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Data assimilation in oceanography
a non-exhaustive methodology-oriented lecture
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Oceanography covers numerous aspects:
I biology
I chemistry
I physics

Physical oceanography:
I Ocean dynamics at all scales: large scale currents, coastal

currents, tides, turbulence, waves...
I Heat distribution
I Ocean-atmosphere interactions
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Ocean numerical modeling plays a key role for
I Fundamental research

I Operational oceanography
I Climate studies
I Regional and coastal oceanography
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Ocean numerical modeling plays a key role for
I Fundamental research
I Operational oceanography

I Climate studies
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I Regional and coastal oceanography
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A powerful tool: numerical simulation.

But requires adapted methods, since:
I strong scale interactions: non-linearities, parameterizations
I systems are not closed → model coupling
I the goal is not only modeling, but also forecasting → make

use of all available information: models, observations,
statistics. This is data assimilation.

I high computational cost
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Outline

Models

Observations

Data assimilation

Non linearities and data assimilation

Order reduction

Sensitivity analysis, stability analysis

Some challenges
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Models

Primitive equation models
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Models

Surface boundary conditions

Solid wall boundary conditions
impermeability, slip/noslip. . .

M2 OACOS - Data assimilation in oceanography 8



Models

Numerical models: discretization
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Models

Numerical models: vertical grids

An important point for data assimilation in oceanography is the
vertical penetration of surface information into the deep ocean.
The choice of vertical coordinate has an impact in this regard.
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Models

Numerical models: high computational costs

Example: the ORCA12 configuration (Drakkar, MyOcean...)
NEMO code (Nucleus for European
Model of the Oceans)

I Ocean: OPA9 OGCM (finite
differences, centered 2nd order
schemes)

I Sea ice: LIM model (UCL)

ORCA grid: grid points number
4322× 3059× 50− 75 ' 6 108 − 109

Computational cost (1 year of simulation on an IBM Power 4):
I 414 Gb memory
I 90 000 CPU hours
I 1 Tb storage (for 1 daily output)
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Models

Sea surface height variability

Observations

ORCA12
Courtesy of Mercator Océan, 2010
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Models

Some particular aspects: scale interactions

small/meso scale phenomena play a fundamental role in the large
scale circulation.

I Boundary layers: their physical and numerical representation
has a strong impact on the model dynamics.

I Small/meso scale turbulence: the ocean is a turbulent fluid,
with strong scale interactions
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Models

Some particular aspects: scale interactions

small/meso scale phenomena play a fundamental role in the large
scale circulation.

I Boundary layers: their physical and numerical representation
has a strong impact on the model dynamics.

All simulations use the same
model configuration. The
only difference is the param-
eterization of the boundary
layer (no slip case, from Ver-
ron & Blayo 1996)

I Small/meso scale turbulence: the ocean is a turbulent fluid,
with strong scale interactions
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Models

Some particular aspects: scale interactions

small/meso scale phenomena play a fundamental role in the large
scale circulation.

I Boundary layers: their physical and numerical representation
has a strong impact on the model dynamics.

I Small/meso scale turbulence: the ocean is a turbulent fluid,
with strong scale interactions

1/15◦ model of the Labrador sea (Chanut et al., 2003)
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Models

Barotropic stream function (interval: 20 Sv)

1/12◦ solution
averaged at 2◦

2◦ solution

(Barnier et al, 2009)
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Models

Some particular aspects: scale interactions

From the point of view of data assimilation:
I The control of lateral boundary layers is an important point to

get a correct solution → impact on the choice of observations
and the assimilation scheme

I The dynamics of high resolution models is strongly nonlinear,
especially at small and meso scales. Controlling this dynamics
is a challenge for data assimilation methods.
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Models

Some particular aspects surface boundary conditions
Ocean models are forced at their surface by atmospheric fluxes: winds,
mass and heat fluxes.
Estimating these fluxes is difficult, since air-sea interactions are complex
→ model forcing fields are uncertain.

Misfit in the heat flux
(W/m2 ) due to in-
cident solar flux esti-
mated from two dif-
ferent databases (IS-
CCP et ERA-40)

Misfit in the heat flux
(W/m2 ) due to the
use of two different
parameterizations of
Cx (Fairall et al 2003
and Large & Yeager
2004)
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Models

Some particular aspects: surface boundary conditions

surface forcing of an OGCM (DRAKKAR exp., Barnier et al) 

OCEAN MODEL 

Turbulent 
heat flux 

Precip. & 
River runoff Wind stress Evaporation Radiative 

Heat flux 
14C, CFC11 flux 

σT4 

Satellite 
RADSW 
RADLW 

Bulk Formula 

atmospheric 
14C, CFC11 

concentrations 

Surface temp. Surface currents 
14C, CFC11 surface  

concentrations 

Bulk Formulae   (Fairall et al) 

Katabatic wind 
Param. 

