Data assimilation in meteorology

00

Loïk Berre Météo-France/CNRS CNRM

- Numerical Weather Prediction (NWP) and Data Assimilation (DA)
- Observations (in-situ and remote sensing)
- Error covariance estimation and modelling

1. Numerical Weather Prediction

and Data Assimilation

The two main ingredients of weather forecasting

What will be the weather tomorrow ?

Bjerknes (1904) :

In order to do a good forecast, we need to know :

- the atmospheric evolution laws
 (~ modelling) ;
- the atmospheric state at initial time (~ data assimilation).

Numerical Weather Prediction at Météo-France (in collaboration with e.g. ECMWF)

Equations of hydrodynamics and physical parametrizations (radiation, convection,...) to predict the evolution of temperature, wind, humidity, ...

Data that are assimilated in NWP models

Spatial coverage and density of observations

Temporal cycling of data assimilation : succession of analyses and forecasts

State of DA system is updated ~ continuously

FRANCE

Forecast errors, as a function of verification time and analysis date

Forecast errors, as a function of verification time and analysis date

Quasi-linear analysis (BLUE)

- BLUE analysis equation : x^a = x^b + K (y^o H[x^b])
- H = non linear observation operator
 - projection from model space to observation space
 (e.g. spatial interpolation, radiative transfer, NWP model).
- **K** = gain matrix :

$\mathbf{K} = \mathbf{B}\mathbf{H}^{\mathsf{T}} (\mathbf{H}\mathbf{B}\mathbf{H}^{\mathsf{T}} + \mathbf{R})^{-1}$

- with H = tangent linear version of H,
 - **B** = background error covariance matrix,
 - **R** = observation error covariance matrix.

$H K = (I + R (HBH^{T})^{-1})^{-1}$

⇒ Accounts for relative accuracy of observations, and for spatial structures of background errors.

Impact of one observation of temperature on the wind analysis (2D)

 \Rightarrow Typical spatial scales and multivariate couplings (ex: mass/wind) in **B**.

- Analysis equation (BLUE) : x^a = x^b + K (y^o - H[x^b]) = x^b + K δy but K is difficult to handle explicitly in a real size system.
- Variational formulation = minimize distance J to all available information :

cost function : $J(\mathbf{x}) = (\mathbf{x} - \mathbf{x}^{b})^{\top} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^{b}) + (\mathbf{y}^{o} - \mathbf{H}[\mathbf{x}])^{\top} \mathbf{R}^{-1} (\mathbf{y}^{o} - \mathbf{H}[\mathbf{x}])$

minimised when gradient $J'(\mathbf{x})=0$ (equivalent to BLUE).

- Computation of J': development and use of adjoint operators (transpose).
- 4D-Var = use generalized observation operator H : it includes the NWP model M in order to assimilate observations distributed in time.
- Implicit flow-dependent evolution of **B**, through **HBH**^T.

Principle of 4D-VAR assimilation (e.g. Talagrand and Courtier 1987, Rabier et al 2000)

Incremental formulation of 4D-Var

• Full variational formulation :

cost function : $J(\mathbf{x}) = (\mathbf{x} - \mathbf{x}^{b})^{T} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^{b}) + (\mathbf{y} - H[\mathbf{x}])^{T} \mathbf{R}^{-1} (\delta \mathbf{y} - H[\mathbf{x}])$

• Incremental formulation : $\delta \mathbf{x} = \mathbf{x} - \mathbf{x}^{\mathbf{b}}$

$$\mathbf{y} - \mathcal{H}[\mathbf{x}] = \mathbf{y} - \mathcal{H}[\mathbf{x}^{\mathbf{b}}] + \mathcal{H}[\mathbf{x}^{\mathbf{b}}] - \mathcal{H}[\mathbf{x}] \sim \delta \mathbf{y} - \mathbf{H} \delta \mathbf{x}$$

cost function : $J(\delta \mathbf{x}) = \delta \mathbf{x}^{T} \mathbf{B}^{-1} \delta \mathbf{x} + (\delta \mathbf{y} - \mathbf{H} \delta \mathbf{x})^{T} \mathbf{R}^{-1} (\delta \mathbf{y} - \mathbf{H} \delta \mathbf{x})$

minimised when gradient $J'(\delta \mathbf{x})=0$ (equivalent to BLUE).

