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Plan of the talk

 Numerical Weather Prediction (NWP)
and Data Assimilation (DA)

 In-situ observations and remote sensing

 Error Covariances and Ensemble DA

 A posteriori diagnostics
(observation-minus-forecast departures)



1. Numerical Weather Prediction

and Data Assimilation



The two main ingredients 
of weather forecasting

What will be the weather tomorrow ?

Bjerknes (1904) : 

In order to do a good forecast, we need to :

 know the atmospheric evolution laws
(~ modeling) ;

 know the atmospheric state at initial time 
(~ data assimilation).



Global model (Arpège) : DX ~ 10-60 km

Numerical Weather Prediction at Météo-France
(in collaboration with e.g. ECMWF)

Arome : DX ~ 2.5 km

Equations of hydrodynamics and physical parametrizations (radiation, convection,…) 
to predict the evolution of temperature, wind, humidity, …



GPSRO

GPS sol

IASI, AIRS

SEVIRI CSR

Data that are assimilated in NWP models

ERS, 
ASCAT

Vents 
MODIS 



Spatial coverage and density
of observations

SURFACE DATA GEOSAT. WINDS

SCATTEROMETER AIRCRAFT DATA



Data assimilation for NWP :
illustration

Observations yo

Analyzed state xa at t0 Forecast state xf at t0 + 48h

Background xb = M (xa -)



The data assimilation cycle

Initial 
time

12 h 18 h 00 h 06 h

ANALYSIS ANALYSIS ANALYSIS ANALYSIS

6h forecast 6h forecast 6h forecast

4-day 
forecast

Memory of DA system is updated ~ continuously



Linear estimation of model state (1)

 BLUE analysis equation : xa = (I-KH) xb + K yo

 H = observation operator = projection from model to observation space

(e.g. spatial interpolation, radiative transfer, NWP model).

 K = observation weights :

K = BHT ( HBHT + R )-1

   H K = ( I + R (HBHT )-1 )-1

⇒ ~ ratio between background error covariances (matrix B)

                  and observation  error covariances (matrix R).

⇒ Accounts for relative accuracy of observations,

and for spatial structures of background errors.



Linear estimation of model state (2)

 Analysis increment equation :

xa - xb = K ( yo - H xb )

       δx = K d

 Single-observation case (with uniform variances) :

δx(j) = corb(i,j) (1+(σo/σb)²)-1 δy(i)

⇒ Filtering of observed information, 
as function of obs/bkd error variance ratios.

⇒ Spatial propagation of observed information, 
as function of background error correlations.



⇒ relative accuracies of observations and background, and
    characteristic spatial scales of bkd errors are accounted for.

Horizontal position

Impact of one observation (1D) :
 filtering and spatial propagation



⇒ multivariate couplings (ex: pressure/wind) are also accounted for.

Impact of one surface pressure observation
 on the wind analysis (2D)



Divergence/humidity couplings

(Berre 2000, Montmerle et al 2006)



Linear estimation of model state (3)

 Size of B is huge : square of model size ~ (108)² ~ 1016.

⇒ error covariances need to be estimated, simplified and modeled.

 Matrices too large to be inverted, but

equivalent to minimize distance J(xa) to xb and yo (4D-Var)

without explicit matrix inversions (e.g. Talagrand and Courtier 1987).

 Non linear features accounted for

in calculation of departures between yo and H(xb),

and in iterative applications of 4D-Var.



Principle of 4D-VAR assimilation
(e.g. Talagrand and Courtier 1987, Rabier et al 2000)

9h 12h 15h

Fenêtre d’assimilation

Jb
Jo

Jo
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obs

obs

obs

analyse
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xb
prévision
corrigée

ancienne
prévision



Implementation of 4D-Var

                  
 Analysis increment (BLUE equation) : 

	 	 	 	 	 δx = xa - xb = K ( yo - H xb ) = K d

but K is difficult to handle explicitly in a real size system.

 Variational formulation :

cost function : J(δx) = δxT B-1 δx + (d-H δx)T R-1 (d-H δx)

minimised when gradient J’(δx)=0 (equivalent to BLUE).

 Computation of J’: development and use of adjoint operators (transpose).

 Generalized observation operator H  : includes NWP model M.

