Data assimilation in meteorology

Loïk Berre Météo-France/CNRS CNRM/GAME, Toulouse)

00

Plan of the talk

- Numerical Weather Prediction (NWP) and Data Assimilation (DA)
- In-situ observations and remote sensing
- Error Covariances and Ensemble DA

 A posteriori diagnostics (observation-minus-forecast departures)

1. Numerical Weather Prediction

and Data Assimilation

What will be the weather tomorrow ?

Bjerknes (1904) :

In order to do a good forecast, we need to :

- know the atmospheric evolution laws (~ modeling);
- know the atmospheric state at initial time (~ data assimilation).

Numerical Weather Prediction at Météo-France (in collaboration with e.g. ECMWF)

Global model (Arpège) : DX ~ 10-60 km

Arome: DX ~ 2.5 km

Equations of hydrodynamics and physical parametrizations (radiation, convection,...) to predict the evolution of temperature, wind, humidity, ...

Data that are assimilated in NWP models

Spatial coverage and density of observations

Data assimilation for NWP : illustration

The data assimilation cycle

Memory of DA system is updated ~ continuously

Linear estimation of model state (1)

- BLUE analysis equation : x^a = (I-KH) x^b + K y^a
- H = observation operator = projection from model to observation space (e.g. spatial interpolation, radiative transfer, NWP model).
- K = observation weights :

 $K = BH^{T} (HBH^{T} + R)^{4}$ H K = (I + R (HBH^{T})^{4})^{4}

- ⇒ ~ ratio between background error covariances (matrix B) and observation error covariances (matrix R).
- ⇒ Accounts for relative accuracy of observations, and for spatial structures of background errors.

Analysis increment equation :

 $x^{a} - x^{b} = K (y^{o} - H x^{b})$ $\delta x = K d$

Single-observation case (with uniform variances) :

 $\delta x(j) = cor^{b}(i,j) (1+(\sigma^{0}/\sigma^{b})^{2})^{-1} \delta y(i)$

- ⇒ Filtering of observed information, as function of obs/bkd error variance ratios.
- ⇒ Spatial propagation of observed information, as function of background error correlations.

 \Rightarrow relative accuracies of observations and background, and characteristic spatial scales of bkd errors are accounted for.

Impact of one surface pressure observation on the wind analysis (2D)

 \Rightarrow multivariate couplings (ex: pressure/wind) are also accounted for.

Divergence/humidity couplings

(Berre 2000, Montmerle et al 2006)

- Size of B is huge : square of model size $\sim (10^8)^2 \sim 10^{16}$.
- \Rightarrow error covariances need to be estimated, simplified and modeled.
- Matrices too large to be inverted, but equivalent to minimize distance J(x⁰) to x^b and y⁰ (4D-Var) without explicit matrix inversions (e.g. Talagrand and Courtier 1987).
- Non linear features accounted for in calculation of departures between y^o and H(x^b), and in iterative applications of 4D-Var.

Principle of 4D-VAR assimilation (e.g. Talagrand and Courtier 1987, Rabier et al 2000)

Analysis increment (BLUE equation) :
 x & x⁰ - x⁰ = K (y⁰ - H x⁰) = K d

but **K** is difficult to handle explicitly in a real size system.

- Variational formulation : cost function : J(δx) = δx^T B⁻¹ δx + (d-H δx)^T R⁻¹ (d-H δx) minimised when gradient J'(δx)=0 (equivalent to BLUE).
- Computation of J': development and use of adjoint operators (transpose).
- Generalized observation operator *H* : includes NWP model *M*.
- Cost reduction : analysis increment δx can be computed at low resolution (Courtier, Thépaut et Hollingsworth, 1994)

Importance of preconditioning

- Some gradient directions have much larger amplitudes than others : problem of "narrow valley" linked to the metric of x.
- Use a change of variable such as J becomes nearly "circular": much faster convergence.

2. In-situ observations and

remote sensing data

Observation networks in meteorology: in situ measurements

Observation networks in meteorology: satellite data

Constellation of polar orbiting or geostationary satellites

What is measured by satellite sensors ?

Sensors do not measure directly atmospheric temperature and humidity, but electromagnetic radiation : brightness temperature or radiance.

