypo
U

The pseudo-observed RH profile 
can then be assimilated            
as a conventional profile      
(like a radiosonde profile).

Observation 
operator for 
reflectivities

1. Compute model reflectivities
from model relative humidity (RH) profiles
(using observation operator for relectivities).

2. Estimate likelihoods of model reflectiv.,
by comparing them with obs. reflectivities
and by computing associated exponantials.

3. Compute (pseudo-)observed RH profile,
to be assimilated : average of model RH profiles, 
weighted by their likelihoods.



Radar

 03h

Radar

 06h

Radar

 09h

3h forecast issued at 3UTC 3h forecast issued at 3UTC

r6 – CONTROL

Example of High Precipitation Event (South-East of France) :

REFL    vs   CONTROL
(assimilation of reflectivities)    (no reflectivities in DA)

Line of heavy precipitation is 
well analysed in REFL run.

3h forecast issued at 6UTC 3h forecast issued at 6UTC

Impact of radar reflectivities



Error covariances :
estimation and modelling



■ The true atmospheric state is never (exactly) known.

■ Use observation-minus-background departures

to estimate some average variances and correlations of R and B,
using assumptions on spatial structures of errors.
    

■ Use an ensemble to simulate the error evolution and to
estimate space- and time-dependent background error structures.

■ Use covariance modelling to filter out sampling noise
and other uncertainties in the ensemble.

How can we estimate error covariances ?



Radiosonde observation network



■ Innovations = observation-background departures :

yo – H(xb) =  yo – H(xt) + H(xt) – H(xb)

          ~  eo – Heb

■ Innovation covariances :

    E[(yo – H(xb))(yo – H(xb))T] = R + H B HT

assuming that E[ eo (Heb)T ] = 0.

(e.g. Hollingsworth and Lönnberg 1986).

Covariances of innovations



Covariances of innovations
(with extrapolation to zero separation distance)

background error
covariance

E[(yo – H(xb))(yo – H(xb))T] = R + H B HT

Extrapolation to zero separation distance 
allows different contributions to be estimated.

separation distance



Covariances of analysis residuals

dy = yO – H(xb) (innovation)

H dx = H(xa) – H(xb) (increment)

E[H dx dyT]  = HBHT

E[(yO – H(xa)) dyT]  = R

yO (observation)

ea

eo

x* 
(true state) 

xb 

(background)

xa

dy

dx

(Desroziers et al 2005)

eb



Vertical profiles of standard deviations
of background errors and observation errors

0 2 431
1000

500

250

100

30

Pressure (hPa)

Wind error
standard deviations
(in m/s)

sb so



At a given location and time, 

there is only 1 innovation value dy :
a single error realization is available locally
(e.g. for estimating background errors).

=> Statistical averages (mathematical expectations) 
     need to be replaced by

     space and time averages (ergodic assumption).

=> only space or time averages of B and R 
     can be estimated from innovation data.

=> consider other approaches, such as ensemble methods.

Space & time averages of 
innovation-based covariances

H(xb)

yo

dy ~ eO – Heb



     6h                           12h                         18h     time

eb

ea

eo

ef

Ensemble Data Assimilation (EDA) :
simulation of error cycling

Model 
variable

ea = (I-KH)eb + Keo ef = Mea + em

(e.g. Houtekamer et al 1996, Fisher 2003, Berre et al 2006 ; 
ARPEGE : 50 members to estimate flow-dependent B)

with eb = ef- 

and eo = R1/2 h (random draws of R)



■ Observation errors can be simulated by

adding random draws of R : eo = R1/2 ho.

■ Model errors can be simulated by

adding random draws of Q : em = Q1/2 hm (additive or mult. inflation);

using a multi-model approach (or multi-physics) ;

perturbing physical tendencies of the model ;

perturbing model parameters. (...)
    

■ Observation and model perturbations are propagated
during the successive analysis/forecast steps of DA cycling.

■ Flow-dependent background error covariances can be estimated
from the ensemble (with 50 members at Météo-France).

Simulation and propagation of 
observation errors and model errors
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Dynamics of background error variances

Standard deviations of surface pressure errors (hPa) 

(superimposed with MSLP analysis (hPa)).
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■ Huge size of B : model it with operators which are sparse and/or of small size.