 Cost reduction : 
analysis increment δx can be computed at low resolution
(Courtier, Thépaut et Hollingsworth, 1994)



Schematic representation of 
J(x) = (x – x

b
)T B-1 (x – x

b
) + (y – H[x])T R-1 (y – H[x])

Compromise 
between

background and 
observations



Importance of preconditioning

• Some gradient directions have much larger amplitudes than others : 
problem of “narrow valley" linked to the metric of x.

• Use a change of variable such as J becomes nearly “circular”:
  much faster convergence.

• xa



2. In-situ observations and

remote sensing data



Observation networks in meteorology:
in situ measurements



Constellation of polar orbiting or geostationary satellites

Observation networks in meteorology:
satellite data



What is measured by satellite sensors ?What is measured by satellite sensors ?

 Sensors do not measure directly atmospheric temperature and humidity,
but electromagnetic radiation : brightness temperature or radiance.

 Depending on wave length (or frequency), information on gas concentration or 
physical properties (temperature or pressure or humidity) of atmosphere.

 Observations in atmospheric windows  information on surface. 



Passive measures

(no energy emitted from instrument) 

Active measures

(energy emitted from instrument) 

Measures natural radiation emitted by 
Earth/Atmosphere from Sun origin

Radiation emitted by satellite and 
then reflected or diffused by 
Earth/Atmosphere 

What is measured by satellite sensors ?What is measured by satellite sensors ?



GPS radio occultation:GPS radio occultation:  • Low-Earth Orbit satellites receive a signal 
from a GPS satellite.

• The signal passes through the atmosphere 
and gets refracted along the way.

• The magnitude of the refraction depends on 
temperature, moisture and pressure.

• The relative position of GPS and LEO 
changes over time => vertical scanning of the 
atmosphere.

Example of active remote sensingExample of active remote sensing



 Propagation of GPS signal is slowed by atmosphere (dry air and water vapour) 

 More than 500 GPS stations over Europe provide an estimation of Zenith Total Delay 
(ZTD) in real time to weather centres. 

– All weather instrument

– High temporal resolution

GPS stations of Météo France: Toulouse and GuipavasGPS stations of Météo France: Toulouse and Guipavas



ScatterometersScatterometers  

They send out a microwave signal towards a sea target.
The fraction of energy returned to the satellite depends on wind speed and direction.

Smooth sea

Emitted signal
Reflected signal

Small waves Larger waves

=> Measurements of near surface wind over the ocean, 
through backscattering of microwave signal reflected by waves.



Only natural sources of radiation (sun, earth...) are involved, 
and the sensor is a simple receiver, « passive ».

Atmosphere in Parallel Plan, no diffusion, Atmosphere in Parallel Plan, no diffusion, 
specular surfacespecular surface

Model outputs for 
RT: T, Q forecast or 
radiosondes or 
reanalyses
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IASI, infra-red interferometer
developed by CNES and EUMETSAT

IASI offers a very high spectral resolution

Temperature ozone Water vapor



Number of observations used in ARPEGE 
(global DA at Météo-France)



• 24 radars (17 Doppler C-Band, 
every 15 minutes) 

• Observations (Z, Vr, status) 
archived at 1km resolution

•.•.•.•.

•.•.•.•.

•.•.•.•.•.•.•.•.•.•.•.•
.

0 100 km

10 km Observations assimilated as 

profiles in the model

Pixel altitude is computed using a 
constant refractivity index along the path 
(effective radius approximation)

Radar network in France

Doppler Radar



CONTROL 
(no Radar)

RADAR

Wind gust at 10 m (kt)
Forecast +1h (19 UTC)

OBS

Assimilation of radar
radial winds



Inversion method of reflectivity profiles

Caumont, 2006:  use model profiles 
in the neighborhood of observations ( )
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Assimilation of reflectivities in AROME : 
Method 1D + 3D-Var : general algorithm

Background profiles 
of Relative Humidity

Hydrometeors 
from background Simulated 

reflectivities

1D inversion

Observed 
reflectivities   
 

3D-Var

Pseudo-observation 
of relative humidity



Radar

 03h

Radar

 06h

Radar

 09h

r3 – REFL

r6 – REFL

Case 7/8 october: South-East

Comparison of 3h FORECASTS between REFL runs and 

CONTROL runs: line of heavy is well analysed.

r3 – CONTROL

r6 – CONTROL



3. Error Covariances and

Ensemble Data Assimilation



Observation weights and Error covariances

 BLUE analysis equation :

xa = (I-KH) xb + K yo

 K = observation weights :

K = BHT ( HBHT + R )-1

⇒ ~ ratio between background error covariances (matrix B)

                  and observation  error covariances (matrix R).