Depending on wave length (or frequency), information on gas concentration or physical properties (temperature or pressure or humidity) of atmosphere.

 \Box Observations in atmospheric windows \rightarrow information on surface.

What is measured by satellite sensors ?

Passive measures

(no energy emitted from instrument)

Measures natural radiation emitted by Earth/Atmosphere from Sun origin

Active measures

(energy emitted from instrument)

Radiation emitted by satellite and then reflected or diffused by Earth/Atmosphere

Example of active remote sensing

GPS radio occultation:

- Low-Earth Orbit satellites receive a signal from a GPS satellite.
- The signal passes through the atmosphere and gets refracted along the way.
- The magnitude of the refraction depends on temperature, moisture and pressure.
- The relative position of GPS and LEO changes over time => vertical scanning of the atmosphere.

GPS stations of Météo France: Toulouse and Guipavas

- Propagation of GPS signal is slowed by atmosphere (dry air and water vapour)
- More than 500 GPS stations over Europe provide an estimation of Zenith Total Delay (ZTD) in real time to weather centres.
 - All weather instrument
 - High temporal resolution

They send out a microwave signal towards a sea target.

The fraction of energy returned to the satellite depends on wind speed and direction.

=> Measurements of near surface wind over the ocean, through backscattering of microwave signal reflected by waves.

Passive remote sensing

Only natural sources of radiation (sun, earth...) are involved, and the sensor is a simple receiver, « passive ».

IASI, infra-red interferometer developed by CNES and EUMETSAT

METEO FRANCE Toujours un temps d'avance

Number of observations used in ARPEGE (global DA at Météo-France)

Evolution des cumuls mensuels de nombre d'observations utilisées par type d'observation

e

Radar network in France

- 24 radars (17 Doppler C-Band, every 15 minutes)
- Observations (Z, Vr, status) archived at 1km resolution

Observations assimilated as

profiles in the model

Pixel altitude is computed using a constant refractivity index along the path (effective radius approximation)

Toujours un temps d'avance

Assimilation of radar radial winds

Wind gust at 10 m (kt) Forecast +1h (19 UTC)

OBS

Thursday 8 November 2007 18UTC PARIS Forecast t+1 VT: Thursday 8 November 2007 19UTC 10m **

Inversion method of reflectivity profiles

Assimilation of reflectivities in AROME : Method 1D + 3D-Var : general algorithm

Case 7/8 october: South-East

Comparison of 3h FORECASTS between REFL runs and

CONTROL runs: line of heavy is well analysed.

Toujours un temps d'avance

3. Error Covariances and

Ensemble Data Assimilation

Observation weights and Error covariances

BLUE analysis equation :

 x^{α} = (I-KH) x^{β} + K y^{α}

• K = observation weights :

 $\mathbf{K} = \mathbf{B}\mathbf{H}^{\mathsf{T}} (\mathbf{H}\mathbf{B}\mathbf{H}^{\mathsf{T}} + \mathbf{R})^{\mathsf{H}}$

⇒ ~ ratio between background error covariances (matrix B) and observation error covariances (matrix R).

- The true atmospheric state is never exactly known.
- Use observation-minus-forecast departures :

$$y_0 - H x_b \sim (y_0 - H x_t) + (H x_t - H x_b)$$

$$\sim e_0 - H e_b$$

to estimate some average features (e.g. variances, correlations) of R and B, using assumptions on spatial structures of errors.

 Use ensemble to simulate the error evolution and to estimate complex forecast error structures.

Ensemble assimilation (EnDA = EnVar, EnKF, ...): simulation of the error evolution

Ehrendorfer 2006 ; Berre et al 2006)

- Analysis state (BLUE, K = 4D-Var gain matrix): $x_a = (I-KH) \times_b + K y_o$
- True state :

 $x_{+} = (I-KH) x_{+} + K H x_{+}$

Analysis error :

$$e_a = x_a - x_t$$

i.e.

 $e_a = (I-KH) e_b + K e_o$

Analysis perturbation equation

Perturbed analysis :

$$x'_{a} = (I-KH) x'_{b} + K y'_{o}$$

Unperturbed analysis :

 $x_a = (I-KH) x_b + K y_o$

Analysis perturbation :

$$\varepsilon_a = \mathbf{x}'_a - \mathbf{x}_a$$

i.e.

