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Plan of the talk

� Numerical Weather Prediction (NWP)

and Data Assimilation (DA)

� Observations (in-situ and remote sensing)

� Error covariance estimation



1. Numerical Weather Prediction

and Data Assimilation



The two main ingredients 
of weather forecasting

What will be the weather tomorrow ?

Bjerknes (1904) : 

In order to do a good forecast, we need to :

� know the atmospheric evolution laws
(~ modeling) ;

� know the atmospheric state at initial time 
(~ data assimilation).



Global model (Arpège) : DX ~ 7-40 km

Numerical Weather Prediction at Météo-France
(in collaboration with e.g. ECMWF)

Arome : DX ~ 1.3 km

Equations of hydrodynamics and physical parametrizations (radiation, convection,…) 
to predict the evolution of temperature, wind, humidity, …



GPSRO

GPS sol

IASI, AIRS

SEVIRI CSR

Data that are assimilated in NWP models

ERS, 
ASCAT

Vents 
MODIS 



Spatial coverage and density
of observations

SURFACE DATA GEOSAT. WINDS

SCATTEROMETER AIRCRAFT DATA



Temporal cycling of data assimilation : 
succession of analyses and forecasts
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Linear estimation of model state (1)

� BLUE analysis equation : xa = (I-KH) x b + K yo

� H = observation operator = projection from model to observation space
(e.g. spatial interpolation, radiative transfer, NWP model).

� K = observation weights :

K = BHT ( HBHT + R )-1

H K = ( I + R (HBHT )-1 )-1

⇒ ~ ratio between background error covariances (matrix B)
and observation error covariances (matrix R).

⇒ Accounts for relative accuracy of observations,
and for spatial structures of background errors.



⇒ multivariate couplings (ex: mass/wind) are also accounted for.

Impact of one observation of temperature
on the wind analysis (2D)



Linear estimation of model state (2)

� Size of B is huge : square of model size ~ (109)² ~ 1018.

⇒ error covariances need to be estimated, simplified and modeled.

� Matrices too large to be inverted, but
equivalent to minimize distance J(xa) to xb and yo (4D-Var)

without explicit matrix inversions (e.g. Talagrand and Courtier 1987).

� Non linear features accounted for
in calculation of departures between yo and H(xb),

and in iterative applications of 4D-Var.



Principle of 4D-VAR assimilation
(e.g. Talagrand and Courtier 1987, Rabier et al 2000)
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Implementation of 4D-Var

� Analysis increment (BLUE equation) : 

δδδδx = xa - xb = K ( yo - H xb ) = K δδδδy
but K is difficult to handle explicitly in a real size system.

� Variational formulation :

cost function : J(δδδδx) = δδδδxT B-1 δδδδx + (δδδδy - H δδδδx)T R-1 (δδδδy - H δδδδx)

minimised when gradient J’(δδδδx)=0 (equivalent to BLUE).

� Computation of J’: development and use of adjoint operators (transpose).

� Generalized observation operator H : includes NWP model M.

� Cost reduction :
analysis increment δδδδx can be computed at low resolution.
(Courtier, Thépaut et Hollingsworth, 1994)



Schematic representation of 

J(x) = (x – x b)T B-1 (x – xb) + (y – H[x]) T R-1 (y – H[x]) �

Compromise between
background and 

observations



Importance of preconditioning

• Some gradient directions have much larger amplitudes than others
: problem of “narrow valley" linked to the metric of x.

• Use a change of variable such as J becomes nearly “circular”:
much faster convergence.

xa



2. In-situ observations and

remote sensing data



Observation networks in meteorology:
in situ measurements



Observation networks in meteorology:
satellite data

Constellation of polar orbiting or geostationary sa tellites



What is measured by satellite sensors ?

� Sensors do not measure directly atmospheric temperature and humidity,
but electromagnetic radiation : brightness temperature or radiance.

� Depending on wave length (or frequency), information on gas concentration or 
physical properties (temperature or pressure or humidity) of atmosphere.

� Observations in atmospheric windows � information on surface.



Passive measures

(no energy emitted from instrument) 

Active measures

(energy emitted from instrument)

Measures natural radiation emitted by
Earth/Atmosphere from Sun origin

Radiation emitted by satellite and 
then reflected or diffused by 
Earth/Atmosphere 

What is measured by satellite sensors ?



GPS radio occultation: • Low-Earth Orbit satellites receive a signal 
from a GPS satellite.

• The signal passes through the atmosphere 
and gets refracted along the way.

• The magnitude of the refraction depends on 
temperature, moisture and pressure.

• The relative position of GPS and LEO 
changes over time => vertical scanning of the 
atmosphere.

Example of active remote sensing



� Propagation of GPS signal is slowed by atmosphere (dry air and water vapour).

� More than 500 GPS stations over Europe provide an estimation of Zenith Total Delay 
(ZTD) in real time to weather centres. 

– All weather instrument

– High temporal resolution

GPS stations of Météo France: Toulouse and Brest



Scatterometers

They send out a microwave signal towards a sea target.
The fraction of energy returned to the satellite depends on wind speed and direction.