6-hourly 
Ta, qa, |ua| 

Atmsopheric
model 

1958-2004 
ERA40 

I Numerous sources of uncertainty. Their control/identification
may be interesting/necessary.
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Models

Some particular aspects: regional models

→ Strong development of regional modeling systems

Autonomous regional systems

Additional error sources:
I Open boundary data are

interpolated from a global
low resolution model

I The initial state is not
properly balanced (inertial
waves. . . )

Challenges for data assimilation : improve boundary data and initial state
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Models

Some particular aspects: regional models
Nested models

On-line interactions: two models,
coupled at the time step level, with
one-way or two-way interaction.

Challenges in assimilation:
I Assimilation in each model separately: how can we ensure

consistency ?
I Assimilation in the whole nested system: how ? (e.g. what is the

state variable ? → multiscale assimilation)
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Models

Ocean model from the point of view of data
assimilation

I Ocean dynamics is strongly nonlinear
I Some small scale key processes must be correctly represented

I Large dimensions : Size of the state variable = O(106 − 109)

I Numerous sources of uncertainty: atmospheric forcing,
boundary data, parameterizations . . .

I Numerical choices may have a strong impact on the tuning of
the assimilation method

I Coupled or nested systems open new problems for data
assimilation
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Observations

Outline

Models

Observations

Data assimilation

Non linearities and data assimilation

Order reduction

Sensitivity analysis, stability analysis

Some challenges
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Observations

In situ data: moorings
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Observations

In situ data: moorings
Currentmeters

M2 OACOS - Data assimilation in oceanography 23



Observations

In situ data: ships of opportunity

Number of ship SST measurements in 2◦×2◦ squares - February 2007
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Observations

In situ data: temperature, salinity. . .
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Observations

In situ data: . . . and many others
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Observations

In situ data: research vessels
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Observations

In situ data: Floating buoys
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Observations

In situ data: Floating buoys
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Observations

In situ data: gliders
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Observations

In situ data: another type of gliders
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Observations

Synoptic data: satellites

Sea surface temperature
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Observations

Synoptic data: satellites

Altimetry
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Synoptic data: satellites

Altimetry
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Observations

Synoptic data: satellites

Surface winds
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Observations

Synoptic data: satellites
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Observations

Synoptic data: coastal radars
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Observations

Synoptic data: coastal radars
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Observations

Available data: synthesis
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Observations

Available data: synthesis

In summary:
I Sparse in situ data
I A huge amount of satellite data (mostly SSH) for more than

20 years
I A lot of surface data, very few subsurface data
I Some Lagrangian data. . .

Consequences for data assimilation:
I Associating different types of data (in situ / satellite, surface

/ subsurface) is probably necessary
I The ability to propagate information, both in the vertical

direction and between state variables, is crucial (role of B)
I H may be complex
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Data assimilation

Outline

Models

Observations

Data assimilation

Non linearities and data assimilation

Order reduction

Sensitivity analysis, stability analysis

Some challenges
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Data assimilation

Data assimilation
Use all available information (model, observations, statistics. . . ) to
better describe the system state.

Use simultaneously those sources of information in order to:
I reconstruct past dynamics (reanalysis): process and climate studies
I identify poorly known parameters
I identify the initial condition for forecast studies (similar to

meteorology)
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Data assimilation

A short history of data assimilation in oceanography

(partly) on line with meteorology
I Beginning: late 80’s – early 90’s
I Nudging (90’s)

∂x
∂t = M(x) −→ ∂x

∂t = M(x)−K(Hx− yobs)

I Optimal interpolation (90’s) −→' BLUE
I Reduced rank Kalman filters: SEEK, or ensemble Kalman

filters (2000’s)
I 3D-Var, 4D-Var (2000’s)
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Data assimilation

Reminder: basis of data assimilation
A simple example

2 observations y1 = 1 et y2 = 2 of some unknown quantity x .
Which estimate for x ?

Let Yi = x + εi with
I E (εi ) = 0 (i = 1, 2) unbiased measurement devices
I Var(εi ) = σ2

i (i = 1, 2) known accuracies
I Cov(ε1, ε2) = 0 independent measurements

BLUE: X̂ =

1
σ2

1
Y1 +

1
σ2

2
Y2

1
σ2

1
+

1
σ2

2

that minimizes J(x) =
1
2

[
(x − y1)2

σ2
1

+
(x − y2)2

σ2
2

]
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Data assimilation

Reminder: basis of data assimilation

Formulation in terms of background + observation

X̂ =
σ2

2Y1 + σ2
1Y2

σ2
1 + σ2

2
= Y1 +

σ2
1

σ2
1 + σ2

2
(Y2 − Y1)

Considering that Y1 is a first estimate (background) Xb for x , and
that Y2 = Y is an independent observation, then:

X̂ = Xb +
σ2

b
σ2

b + σ2
o︸ ︷︷ ︸

gain

(Y − Xb)︸ ︷︷ ︸
innovation
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Data assimilation

Reminder: basis of data assimilation
In larger dimension...