- Cost reduction : analysis increment δx can be computed at low resolution. (Courtier, Thépaut and Hollingsworth, 1994)
- Some non linear features accounted / calculation of departures y^o-H(x^b), and in non linear trajectory updates (outer loop).

Incremental 4D-Var as a sequence of updated quadratic minimizations

Û

FRANCE

(from A. Vidard ; e.g. Courtier, Thépaut et Hollingsworth, 1994)

Importance of preconditioning of minimization

Good preconditioning

- Slow convergence if iso-J curves are elliptical / quick convergence if circular.
- Shape of J is determined by eigen-structure of its matrix J" of second derivatives : $J'' = B^{-1} + H^T R^{-1} H$
- Small scale components of B = large eigen-values of B⁻¹; Large scale components of B = small eigen-values of B⁻¹.
 => problem of "narrow valley".
- Use a change of variable ($\chi = \mathbf{B}^{-1/2} \delta \mathbf{x}$) such as J becomes nearly "circular".

2. In-situ observations and

remote sensing data

Observation networks in meteorology: in situ measurements

Observation networks in meteorology: satellite data

Constellation of polar orbiting or geostationary satellites

Geostationary satellites

□ Advantages

Very high temporal resolution (15 min)

Useful for nowcasting

Dynamics of meteorological structures

Drawbacks

Insufficient spatial coverage

Not adapted to polar regions

Copyright EUMETSAT / NERC / University of Dundee 2003

Polar orbiting satellites

Low orbit satellites :

□ Advantages

High spatial resolution

Global spatial coverage

Sounding instruments (over several vertical layers)

Drawbacks

Insufficient temporal resolution (several satellites are needed)

What is measured by satellite sensors ?

Sensors do not measure directly atmospheric temperature and humidity, but electromagnetic radiation : brightness temperature or radiance.

Depending on wave length (or frequency), information on gas concentration or physical properties (temperature or pressure or humidity) of atmosphere.

 \Box Observations in atmospheric windows \clubsuit information on surface.

What is measured by satellite sensors ?

Passive measures

(no energy emitted from instrument)

Measures natural radiation emitted by Earth/Atmosphere from Sun origin

Active measures

(energy emitted from instrument)

Radiation emitted by satellite and then reflected or diffused by Earth/Atmosphere

Example of active remote sensing

GPS radio occultation:

- Low-Earth Orbit satellites receive a signal from a GPS satellite.
- The signal passes through the atmosphere and gets refracted along the way.
- The magnitude of the refraction depends on temperature, moisture and pressure.
- The relative position of GPS and LEO changes over time => vertical scanning of the atmosphere.

GPS stations of Météo France: Toulouse and Brest

- Propagation of GPS signal is slowed by atmosphere (dry air and water vapour).
- More than 500 GPS stations over Europe provide an estimation of Zenith Total Delay (ZTD) in real time to weather centres.
 - All weather instrument
 - High temporal resolution

They send out a microwave signal towards a sea target.

The fraction of energy returned to the satellite depends on wind speed and direction.

=> Measurements of near surface wind over the ocean, through backscattering of microwave signal reflected by waves.

Passive remote sensing

Only natural sources of radiation (sun, earth...) are involved, and the sensor is a simple receiver, « passive ».

IASI, infra-red interferometer developed by CNES and EUMETSAT

Number of observations used in ARPEGE (global DA at Météo-France)

Total ~ 20 million obs per day

Radar network in France

- 29 radars (19 C-band, 5S, 5X every 15 minutes, at 1 km resolution).
- Observations :

reflectivities Z (related to precipitation),

radial winds Vr (doppler effect : modified frequency of signal, when the target is moving => wind observation).