How can we estimate error covariances ?

 The true atmospheric state is never exactly known.

 Use observation-minus-forecast departures :
   

            yo - H xb   ~   (yo - H xt ) + ( H xt - H xb )

~   eo - H eb 

to estimate some average features (e.g. variances, correlations)

of R and B, using assumptions on spatial structures of errors.

 Use ensemble to simulate the error evolution and 

to estimate complex forecast error structures.



Explicit observation perturbations, and
background perturbations (cycling + model error).

(Houtekamer et al 1996; Fisher 2003 ;
Ehrendorfer 2006 ; Berre et al 2006)

Ensemble assimilation (EnDA = EnVar, EnKF, …) :
 simulation of the error evolution

Flow-dependent B

ε f = M εa + εm

εa



Analysis error equation

 Analysis state (BLUE, K = 4D-Var gain matrix) :
xa = (I-KH) xb + K yo

 True state :
   xt = (I-KH) xt + K Hxt

 Analysis error :
ea = xa – xt

i.e.
ea = (I-KH) eb + K eo



Analysis perturbation equation

 Perturbed analysis :
x’a = (I-KH) x’b + K y’o

 Unperturbed analysis :
xa = (I-KH) xb + K yo

 Analysis perturbation :
εa = x’a – xa

i.e.
εa = (I-KH) εb + K εo



Estimation of background error variances
from ensemble spread

Var(eb) = 1/(N-1) Σn ( x’b(n) - x’b(mean) )² 



Background error 
standard deviations

 Connexion between large errors and intense weather 
( Klaus storm, 24/01/2009, 00/03 UTC )

Mean sea level 
pressure field



εb  = B1/2 η
η ~  N (0,I)

N = 50 members

L( εb ) = 200 km

Spatial structure of sampling noise for variances 
 (Raynaud et al 2009, Berre and Desroziers 2010)

⇒ Employ filtering in order to extract large scale signal,

and remove small scale sampling noise.

Ve (Ve)T  =  2/(N-1)  B* ° B*



(Raynaud et al 2008a)(Raynaud et al 2008a)

““OPTIMIZED” SPATIAL FILTERING OPTIMIZED” SPATIAL FILTERING 

OF THE VARIANCE FIELD OF THE VARIANCE FIELD 

                                                         
 

Vb
*
  ~ F Vb

where   F = signal/(signal+noise)

                     

« TRUE » VARIANCES FILTERED VARIANCES VARIANCES (N = 6)

RAW VARIANCES VARIANCES (N = 6) (Berre et al 2007,2010, Raynaud et al 2008,2009)



Schur filtering of
long-distance correlations

from Hamill, Chapter 6 of  “Predictability of Weather and Climate”

obs
location



Flow-dependent background error correlations
using EnDA and wavelets

Wavelet-implied horizontal length-scales (in km), 

for wind near 500 hPa, averaged over a 4-day period.

(Varella et al 2013)



4. A posteriori diagnostics

(observation-minus-background departures)



RADIOSONDE OBSERVATIONS



Covariances of innovations

 Innovation = observation-minus-background :
	 	 	  yo – H xb  = yo – H xt + H xt - H xb

          = eo – H eb

 Innovation covariances :
 E[(yo–Hxb)(yo–Hxb)T] =  R + HBHT

assuming that E[(eo)(Heb)T]=0.

(e.g. Hollingsworth and Lönnberg 1986)



Covariances of innovations



Innovation method : properties

 Provides estimates in observation space only.

 A good quality data dense network is needed.

 Assumption that observation errors are « white ».

 An objective source of information on B.





Validation of flow-dependent estimates of errors 
in HIRS 7 space (28/08/2006 00h) (Berre et al 2007, 2010)

Ensemble estimate

of error std-devs

« Observed » error std-devs

cov( H dx , dy ) ~ H B HT

(Desroziers et al 2005)

=> model error estimation. 