Let Y =

(
Xb
Z

)
←− background
←− new observations

let: Xb = x + eb et Z = Hx + eo

Hypotheses
I E (eb) = 0 et E (eo) = 0 background and unbiased measurements
I Cov(eb, eo) = 0 independent background and observation errors
I Cov(eb) = B and Cov(eo) = R known accuracies and covariances

Analysis

X̂ = Xa = Xb + (B−1 + HT R−1H)−1HT R−1︸ ︷︷ ︸
gain

(Z−HXb)︸ ︷︷ ︸
innovation

with Cov(X̂) = (B−1 + HT R−1H)−1
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Data assimilation

Reminder: basis of data assimilation

This is equivalent to minimizing

J(x) =
1
2 (x− xb)T B−1(x− xb)︸ ︷︷ ︸

background misfit

+
1
2 (Hx− z)T R−1(Hx− z)︸ ︷︷ ︸

observation misfit

and we have: Hess(J) = B−1 + HT R−1H =
[
Cov(X̂)

]−1
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Data assimilation

Reminder: basis of data assimilation

Time evolution problems

Dynamical system + observations distributed in time t1, t2, . . ..

xt(tk+1) = M(tk , tk+1)xt(tk) + e(tk)

I xt(tk) true state at time tk
I M(tk , tk+1) (linear ?) model from tk to tk+1
I e(tk) model error at time tk

At each observation time tk : observation vector yk and model
forecast xf (tk).
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Data assimilation

Reminder: basis of data assimilation
Time evolution problems

Stochastic approach: we
apply (±) the BLUE

Filtering provides error statistics
(but management of huge matri-
ces)

Filtrage

Variational approach:
minimize
J(x0, . . .) =

1
2 ‖x0 − xb

0‖2
B−1

+
1
2

N∑
k=1
‖H(xk)− yk‖2

R−1

(large scale minimization) 4D-Var
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Data assimilation

Reminder: basis of data assimilation
The adjoint model: a tool for minimization
Minimize

J(x0, . . .) =
1
2 ‖x0 − xb

0‖2
B−1 +

1
2

N∑
k=1
‖H(xk)− yk‖2

R−1

descent
algorithm

Problem: how can we get the gradient ?

I growth rate: ∂J
∂ui
' 1
α

(J(U + αui )− J(U))

Pb: cost ×[U] (106 − 109 in ocean-atmosphere modeling)
I adjoint model: cost ' × 5− 7
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Data assimilation

Reminder: basis of data assimilation

Main methodological difficulties:

I non linearities : J non quadratic / BLUE non optimal
I large dimensions: pb for minimization / size of matrices
I poor knowledge of error statistics : choice of the norms /

B,R,Q

I Scientific computing (data management, code efficiency,
parallelization...)
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Data assimilation

Given complexity and computational cost, ± simplified variants
were developed.
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Data assimilation

4D-Var:

J(x0) =
1
2 (x0−xb

0)T B−1(x0−xb
0)+

1
2

N∑
i=0

(Hi (xi )−yi )
T R−1

i (Hi (xi )−yi )

incremental 4D-Var: M(x0 + δx0) 'M(x0) + Mδx0

J (k+1)(δx0) =
1
2 δxT

0 B−1δx0+
1
2

N∑
i=0

(H(k)
i δxi−di )

T R−1
i (H(k)

i δxi−di )
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Data assimilation

multi-incremental 4D-Var: inner loops use a simplified physics
and/or a coarser resolution (Courtier et al. 1994, Courtier 1995, Veersé and
Thépaut 1998, Trémolet 2005).

M(x0 + δx0) 'M(x0) + S−IMLδxL
0

J (k+1)(δxL
0) =

1
2 (δxL

0)T B−1δxL
0+

1
2

N∑
i=0

(H(k),L
i δxL

i −di )
T R−1

i (H(k),L
i δxL

i −di )
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Data assimilation

3D-FGAT (First Guess at Appropriate Time): approximation of
incremental 4D-Var where tangent linear and adjoint models are
replaced by identity:

J (k+1)(δx0) =
1
2 δxT

0 B−1δx0+
1
2

N∑
i=0

(H(k)
i δx0−di )

T R−1
i (H(k)

i δx0−di )

−→ somewhere between 3D and 4D

Pros :
I much less expensive
I algorithm close to incremental 4D-Var
I innovation is computed at observation times

Cons : approximation !!
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Data assimilation

3D-Var: all observations are gathered at time t0.