Observations assimilated as vertical profiles

Pixel altitude is computed using a constant refractivity index along the path (effective radius approximation)

Assimilation of radar radial winds

Wind gust at 10 m (kt) Forecast +1h (19 UTC)

OBS

Thursday 8 November 2007 18UTC PARIS Forecast t+1 VT: Thursday 8 November 2007 19UTC 10m **

Inversion method of reflectivity profiles

Caumont, 2006: use model profiles in the neighborhood of observations (in 3 steps)

Case 7/8 october: South-East

Comparison of 3h FORECASTS between REFL runs and CONTROL runs:

line of heavy precipitation is well analysed in REFL.

r3 – REFL view of the second second

r3 – CONTROL

3. Error covariance

estimation and modelling

Estimation and specification of error covariances

• Minimisation of cost function :

 $J(\delta \mathbf{x}) = \delta \mathbf{x}^{\mathsf{T}} \mathbf{B}^{-1} \delta \mathbf{x} + (\delta \mathbf{y} - \mathbf{H} \delta \mathbf{x})^{\mathsf{T}} \mathbf{R}^{-1} (\delta \mathbf{y} - \mathbf{H} \delta \mathbf{x})$

 \Rightarrow Need to estimate **B** and **R**, in order to define J.

- The true atmospheric state is never known.
- Use observation-minus-background departures to estimate some space/time-averaged features of R and B, using assumptions on spatial structures of errors.
- Use ensemble to simulate the error evolution and to estimate flow-dependent background error structures.
- Use covariance modelling to filter sampling noise and other uncertainties in the ensemble.

RADIOSONDE OBSERVATIONS

Covariances of innovations

Innovation = observation-minus-background :

$$\mathbf{y}_{o} - H(\mathbf{x}_{b}) = \mathbf{y}_{o} - H(\mathbf{x}_{t}) + H(\mathbf{x}_{t}) - H(\mathbf{x}_{b})$$
$$\sim \mathbf{e}_{o} - \mathbf{H} \mathbf{e}_{b}$$

Innovation covariances :

$$E[(y_o - H(x_b))(y_o - H(x_b))^T] \sim E[(e_o - He_b)(e_o - He_b)^T]$$

~ R + HBH^T

assuming that $E[e_o(He_b)^T] = 0$.

(e.g. Hollingsworth and Lönnberg 1986)

 $\mathsf{E}[(\mathsf{y}_{o} - \mathcal{H}(\mathsf{x}_{b}))(\mathsf{y}_{o} - \mathcal{H}(\mathsf{x}_{b}))^{\mathsf{T}}] = \mathsf{R} + \mathsf{H}\mathsf{B}\mathsf{H}^{\mathsf{T}}$

Covariances of analysis residuals

Innovation method : properties

- Provides estimates in observation space only.
- A good quality data dense network is needed.
- Assumption that observation errors are spatially uncorrelated (white noise).
- An objective source of information on **B** and **R**.
- At a given location and time, only 1 innovation value : a single realization of errors is available.
- ⇒ Statistical averages (expectations) are replaced by space and time averages (ergodicity assumption).
- \Rightarrow Estimation of space/time-averages of **B** and **R**.

Data Assimilation cycling

Simulation of error cycling using an Ensemble of Data Assimilations (EDA)

Contributions to error cycling

Quasi-linear expansion of forecast errors / cycling of observation and model errors :

$$\mathbf{e}_{i}^{f} = \sum_{j \leq i} \mathbf{T}_{i \cdot j} \mathbf{M}_{j} \mathbf{K}_{j} \mathbf{e}_{j}^{o} + \sum_{j \leq i} \mathbf{T}_{i \cdot j} \mathbf{e}_{j}^{m}$$

where $\mathbf{T}_{i-j} = \prod_{k} \mathbf{M}_{k} (\mathbf{I}-\mathbf{K}_{k}\mathbf{H}_{k}) = \text{cycling operator}$ (over k successive analysis/forecast steps from t_i to t_i).

Estimation and simulation of observation errors

• Observation perturbations / random draws of **R** :

 $\varepsilon^{o} = \mathbf{R}^{1/2} \eta^{o}$ with $\eta^{o} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Estimation of R / spatio-temporal averages
 via covariances of innovations (δy = y^o-Hx^b = ε^o-Hε^b, E[δy δy^T]=R+HBH^T):

 $\textbf{R}\simeq~\textbf{E}[\delta\textbf{y}~\delta\textbf{y}^{T}]-\textbf{H}\textbf{B}\textbf{H}^{T}$

after subtracting estimated contribution of background errors.