■ Sampling noise, and other uncertainties. => Spatio-temporal filtering.

■ Factorisation : B = B1/2 BT/2

   B1/2 = L S C1/2 

L ~ mass/wind cross-covariances (related to geostrophy),

       including flow-dependence (non linear balances).

S   flow-dependent standard deviations (~ expected error amplitudes),

       filtered spatially.

C   matrix of 3D spatial correlations (~ spatial structures of errors),

      filtered in wavelet space (block-diagonal model).

Modelling and filtering covariances
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Spatial filtering of variance field

RAW ENSEMBLE 
VARIANCES (N=6)

EXACT 
VARIANCES
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Spatial filtering of variance field

RAW ENSEMBLE 
VARIANCES (N=6)

EXACT 
VARIANCES

Low-pass filter applied to raw variances :

v’b  = F vb

with F optimized in spectral space / 

spatial structures of signal & noise :

 F = 1 / ( 1 + E[noise²]/signal² )

and E[vb²] = signal² + E[noise²] 

FILTERED ENSEMBLE 
VARIANCES (N=6)
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Dynamics of horizontal correlations

Horizontal length-scales (in km) of wind errors near 500 hPa, 

superimposed with geopotential



Page 50

Dynamics of vertical correlations

Vertical correlations of temperature errors 
between 850 & 870 hPa
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Covariance anisotropy and localisation

« Exact » covariances Raw covariances

(200 members)

Localised covariances

(200 members)

Ensemble to get information on anisotropy,
but requires filtering = localisation.
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Flow-dependent anisotropic increments

Humidity analysis increments (near 850 hPa)

With isotropic correlations With anisotropic correlations,

filtered by localisation



Conclusions
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■ Data assimilation is vital for weather forecasting.
■ Observations are very diverse in type, density and quality.
■ 4D-Var for temporal and non linear aspects.

■ Observation-background departures for estimation

of average variances and correlations in R and B.
■ Ensemble DA for error simulation and for covariance dynamics.

■ Sampling noise issues and filtering methods.
■ Towards 4DEnVar (variational assimilation based on a 4D ensemble).

Conclusions



Thanks for your attention



  

Liens principaux entre thématiques ensemblistes

Spécification des incertitudes 
(observations, modèle) du système d’analyse/prévision

Assimilation d’ensemble : simulation de la propagation
des erreurs au cours du “cyclage” de l’assimilation

Prévision d’ensemble : simulation de la propagation / 
amplification des erreurs au cours de la prévision

Prévision probabiliste : traitement statistique
des prévisions de l’ensemble

Spécification des covariances d’erreur d’ébauche,
formulations EnVar de l’assimilation



■ Provides estimates in observation space.

■ A good quality data dense network is needed.
    

■ Assumption that observation errors are spatially uncorrelated.

■ An objective source of information on B and R.

■ At a given location and time, only 1 innovation value :
only a single error realization is available.

=> Statistical averages (expectations) are replaced by

space and time averages (ergodic assumption).

Properties of innovation methods



4DEnVar
Variational analysis based on a 4D Ensemble

Minimisation of J(dx) where dx is a 4D analysis increment :

J(dx) = dxT B-1 dx + (d-H dx)T R-1 (d-H dx)

 

                       with B = Xb’
 Xb’T o L, where L is a localization matrix,

              Xb’ = (xb’
1, …, xb’

Ne), 

xb’
ne = xb

ne  - <xb> / (Ne-1)1/2, ne =1, Ne.

xb’ of dimension K+1 (time) x M (3D variables) x N (dim 3D).

(Liu et al, 2008, 2009 ; Buehner et al, 2010 ; Lorenc, 2012 ;

 Desroziers et al 2014).
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■ 4D covariances from an ensemble of trajectories.

■ Improved realism of 4D background error covariances
(anisotropies, non linear evolution including all physical processes).

■ No need to develop and maintain an adjoint model in this case.
- Especially important for AROME.

■ Pursue within the variational framework
- Global assimilation of all available observations, 
  distributed in space and in time.

■ Introduces additional levels of parallelism (space, time, ensemble).

4DEnVar
Variational analysis based on a 4D Ensemble
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