J(x0) =
1
2 (x0−xb

0)T B−1(x0−xb
0)+

1
2

N∑
i=0

(Hi (x0)−yi )
T R−1

i (Hi (x0)−yi )

Pros: still much less expensive
Cons: approximation !!!!!
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Data assimilation

Summary: simplifications of J → a series of methods

4D-Var:
J(x0) =

1
2
(x0 − xb

0)
T B−1(x0 − xb

0) +
1
2

N∑
i=0

(Hi (xi )− yi )
T R−1

i (Hi (xi )− yi )

incremental 4D-Var: M(x0 + δx0) 'M(x0) + Mδx0

J(k+1)(δx0) =
1
2
δxT

0 B−1δx0 +
1
2

N∑
i=0

(H(k)
i δxi − di )

T R−1
i (H(k)

i δxi − di )

multi-incremental 4D-Var: M(x0 + δx0) 'M(x0) + S−I MLδxL
0

J(k+1)(δxL
0) =

1
2
(δxL

0)
T B−1δxL

0 +
1
2

N∑
i=0

(H(k),L
i δxL

i − di )
T R−1

i (H(k),L
i δxL

i − di )

3D-FGAT: M(x0 + δx0) 'M(x0) + δx0

J(k+1)(δx0) =
1
2
δxT

0 B−1δx0 +
1
2

N∑
i=0

(H(k)
i δx0 − di )

T R−1
i (H(k)

i δx0 − di )

3D-Var: M(x0 + δx0) ' x0 + δx0

J(x0) =
1
2
(x0 − xb

0)
T B−1(x0 − xb

0) +
1
2

N∑
i=0

(Hi (x0)− yi )
T R−1

i (Hi (x0)− yi )

M2 OACOS - Data assimilation in oceanography 59



Data assimilation

An example of operational system: Mercator-Océan
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Data assimilation

An example of operational system: Mercator-Océan
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Data assimilation
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Data assimilation

An example of operational system: Mercator-Océan
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Data assimilation

An example of operational system: Mercator-Océan
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Data assimilation

The different components of DA

M : model
I Non linear
I Software code is often quite huge
I Some non-differentiable parts (parameterizations, IF

instructions,. . . )
→ make the obtention of M∗ more difficult for variational
approaches

Automatic differentiation: may help, but does not solve the
problem
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Data assimilation

The different components of DA

H: observation operator
I Satellite data:

I altimetry, SST, SSS: model variables → space-time
interpolation with the model grid

I hard work is done before, during data processing (atmospheric
corrections, tides, sea state, radiative transfer)

I satellite images: that’s another story (see later)
I In situ data:

I U, V, T, S: model variables → space-time interpolation with
the model grid

I Lagrangian observations: transformation into pseudo-velocities
or direct assimilation of locations / structures

R: observation error covariance matrix → rather simple modeling

M2 OACOS - Data assimilation in oceanography 66



Data assimilation

The different components of DA

xb: background a system state coming from a preceding forecast

B: background error covariance matrix → a difficult problem
I modeled by a sequence of operators:

I univariate covariances: analytic functions of x , y and z
I multivariate covariances: balance relations (analytic and/or

observed, and/or simulated)
I no actual building of B (composition of operators)
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Data assimilation

The different components of DA

xb: background a system state coming from a preceding forecast
B: background error covariance matrix → a difficult problem

I modeled by a sequence of operators:
I univariate covariances: analytic functions of x , y and z
I multivariate covariances: balance relations (analytic and/or

observed, and/or simulated)
I no actual building of B (composition of operators)

Impact of 3 observations corresponding to the “usual” or “isopycnal” formulation of B
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Data assimilation

The different components of DA

xb: background a system state coming from a preceding forecast
B: background error covariance matrix → a difficult problem

I modeled by a sequence of operators:
I univariate covariances: analytic functions of x , y and z
I multivariate covariances: balance relations (analytic and/or

observed, and/or simulated)
I no actual building of B (composition of operators)

I statistical approach: B built from a series of model states
(EOFs, ensembles. . . )

cf examples later
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Data assimilation

The different components of DA
Q: model error covariance matrix → a very difficult problem

I Stochastic approach: Q is a necessity
I simulation of model error ? physical input ?
I inflation of covariances

Forecast
xf (tk+1) = M(tk , tk+1)xa(tk)
Pf (tk+1) = M(tk , tk+1)Pa(tk)MT (tk , tk+1) + Qk

I Variational approach
I generally no model error (so called “strong constraint”

approach)
I otherwise:

I explicit control of the error: high dimensional problem
I dual approach (so called “weak constraint” approach):

minimization in the observation space
I control of a model error modeled in a space of low dimension

cf examples later
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Non linearities and data assimilation

Outline

Models

Observations

Data assimilation

Non linearities and data assimilation

Order reduction

Sensitivity analysis, stability analysis

Some challenges
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Non linearities and data assimilation

High resolution and non linearities
The ocean is a turbulent fluid. Increasing the model resolution
allows for scale interactions.