Filtering and propagation of observation perturbations /

contribution to forecast errors : $\boldsymbol{\epsilon}^{f,o}_{i} = \sum_{j \leq i} \mathbf{T}_{i-j} \mathbf{M}_{j} \mathbf{K}_{j} \boldsymbol{\epsilon}^{o}_{j}$

Forecast errors = cycling of observation and model errors :

$$\mathbf{e}_{i}^{f} = \mathbf{e}_{i}^{f,o} + \mathbf{e}_{i}^{f,m} = \sum_{j \leq i} \mathbf{T}_{i-j} \mathbf{M}_{j} \mathbf{K}_{j} \mathbf{e}_{j}^{o} + \sum_{j \leq i} \mathbf{T}_{i-j} \mathbf{e}_{j}^{m}$$

Model perturbations / random draws of Q :

 $\varepsilon^{m} = \mathbf{Q}^{1/2} \eta^{m}$ with $\eta^{m} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

 Estimation of HQH^T / spatio-temporal averages via covariances of innovations ; ex : accumulated contribution of e^{f,m} : HQ^{f,m}H^T ~ HB^fH^T - E[Hε^{f,o}(Hε^{f,o})^T]

after subtracting estimated contribution of cycled observation errors.

 Different variants of representation (*multiplicative inflation (oper.)* or additive, SPPT, SKEB, etc) (e.g. Houtekamer et al 2009).

Model error accumulated during cycling

(aircraft observations of temperature (K))

Modelling and filtering covariances

Huge size of **B** : $(10^9)^2 = 10^{18}$ elements.

=> modelling with operators that are sparse and/or of small size.

Sampling noise, and other uncertainties. => spatio-temporal filtering.

Factorisation :

 $B = B^{1/2} B^{T/2}$ $B^{1/2} = L S C^{1/2}$

- L ~ mass/wind cross-covariances (related to geostrophy), including flow-dependence (non linear balances).
- **S** flow-dependent standard deviations (~ expected error amplitudes), filtered spatially.
- C matrix of 3D spatial correlations (~ spatial structures of errors), filtered in wavelet space (block-diagonal model).

Dynamics of background error variances

Standard deviations of surface pressure (hPa) (2/2/2010), superimposed with mean sea level pressure analysis (hPa)

10 MM

Spatial filtering of variance field

« true » variances

Spatial filtering of variance field

« true » variances

filtered variances $\mathbf{v'}_{b}$ (N = 6)

raw variances v_b (N = 6)

Dynamics of vertical correlations (ensemble + wavelet filtering)

Vertical correlations of temperature between 850 & 870 hPa (28/2/2010)

Dynamics of horizontal correlations (ensemble + wavelet filtering)

Length-scales (in km) of wind near 500 hPa, superimposed to geopotential.

Modelling of covariances in ensemble space

$$\mathbf{B}_{\mathbf{raw}} = \mathbf{X}_{b}^{'} \mathbf{X}_{b}^{'} / (N-1)$$

$$B_{raw}^{1/2} = X'_{b} / \sqrt{N-1}$$

where the perturbation matrix $\mathbf{X'}_{b}$ contains the perturbation field of each member as a column (Lorenc 2003).

Schur filtering for long-distance correlations :

$$\mathsf{B} = \mathsf{B}_{\mathsf{raw}} \circ \mathsf{C}_{\mathsf{L}}$$

where C_L is a localisation matrix (~ correlation model).

Schur filtering of covariances

(Figure Whitaker (2011), N=50)

(a) Correlations in P^b, 25-member ensemble

Observation location

(b) Correlations in P^b, 200-member ensemble

(c) Gaspari & Cohn correlation function

(d) Correlations in P^b after localization, 25-member ensemble

Schur filtering of long-distance correlations

from Hamill, Chapter 6 of "Predictability of Weather and Climate"

- Data Assimilation (DA) is vital for weather forecasting (NWP).
- Observations are very diverse in type, density and quality.
- 4D-Var for temporal and non linear aspects.
- Innovation departures for space-averaged estimation of error covariances.
- Ensemble DA methods for error simulation and flow-dependent estimation.
- Covariance modelling/filtering for sampling noise and other uncertainties.