Smooth sea

Emitted signal

Reflected signal

Small waves Larger waves

=> Measurements of near surface wind over the ocean, 
through backscattering of microwave signal reflected by waves.



Only natural sources of radiation (sun, earth...) are involved, 
and the sensor is a simple receiver, « passive ».

AtmosphAtmospheere in re in ParallelParallel Plan, no diffusion, Plan, no diffusion, 
specularspecular surfacesurface

Radiative transfer 
equation dependent
on T, Q :

Observation operator 
for satellite 
radiances.
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IASI, infra-red interferom eter
developed by CNES and EUMETSAT

IASI offers a very high spectral resolution

Temperature ozone Water vapor



Number of observations used in ARPEGE 
(global DA at Météo-France)



• 24 radars (17 Doppler C-Band,      
every 15 minutes, at 1 km resolution).

• Observations :

reflectivities Z (related to precipitation), 

radial winds Vr (doppler effect : modified
frequency of signal, when the target is
moving => wind observation).

•.•.•.•.

•.•.•.•.

•.•.•.•.•.•.•.•.•.•.•.•
.

0 100 km

10 km Observations assimilated as 
profiles in the model

Pixel altitude is computed using a 
constant refractivity index along the path 
(effective radius approximation)

Radar network in France

Doppler Radar



CONTROL 
(no Radar)

RADAR

Wind gust at 10 m (kt)
Forecast +1h (19 UTC)

OBS

Assimilation of radar
radial winds



Inversion method of reflectivity profiles

Caumont, 2006:  use model profiles 
in the neighborhood of observations ( )
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Radar

03h

Radar

06h

Radar

09h

r3 – REFL

r6 – REFL

Case 7/8 october: South-East

Comparison of 3h FORECASTS                     
between REFL runs and CONTROL runs: 

line of heavy precipitation is well analysed in REFL.

r3 – CONTROL

r6 – CONTROL



3. Error covariance estimation



Observation weights and error covariances

� BLUE analysis equation :

xa = (I-KH) x b + K yo

� K = observation weights :

K = BHT ( HBHT + R )-1

⇒ Need to estimate B and R, before specifying them.



How can we estimate error covariances ?

� The true atmospheric state is never exactly known.

� Use observation-minus-background departures 
to estimate some average features (e.g. variances, correlations)
of R and B, using assumptions on spatial structures of errors.

� Use ensemble to simulate the error evolution and 
to estimate complex background error structures.



RADIOSONDE OBSERVATIONS



Covariances of innovations

� Innovation = observation-minus-background :

yo – H xb = yo – H xt + H xt - H xb

= eo – H eb

� Innovation covariances :

E[(yo–Hxb)(yo–Hxb)T] =  R + HBHT

assuming that E[(eo)(Heb)T]=0.

(e.g. Hollingsworth and Lönnberg 1986)



Covariances of innovations



Covariances of analysis residuals

δδδδy = y – H(xb) (innovation)

H δδδδx = H(xb) – H(xa) (increment)

E[H δδδδx δδδδyT]  = HBHT

E[(y – H(xa)) δδδδyT]  = R

y (observation)

ea

eo

x* 
(true state)

xb

(background)

xa

δδδδy

δδδδx

(Desroziers, Berre et al 2005)

eb



Innovation method : properties

� Provides estimates in observation space only.

� A good quality data dense network is needed.

� Assumption that observation errors are « white ».

� An objective source of information on B and R.



Ensemble Data Assimilation :
simulation of error cycling

06h 12h 18h

ea=(I-KH)eb+Keo

ef=Mea+em

(e.g. Houtekamer et al 1996, Fisher 2003, Berre et al 2006)

eb

eo



Estimation of background error variances
from ensemble spread

Var(eb) = 1/(N-1) Σn [ x’b(n) - x’b ]² 



Background error 
standard deviations

Connexion between large errors and intense weather 
( Klaus storm, 24/01/2009, 00/03 UTC )

Mean sea level 
pressure field



εb = B1/2 η
η ~ N (0,I)

N = 50 members

L( εb ) = 200 km

Spatial structure of sampling noise for variances 

⇒ Spatial filtering in order to extract large scale signal,
and remove small scale sampling noise.

Ve (Ve)T =  2/(N-1)  B* ° B*

(e.g. Raynaud et al 2009)



Schur filtering of
long-distance correlations

from Hamill, Chapter 6 of  
“Predictability of Weather and Climate”

Observation
location



Flow-dependent background error correlations
using EnDA and wavelets

Wavelet-implied horizontal length-scales (in km), 
for wind near 500 hPa, averaged over a 4-day period.

(e.g. Fisher 2003, Varella et al 2011)



Conclusions

� Data Assimilation (DA) is vital for weather forecasting (NWP).

� Observations are very diverse in type, density and quality.

� 4D-Var for temporal and non linear aspects.

� Ensemble DA methods for error simulation and covariance estimation.

� Sampling noise issues and filtering techniques.

� Observation-background departures for validation of error covariances, 
and for estimation of model errors.
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