Snapshots of the surface relative vorticity in the SEABASS configuration of
NEMO, for different model resolutions: 1/4◦, 1/12◦, 1/24◦ and 1/100◦.
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Non linearities and data assimilation

High resolution and non linearities

This results in increased energy levels and nonlinear effects.
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Non linearities and data assimilation

High resolution and non linearities

This results also in a more complex cost function...
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Non linearities and data assimilation

High resolution and non linearities

... which is more difficult to minimize.
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Non linearities and data assimilation

High resolution and non linearities

QSVA minimization algorithm can help
(Luong, 1995; Pires et al, 96; Jardak and
Talagrand, 2012)
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Non linearities and data assimilation

High resolution and non linearities

Remark: the scales in the model and in the observations must be
consistent.
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Order reduction
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Order reduction

Order reduction

Motivation:
I reduce the computational cost
I introduce statistical information on the system behavior

Justification: atmospheric and oceanic flows
are dynamical systems (+/- with attractors).
Trajectories are located in the neighborhood of
low dimension manifolds. A large part of the
system variability may thus be represented in a
reduced dimension space.
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Order reduction

Applications of these ideas:
I SEEK filter: Singular Evolutive Kalman Filter

cf Mercator-Océan. . .
I Ensemble Kalman filters

cf Mohn-Sverdrup Center. . .
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Order reduction

reduced rank Kalman filter: SEEK filter (Pham et al, 98)

→ actually: SNEEK filter
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Order reduction

Application of those ideas:
I SEEK filter: Singular Evolutive Kalman Filter

cf Mercator-Océan. . .
I Ensemble Kalman filters

cf Mohn-Sverdrup Center. . .

I Reduced rank 4D-Var
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Order reduction

Reduced rank 4D-Var

Control space: Vect(L1, . . . , Lr ) δx0 =
r∑

i=1
wi Li = Lw

Cost function: Jb(w) = 1
2wT Bw w with Bw = E [(w− w̄)(w− w̄)T ]

Covariance matrix in the full space:
Br = E [(δx− δx̄)(δx− δx̄)T ]

= LE [(w− w̄)(w− w̄)T ]LT

= LBw LT singular low rank matrix

I Minimization in a space of low dimension r � [x], almost no
modification to the algorithm

I The subspace must contain most of the natural system
variability. A natural choice: EOF (POD) basis
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Order reduction

Experiment in a model of the tropical Pacific ocean

Model: 3-D primitive equation
model OPA, tropical Pacific
configuration (Weaver et al.)

[x] ' 106

Observations: 70 moorings
vertical sampling of T in the
first 500 meters (0,17% of [x]),
every 6h
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Order reduction

EOF analysis
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Order reduction

Effect of B: assimilation of a single observation

1◦ innovation, at 160◦W on the equator, in the thermocline, at the
end of the 1-month assimilation window.
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Order reduction

Effect of B: twin experiments

L2 error as a fonction of time

M2 OACOS - Data assimilation in oceanography 86



Order reduction

Experiments with real observations
The model is no longer perfect −→ assimilation fails !!

Two-step 4D-Var: a few iterations of reduced 4D-Var, then full
rank 4D-Var

Recent use: reduced rank preconditionning (S. Gratton, P. Laloyaux, A. Sartenaer, J.
Tshimanga)
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Order reduction

Identification of the model error

Explicit control of the model bias:
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Order reduction

Application to a shallow water model (Vidard et al.)

Twin experiments
Obs: subsampling of h
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Order reduction

Application to a shallow water model (Vidard et al.)

I Error on the initial
condition

I Using the identified bias
improves the forecast

I Possible feed-back to improve the model
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Sensitivity analysis, stability analysis

Outline

Models
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Data assimilation

Non linearities and data assimilation

Order reduction

Sensitivity analysis, stability analysis

Some challenges
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Sensitivity analysis, stability analysis

The adjoint model may be used apart from data assimilation.

I Sensitivity analysis: how is a given output sensitive to a given
input ?