 $\varepsilon_{a} = (I-KH) \varepsilon_{b} + K \varepsilon_{o}$

 $Var(e_b) = 1/(N-1) \sum_{n} (x'_b(n) - x'_b(mean))^2$

Connexion between large errors and intense weather (Klaus storm, 24/01/2009, 00/03 UTC)

Spatial structure of sampling noise for variances (Raynaud et al 2009, Berre and Desroziers 2010)

Employ filtering in order to extract large scale signal, and remove small scale sampling noise.

"OPTIMIZED" SPATIAL FILTERING

OF THE VARIANCE FIELD

(Berre et al 2007,2010, Raynaud et al 2008,2009)

(a) Correlations in P^b, 25-member ensemble obs location (b) Correlations in P^b, 200-member ensemble (c) Gaspari & Cohn correlation function (d) Correlations in P^{b} after localization, 25-member ensemble

-.8-.6-.4-.2 .2 .4 Correlation

Schur filtering of long-distance correlations

from Hamill, Chapter 6 of "Predictability of Weather and Climate"

Flow-dependent background error correlations using EnDA and wavelets

Wavelet-implied horizontal length-scales (in km),

for wind near 500 hPa, averaged over a 4-day period.

(Varella et al 2013)

4. A posteriori diagnostics

(observation-minus-background departures)

RADIOSONDE OBSERVATIONS

Covariances of innovations

Innovation = observation-minus-background :

$$y_{o} - H x_{b} = y_{o} - H x_{t} + H x_{t} - H x_{b}$$
$$= e_{o} - H e_{b}$$

Innovation covariances :

 $\mathsf{E}[(y_{\circ}-\mathsf{H}x_{\mathsf{b}})(y_{\circ}-\mathsf{H}x_{\mathsf{b}})^{\mathsf{T}}] = \mathsf{R} + \mathsf{H}\mathsf{B}\mathsf{H}^{\mathsf{T}}$

assuming that $E[(e_{o})(He_{b})^{T}]=0$.

(e.g. Hollingsworth and Lönnberg 1986)

(From Bouttier and Courtier, ECMWF)

- Provides estimates in observation space only.
- A good quality data dense network is needed.
- Assumption that observation errors are « white ».
- An objective source of information on B.

Diagnostics in observation space

Validation of flow-dependent estimates of errors in HIRS 7 space (28/08/2006 00h) (Berre et al 2007, 2010)

Ensemble estimate

of error std-devs

« Observed » error std-devs

(Desroziers et al 2005)

=> model error estimation.

Use of innovations to estimate model error covariances Q=cov(e_m)

• Forecast error equation :

$$e_f = M e_a + e_m$$

- Use ensemble assimilation (before adding model perturbations) to estimate evolved analysis error covariances (MAM^T).
- Use innovation diagnostics to estimate « B » (or at least HBH^T) (forecast error covariances).
- Estimate Q by comparing B and MAM^T (e.g. Daley 1992).
- Represent model error by inflating forecast perturbations in accordance with Q estimate.

Model error in M.F. ensemble 4D-Var (Raynaud et al 2012, QJRMS)

Model error representations

- Additive inflation (temporally uncorrelated): random draws from estimated model error covariances.
- Multiplicative inflation (temporally correlated): mult. amplification of forecast perturbations.
- Multi-model ensembles (difficult to maintain ?):
 use different models to reflect model uncertainties.
- Stochastic physics : perturbations with amplitudes proportional to physical tendencies.
- SKEB : backscattering of small scale energy dissipated by horizontal diffusion.
- ⇒ Comparison by Houtekamer et al 2009 : inflation is the most « efficient » approach.

- Data Assimilation (DA) is vital for weather forecasting (NWP).
- Observations are very diverse in type, density and quality.
- 4D-Var for temporal and non linear aspects.
- Ensemble DA methods for error simulation and covariance estimation.
- Sampling noise issues and filtering techniques.
- A posteriori diagnostics for validation of error covariances, and for estimation of model errors.