Use of innovations to estimate
model error covariances Q=cov(em)

 Forecast error equation :

 ef = M ea + em

 Use ensemble assimilation (before adding model perturbations)
to estimate evolved analysis error covariances ( MAMT ).

 Use innovation diagnostics to estimate « B » (or at least HBHT)
( forecast error covariances ).

 Estimate Q by comparing B and MAMT (e.g. Daley 1992).

 Represent model error by inflating forecast perturbations
in accordance with Q estimate.



Model error in M.F. ensemble 4D-Var
 (Raynaud et al 2012, QJRMS) 

Ensemble-based estimate,
model error neglected

Ensemble-based estimate,
model error accounted for

Observation-based estimate
Vertical profiles of 

forecast errors (K)



Model error representations
 Additive inflation (temporally uncorrelated) :

random draws from estimated model error covariances.

 Multiplicative inflation (temporally correlated) :
mult. amplification of forecast perturbations.

 Multi-model ensembles (difficult to maintain ?):
use different models to reflect model uncertainties.

 Stochastic physics : perturbations with
amplitudes proportional to physical tendencies.

 SKEB : backscattering of small scale energy 
dissipated by horizontal diffusion.

⇒ Comparison by Houtekamer et al 2009 : 
inflation is the most « efficient » approach.



Conclusions

 Data Assimilation (DA) is vital for weather forecasting (NWP).

 Observations are very diverse in type, density and quality.

 4D-Var for temporal and non linear aspects.

 Ensemble DA methods for error simulation and covariance estimation.

 Sampling noise issues and filtering techniques.

 A posteriori diagnostics for validation of error covariances, 

and for estimation of model errors.
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Thank you

for your attention
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Soundings of atmosphere ?Soundings of atmosphere ?

•  In micro-waves: absorption par by water vapor, oxygenIn micro-waves: absorption par by water vapor, oxygen
•  Largeur des bandes d’absorption: Pression (altitude) (< Largeur des bandes d’absorption: Pression (altitude) (< 
60km)60km): les bandes d’absorption plus larges quand la pression : les bandes d’absorption plus larges quand la pression 
augmenteaugmente
Les mesures loin (proches) d’une bande d’absorption: Les mesures loin (proches) d’une bande d’absorption: 
information sur les basses (hautes) couches atmosphériquesinformation sur les basses (hautes) couches atmosphériques

•Fréquence (GHz)

What is measured by satellite sensors ?What is measured by satellite sensors ?



Spatial filtering of raw ensemble variances

 Expansion of the raw variance field Vraw :

Vraw = Vsignal + Vnoise 

with Vsignal assumed uncorrelated with true signal Vsignal

 Filtering Vraw through linear regression formalism :

        Vsignal ~ Vfiltered   =  F   Vraw 

= cov(Vsignal,Vraw)/var(Vraw)       Vraw 

= 1/(1+var(Vsignal)/var(Vnoise))   Vraw 

 Estimation of signal and noise variances (in spectral space) :

var(Vnoise) = 2/(N-1) B* ° B* 

var(Vsignal) = var(Vraw ) – var(Vnoise)
 

=> F = low-pass spectral filter, equivalent to local spatial averaging.



Modelling of background error covariances 

 Size of B is far too large.

 Can’t be computed explicitly (nor stored in memory).

⇒ Model B as product of sparse operators.



B as product of sparse operators 

B1/2 = L S Cu
1/2 

L : ~ cross-covariances (~sparse regressions),

S : diagonal matrix of standard deviations.

Cu : sparse model of auto-correlations

(e.g. diagonal matrix in spectral space).

B = L S Cu S LT



Covariances of residuals

 Analysis increment :  H δx = HK (yo–Hxb) 

          with HK = HBHT (HBHT+R)-1

 Covariances between Hδx and omb :
  E[(H δx)(yo–Hxb)T] = HK E[(yo–Hxb)(yo–Hxb)T] 

~ HK (HBtHT+Rt) 

~ HBHT (HBHT+R)-1 (HBtHT+Rt) 

~ HBtHT

either assuming K ~ optimal, 
or, for averaged σb, assuming that structures 

in B,R are much different. (Desroziers et al 2005)
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