I Stability analysis: what are the perturbations in the initial
condition that lead to the highest changes in the solution ?
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Sensitivity analysis, stability analysis

Sensitivity analysis: diffusion equation
Model 

∂u
∂t −

∂

∂x

(
K (x)

∂u
∂x

)
= f x ∈]0, L[, t ∈ [0,T ]

u(0, t) = u(L, t) = 0 t ∈ [0,T ]
u(x , 0) = u0(x) x ∈ [0, L]

Cost function J(K ) =
1
2

∫ T

0

∫ L

0

(
u − uobs)2 dx dt

Directional derivative Ĵ [K ](k) =

∫ T

0

∫ L

0
û
(
u − uobs) dx dt

Tangent linear model
∂û
∂t −

∂

∂x

(
K (x)

∂û
∂x

)
=

∂

∂x

(
k(x)

∂u
∂x

)
x ∈]0, L[, t ∈]0,T [

û(0, t) = û(L, t) = 0 t ∈ [0,T ]
û(x , 0) = 0 x ∈ [0, L]
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Sensitivity analysis, stability analysis

Adjoint model
∂p
∂t +

∂

∂x

(
K (x)

∂p
∂x

)
= u − uobs x ∈]0, L[, t ∈]0,T [

p(0, t) = p(L, t) = 0 t ∈ [0,T ]
p(x ,T ) = 0 x ∈ [0, L]

Directional derivative
Ĵ [K ](k) =

∫ T

0

∫ L

0
û
(
u − uobs) =

∫ T

0

∫ L

0
k ∂u
∂x

∂p
∂x

identification: Ĵ [K ](k) = ∇J(K ).k =
∫ L

0 k(x)∇J(K )(x) dx

which leads to ∇J(K )(x) =

∫ T

0

∂u
∂x (x , t)

∂p
∂x (x , t) dt
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Sensitivity analysis, stability analysis

More general cost function
Q(K ) =

1
2

∫ T

0

∫ L

0
q(u) dx dt

Directional derivative

Q̂[K ](k) =

∫ T

0

∫ L

0

[
dq
du (u)

]
(û)(x , t) dx dt =

∫ T

0

∫ L

0
û R(u)

Adjoint model
∂p
∂t +

∂

∂x

(
K (x)

∂p
∂x

)
= R(u) x ∈]0, L[, t ∈]0,T [

p(0, t) = p(L, t) = 0 t ∈ [0,T ]
p(x ,T ) = 0 x ∈ [0, L]

So ∇J(K )(x) =

∫ T

0

∂u
∂x (x , t)

∂p
∂x (x , t) dt
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Sensitivity analysis, stability analysis

A realistic example (N. Ayoub, LEGOS)

On the constraint of boundary conditions using an adjoint method (1)  

Estimation of boundary values in a North Atlantic circulation model using an adjoint method, N. Ayoub, 2006 
Ocean Modelling, Vol 12, pp 319-347 

Objectives 
•  state estimation in the North Atlantic 
•  feasibility study for a nested approach and the constraint of open boundary values 

Step 1: optimization (75 iterations performed) 

Step 2: sensitivity of the model/data misfits to the controls  
Issues:   
- how do the different controls impact the model data misfits for each data set ? 
- to what extent are these influences consistent with each other? 

Method:    
compare the gradients of the cost function  J with respect to the controls 
 where J measures the model/data misfits for different data sets 

N. Ayoub (LEGOS/CNRS) 
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Sensitivity analysis, stability analysis

On the constraint of boundary conditions using an adjoint method (2)  

Model 
•  MIT, primitive equation model, 1ºx1º resolution, 23 vertical levels 
•  simplified vertical mixing physics (Kz = cte) 
•  atmospheric forcing:  
    12h wind stress, 24h heat and fresh water fluxes from NCEP 
•  open boundary conditions:  
     use of U, V, T, S fields from a global 2ºx2º simulation 
•  simulation and optimization over the year 1993 

Adjoint model 
•  obtained using an automatic differentiation compiler: 
  the TAMC of Giering and Kaminsky (1998) 

Control variables 
•  initial conditions in T, S  
•  prescribed fields (U, V, T, S) at the open boundaries every month  
•  atm. forcing fields every 10 days: zonal + meridional wind stress, fresh and water fluxes 

Constraining data set 
•  altimetric sea level height (TOPEX/POSEIDON) 
•  monthly SST (Reynolds) + monthly climatological T,S fields (Levitus) 

N. Ayoub (LEGOS/CNRS) 

open-boundaries 
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Sensitivity analysis, stability analysis

On the constraint of boundary conditions using an adjoint method (3)  

Monthly mean for May of the sensitivity to the zonal and meridional components 
    J3 = misfits between the model and Reynolds SST  
    J5 = misfits between the model and T/P SSH anomaly 

Sensitivity to the wind stress forcing 

N. Ayoub (LEGOS/CNRS) 

zonal 

meridional 

J3 

J3 

J5 

J5 
Units: (Nm-2)-1 

The largest influence of wind stress is: 
-  on the SST misfits  
-  in the tropical band for both J3 and J5 