for your attention

Some references

- Desroziers, G., Berre, L., Chapnik, B. and Poli, P. (2005), Diagnosis of observation, background and analysis-error statistics in observation space. Q.J.R. Meteorol. Soc., 131: 3385-3396.
- Fisher, M., 2003: Background error covariance modeling. Proc. ECMWF Seminar on "Recent Developments in Data Assimilation for Atmosphere and Ocean", 8-12 Sept 2003, Reading, U.K., 45-63.
- Hollingsworth, A. and Lönnberg, P., 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111-136
- Houtekamer, P. L., Louis Lefaivre, Jacques Derome, Harold Ritchie, Herschel L. Mitchell, 1996: A System Simulation Approach to Ensemble Prediction. Mon. Wea. Rev., 124, 1225– 1242.
- Houtekamer, P. L., Herschel L. Mitchell, Xingxiu Deng, 2009: Model Error Representation in an Operational Ensemble Kalman Filter. Mon. Wea. Rev., 137, 2126–2143.
- Rabier et al 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc., 126, 1143–1170.
- Talagrand, O. and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311-1328.
- Berre, L., Ştefănescu, S., Belo Pereira, M.. The representation of the analysis effect in three error simulation techniques. Tellus A, 58A, pp 196-209.

Number of observations used in AROME (regional DA at Météo-France)

Total ~ 800,000 obs per day

Number of observations used in ARPEGE (global DA at Météo-France)

Evolution des cumuls mensuels de nombre d'observations utilisées par type d'observation

SYNOP/RADOME ATOVS AIRS SEVIRI BOUEES TEMP RADAR Vr

GPS sat

 $Var(e_b) = 1/(N-1) \sum_{n} [x'_b(n) - x'_b]^2$

Concerns a service of the device is bring to

Spatial structure of sampling noise for variances

 \Rightarrow Spatial filtering in order to extract large scale signal, and remove small scale sampling noise. (e.

(e.g. Raynaud et al 2009)

Divergence/humidity couplings

(Berre 2000, Montmerle et al 2006)

Connexion between large errors and intense weather (Klaus storm, 24/01/2009, 00/03 UTC)

 \Rightarrow relative accuracies of observations and background, and characteristic spatial scales of background errors are accounted for.

- Analysis state (BLUE, K = 4D-Var gain matrix) :
 x_a = (I-KH) x_b + K y_o
- True state :

 $\mathbf{x}_{t} = (\mathbf{I} - \mathbf{K}\mathbf{H}) \mathbf{x}_{t} + \mathbf{K} \mathbf{H}\mathbf{x}_{t}$

• Analysis error :

$$\mathbf{e}_{a} = \mathbf{X}_{a} - \mathbf{X}_{t}$$

i.e.

 $e_a = (I-KH) e_b + K e_o$

Analysis perturbation equation

Perturbed analysis :

$$x'_{a} = (I-KH) x'_{b} + K y'_{o}$$

Unperturbed analysis :

$$\mathbf{x}_{a} = (\mathbf{I} - \mathbf{K}\mathbf{H}) \mathbf{x}_{b} + \mathbf{K} \mathbf{y}_{o}$$

Analysis perturbation :

=> Estimate 4D-Var errors by using perturbed inputs.

What is measured by satellite sensors ?

Soundings of atmosphere?

In micro-waves: absorption par by water vapor, oxygen
Largeur des bandes d'absorption: Pression (altitude) (<
60km): les bandes d'absorption plus larges quand la pression augmente

Les mesures loin (proches) d'une bande d'absorption: information sur les basses (hautes) couches atmosphériques

Covariances of residuals

- Analysis increment : $H \delta x = HK (y_o Hx_b)$ with $HK = HBH^T (HBH^T + R)^{-1}$
- Covariances between $H\delta x$ and omb: $E[(H \ \delta x)(y_o - Hx_b)^T] = HK E[(y_o - Hx_b)(y_o - Hx_b)^T]$ $\sim HK (HB_tH^T + R_t)$ $\sim HBH^T (HBH^T + R)^{-1} (HB_tH^T + R_t)$ $\sim HB_tH^T$

either assuming K ~ optimal,

or, for averaged σ_b , assuming that structures in B,R are much different. (Desroziers et al 2005)