Some references

- Desroziers, G., Berre, L., Chapnik, B. and Poli, P. (2005), Diagnosis of observation, background and analysis-error statistics in observation space. Q.J.R. Meteorol. Soc., 131: 3385-3396.
- Fisher, M., 2003: Background error covariance modeling. Proc. ECMWF Seminar on "Recent Developments in Data Assimilation for Atmosphere and Ocean", 8-12 Sept 2003, Reading, U.K., 45-63.
- Hollingsworth, A. and Lönnberg, P., 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111-136
- Houtekamer, P. L., Louis Lefaivre, Jacques Derome, Harold Ritchie, Herschel L. Mitchell, 1996: A System Simulation Approach to Ensemble Prediction. Mon. Wea. Rev., 124, 1225– 1242.
- Houtekamer, P. L., Herschel L. Mitchell, Xingxiu Deng, 2009: Model Error Representation in an Operational Ensemble Kalman Filter. Mon. Wea. Rev., 137, 2126–2143.
- Rabier et al 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc., 126, 1143–1170.
- Talagrand, O. and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311-1328.
- Berre, L., Stefănescu, S., Belo Pereira, M.. The representation of the analysis effect in three error simulation techniques. Tellus A, 58A, pp 196-209.

for your attention

Soundings of atmosphere ?

In micro-waves: absorption par by water vapor, oxygen
Largeur des bandes d'absorption: Pression (altitude) (<
60km): les bandes d'absorption plus larges quand la pression augmente

Les mesures loin (proches) d'une bande d'absorption: information sur les basses (hautes) couches atmosphériques

Spatial filtering of raw ensemble variances

Expansion of the raw variance field V_{raw}:

 $V_{raw} = V_{signal} + V_{noise}$

with $V_{\mbox{\tiny signal}}$ assumed uncorrelated with true signal $V_{\mbox{\tiny signal}}$

Filtering V_{raw} through linear regression formalism :

$$V_{signal} \sim V_{filtered} = F \quad V_{raw}$$
$$= cov(V_{signal}, V_{raw})/var(V_{raw}) \quad V_{raw}$$
$$= 1/(1+var(V_{signal})/var(V_{noise})) \quad V_{raw}$$

Estimation of signal and noise variances (in spectral space):

$$var(V_{noise}) = 2/(N-1) B^* \circ B^*$$

$$var(V_{signal}) = var(V_{raw}) - var(V_{noise})$$

=> F = low-pass spectral filter, equivalent to local spatial averaging of FRANCE

Modelling of background error covariances

- Size of B is far too large.
- Can't be computed explicitly (nor stored in memory).
- \Rightarrow Model B as product of sparse operators.

 $B^{1/2} = L S C_{u}^{1/2}$

L: ~ cross-covariances (~sparse regressions),

S : diagonal matrix of standard deviations.

C_u: sparse model of auto-correlations (e.g. diagonal matrix in spectral space).

 $\mathbf{B} = \mathbf{L} \mathbf{S} \mathbf{C}_{\mathbf{u}} \mathbf{S} \mathbf{L}^{\mathsf{T}}$

Covariances of residuals

- Analysis increment : $H \delta x = HK (y_{o} Hx_{b})$ with $HK = HBH^{T} (HBH^{T} + R)^{-1}$
- Covariances between $H\delta x$ and omb:

 $\mathsf{E}[(\mathsf{H} \ \delta \mathsf{x})(\mathsf{y}_{\circ} - \mathsf{H} \mathsf{x}_{\mathsf{b}})^{\mathsf{T}}] = \mathsf{H}\mathsf{K} \ \mathsf{E}[(\mathsf{y}_{\circ} - \mathsf{H} \mathsf{x}_{\mathsf{b}})(\mathsf{y}_{\circ} - \mathsf{H} \mathsf{x}_{\mathsf{b}})^{\mathsf{T}}]$

~ HK (HB_tH^T+R_t)

~ $HBH^{T}(HBH^{T}+R)^{-1}(HB_{+}H^{T}+R_{+})$

 $\sim HB_{+}H^{T}$

either assuming K ~ optimal,

or, for averaged $\sigma_{\!\scriptscriptstyle b},$ assuming that structures

in B,R are much different. (Desroziers et al 2005)