The sensitivities of J3 and J5 show 
consistent structures between  
10ºS and 20ºN 
But some inconsistency is evidenced at the 
equator for the zonal component 

The influence on SSH anomaly misfits is 
negligible outside the tropical band  
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Sensitivity analysis, stability analysis

On the constraint of boundary conditions using an adjoint method (4)  

Sensitivity to the open boundary  fields 

Monthly mean for April of the sensitivity to the meridional velocity at 25ºS  
 J1 = misfits between the model and climatological T field  

     J5 = misfits between the model and T/P SSH anomaly 

N. Ayoub (LEGOS/CNRS) 

Surface 

Surface 

500 m 

500 m 

5000 m 

5000 m 

J5 

J1 

Gradients at 25ºS as a function of depth and 
longitude (in (m/s)-1) 

S. America Africa 

- strong uncoupling between subsurface and deep 
layers 
  role and structure of the weighting matrix B 

- areas of inconsistencies between the signs of the 
gradients, therefore between the constraints brought by 
the two datasets 

- large sensitivities close to the bottom: compensation 
of model errors by the boundary control terms ? 
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Sensitivity analysis, stability analysis

Sensitivity of surface heat content in the North Atlantic  
to atmospheric forcing from an adjoint method (1) 

Sensitivity of surface heat content in the North Atlantic to atmospheric forcing from an adjoint model,  
N. Ayoub, Proceedings of the 4th WMO International symposium on assimilation of observations in meteorology and oceanography, 
Prague, 2005.  

Context  
Variable of interest: wintertime upper heat content in the Labrador Sea 
State estimation based on an adjoint method and a mid-resolution model  (MIT model, 
1ºx1º, KPP vertical mixing, NCEP atmospheric forcing, reference run 1992-97) 

Objective 
identify the nature and space-time distribution of the boundary (surface + initial) fields to be 
controlled in order to constrain the variable of interest 

Method 
Analysis of the gradient of the cost function J with respect to: 

•  heat and fresh water fluxes 
•  zonal and meridional wind stress components 
•  initial conditions in T, S 

where J = mean temperature in the first 1000 m 
Adjoint obtained from TAMC (automatic differentiation compiler) 

N. Ayoub (LEGOS/CNRS) 
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Sensitivity analysis, stability analysis

Sensitivity of surface heat content in the North Atlantic  
to atmospheric forcing from an adjoint method (2) 

1-month sensitivity runs 

•  J = mean T between Dec. 20-30th 1993 
•  run starting on Dec. 1st 1993 

Gradient with respect to the atm. fields  
as a function of time  
•  largest impact of heat flux (not surprisingly) 
•  almost no influence of wind 

Gradient with respect to initial T fields  
as a function of depth 
•  10 times larger than sensitivity to atm. heat flux 
•  maximum at the mixed-layer depth; 3 to 4 times larger 
than at the surface 
 more efficient constraint by subsurface data than 
by surface data 
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surface 3000 m depth of the 
mixed-layer N. Ayoub (LEGOS/CNRS) 
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Sensitivity analysis, stability analysis

Sensitivity of surface heat content in the North Atlantic  
to atmospheric forcing from an adjoint method (3) 

4-month sensitivity runs 

•  J = mean T in Dec. 1993 
•  run starting on Sep. 1st 1993 

Gradient with respect to the atm. fields as a function of time  
•  largest impact of heat flux (not surprisingly) 
•  sensitivity to wind stress maximum in late summer = impact of wind on vertical mixing and ‘de-
stratification’? 
 in a data constraint experience: need of ‘long’ integration period to take into account the 
sensitivity to wind forcing 

Dec. 

depth of the 
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N. Ayoub (LEGOS/CNRS) 

M2 OACOS - Data assimilation in oceanography 102



Sensitivity analysis, stability analysis

Stability analysis
Dynamical system:

I x(t) the state vector
I Mt1→t2 the model between time t1 and time t2

Amplification of a perturbation z(t1)

ρ (z(t1)) =
‖Mt1→t2 (x(t1) + z(t1))−Mt1→t2 (x(t1)) ‖

‖z(t1)‖
where ‖.‖ is a given norm.

Optimal perturbation
z∗1(t1) such that ρ (z∗1(t1)) = max

z(t1)
ρ (z(t1))

Maximal amplification vector
ρ (z∗i (t1)) = max

z(t1)⊥Vect(z∗1 (t1),...,z∗i−1(t1))
ρ (z(t1)) , i ≥ 2
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‖Mt1→t2 (x(t1) + z(t1))−Mt1→t2 (x(t1)) ‖

‖z(t1)‖
where ‖.‖ is a given norm.

Optimal perturbation
z∗1(t1) such that ρ (z∗1(t1)) = max

z(t1)
ρ (z(t1))

Maximal amplification vector
ρ (z∗i (t1)) = max

z(t1)⊥Vect(z∗1 (t1),...,z∗i−1(t1))
ρ (z(t1)) , i ≥ 2
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Sensitivity analysis, stability analysis

Linear case

If M is linear, or if it is replaced by its tangent linear model M, the
amplification rate becomes:

ρ2 (z(t1)) =
‖Mt1→t2 (z(t1)) ‖2

‖z(t1)‖2 =
< Mt1→t2z(t1),Mt1→t2z(t1) >

< z(t1), z(t1) >

=
< z(t1),M∗t1→t2Mt1→t2z(t1) >

< z(t1), z(t1) >

M∗t1→t2Mt1→t2 is a symmetric definite positive matrix, its
eigenvalues are real and positive, and its eigenvectors are
orthogonal.

Maximal amplification vectors are the first eigenvectors of
M∗t1→t2Mt1→t2 , corresponding to the largest eigenvalues. They are
called forward singular vectors.

M∗t1→t2Mt1→t2f +
i = µi f +

i
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Sensitivity analysis, stability analysis
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Sensitivity analysis, stability analysis

A realistic example (S. Kamachi)

Goal: understand and forecast the formation of the Kuroshio large
meander.
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Sensitivity analysis, stability analysis

19 

Cyclic Property of SV 
Arrow : 400m Velocity	
Color: 1200m Temperature	

RS
V 

LS
V 

RSV: Anticyclonic and 
warm anomaly south east 
of Kyushu. 

TL run: Cyclonic and cold 
anomaly is generated and 
propagated to the east. 

LSV: Cyclonic anomaly 
west of the meander. 

Adjoint run: Signal is 
propagated to the east. 
(The route is different 
from the TL model.) 

RSV 

M2 OACOS - Data assimilation in oceanography 107



Sensitivity analysis, stability analysis

Stability of an ocean model wrt uncertainties in the
bathymetry (E. Kazantsev)

How does the uncertainty in the bottom topography affect the
solution ?
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Sensitivity analysis, stability analysis

Analysis of the operator:

I Can this mode be controlled by data assimilation ?
I What would be the optimal observations ?
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Some challenges

Outline

Models

Observations

Data assimilation

Non linearities and data assimilation

Order reduction

Sensitivity analysis, stability analysis

Some challenges
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Some challenges

Some challenges

I Building better B and Q
I Data assimilation for coupled models (ex: initial shock in

seasonal forecast simulation, nested models)
I Assimilation for marine biogeochemistry
I Assimilation of images
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Some challenges

Assimilation of images
Motivation: huge amount of satellite images, almost unused in
forecast systems (high resolution information on structures,
fronts. . . )

April 28, 2008, 14:00 April 28, 2008, 20:00 April 29, 2008, 02:00 April 28, 2008, 08:00

Source: Météo France

Goal: assimilate the information contained in the images
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Some challenges

Assimilation of images

Two approaches:
I Approach 1: building pseudo-observations (ex: sequences of

images −→ pseudo-velocities)
I Approach 2: direct assimilation, by extracting structures
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Some challenges

Direct assimilation of sequences of images
Methodology

Jo(x0) =

∫ T

0
‖y−H[M0→t(x0)]‖2

O dt︸ ︷︷ ︸
usual term Jo

+

∫ T

0
‖ EF→S [f]︸ ︷︷ ︸

Extraction
of
structures

−HX→S [M0→t(x0)]︸ ︷︷ ︸
”structure”
observation
operator

‖2
Sdt

I F is the image space, S is the structure space

I EF→S extracts the structures from the sequences of images: frequency
characteristics (multiscale transformations), geometric (snake,
levelsets,. . . ) or qualitative (classification of events)

I HX→S : ”structure” observation operator: extraction of structures from
a sequence of “model images”.
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Some challenges

Direct assimilation of sequences of images
A possible tool: curvelets decomposition
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Some challenges

Direct assimilation of sequences of images
Example: dynamics of a vortex structure in a rotating tank

Coriolis rotating tank
LEGI, Grenoble

Simulation of an isolated vortex
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Some challenges

Direct assimilation of sequences of images

Reconstruction of the initial condition of a shallow water model
simulating the evolution of the vortex
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Some challenges

Direct assimilation of sequences of images
Reconstruction of the velocity field:

O. Titaud, A. Vidard, I. Souopgui, and F.-X. Le Dimet. Assimilation of image sequences in numerical models.
Tellus A, 2010.
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Some challenges

Direct assimilation of sequences of images

Another recent idea: Finite size Lyapunov exponents

From Gaultier, 2013.
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Some challenges

Thank you
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