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*  This	DA	lecture	mostly	deals	with:	
*  the	ocean	circulation	
*  the	ocean	primary	production	(a	little	bit)	

*  This	lecture	does	not	address:	
*  ocean	wave	forecasting	
*  tidal/storm	surge	forecasting	
*  ocean	chemistry	and	water	quality	
*  Fish,	whales,	sharks,	jellyfish…	

Scope	of	this	lecture	



*  This	lecture	is	biased	towards	realistic	applications:	
*  Realistic	models;	
*  Real	observations;	
*  Practical	implementation	of	DA;	
*  And	a	very	limited	amount	of	theory.	

Scope	of	this	lecture	



*  Operational	
oceanography	
started	about	25	
years	ago;	

Operational	oceanography:	the	primary	
user	of	ocean	data	assimilation	



*  Operational	oceanography	started	about	25	years	ago;	
*  The	main	goal	is	real-time	monitoring	and	prediction	of	the	

state	of	the	ocean,	including:	
*  Currents	(shipping,	sea	operations,	regattas…)	
*  Primary	production	(marine	resources,	fishing)	
*  Sea	ice	(shipping)	
*  Temperature	(climate,	weather	forecasting…)	

*  Like	weather	forecast	centers,	OO	centers	turn	to	provide	
useful	information	to	scientists:	reanalyses,	targeted	
forecasts	for	field	campaigns,	etc.	

Operational	oceanography:	the	primary	
user	of	ocean	data	assimilation	



*  The	French	center	of	OO;	
*  Created	in	1995;	
*  Located	in	the	area	of	Toulouse,	about	50	agents;	
*  officially	appointed	by	the	European	Commission	on	
11	November,	2014	to	implement	and	operate	the	
Copernicus	Marine	Service	(CMEMS).	

Mercator-Océan	



*  To	develop	its	operational	system,	Mercator-Océan	relies	
on	the	research	community	in	the	labs.	In	France,	these	are	
primarily	(non-exhaustive	list	in	almost	arbitrary	order):	
*  IGE/MEOM	(Grenoble)	
*  LOCEAN	(Paris)	
*  LPO	(Brest)	
*  LEGOS	(Toulouse)	
*  CERFACS	(Toulouse)	
*  Météo-France	(Toulouse)	
*  etc	

Mercator-Océan	and	research	groups	



*  Mercator-Océan:	http://www.mercator-ocean.fr/	
*  CMEMS	:	http://marine.copernicus.eu/	
*  GODAE	Oceanview:	
https://www.godae-oceanview.org/	
*  DRAKKAR	project:	http://www.drakkar-ocean.eu/	
*  GFDL	Ocean	modeling:	http://ocean-modeling.org/	
*  Coriolis	data	center:	http://www.coriolis.eu.org/	

Web	sites	



*  Data	Assimilation:	Methods,	Algorithms	and	
Applications,	M.	Asch,	M.	Bocquet	&	M.	Nodet,	SIAM,	
2016	
*  Advanced	data	assimilation	for	Geosciences,	Eds.	E.	
Blayo,	M.	Bocquet	&	E.	Cosme,	Oxford,	2014	
*  Data	assimilation,	Making	sense	of	observations,	Eds	
W.	Lahoz,	B.	Khattatov	&	R.	Ménard,	Springer,	2010	
*  Ocean	Weather	Forecasting,	Eds.	E.	Chassignet	&	J.	
Verron,	Springer,	2006	

Textbooks	



*  Ocean	models	
*  Observations	of	the	ocean	
*  Ocean	DA	using	Ensemble	Kalman	filters	
*  Ocean	DA	using	variational	methods	(briefly)	
*  Future	challenges	

Outline	



*  Primitive	equations	
*  Scales	
*  Horizontal	discretization	
*  Uncertainties	
*  Biogeochemistry	

Ocean	models	



Primitive	equations	

� = �(T, S, p)

Conservation	of:	
	
	
•  	momentum	

•  Mass	

•  Salt	

	
•  Temperature	

Equation	of	state	

+	auxiliary	conditions	

Ocean	models	



Primitive	equations	

� = �(T, S, p)

Conservation	of:	
	
	
•  	momentum	

•  Mass	

•  Salt	

	
•  Temperature	

Equation	of	state	

Nonlinear	terms	

+	auxiliary	conditions	

Ocean	models	



Primitive	equations	
Ocean	models	

Due	to	nonlinear	terms	

SST	from	NATL60	YT.	



*  Why	does	this	matter	for	DA?	

*  Most	tractable	DA	methods	are	designed	for	linear	or	
weakly	nonlinear	systems;	
*  All	scales	are	involved	and	coupled	in	the	dynamics.	

Representing	the	circulation	accurately	requires	high-
resolution	(therefore	expensive)	models.	
*  And	requires	a	lot	of	observations!	

Primitive	equations	
Ocean	models	



Scales	
Ocean	models	



Scales	
Ocean	models	

Scales	particularly	relevant	for	weather	predictions	and	important	for	climate.	



Scales	

*  The	scale	of	eddies	is	set	by	the	
Rossby	radius	of	deformation:	

	N:	Brunt-Vaïsala	frequency	
	H:	layer	thickness	
	Ω:	Earth	rotation	

*  ~30	km	in	the	ocean,	~1000	km	
in	the	atmosphere	
*  Ocean	weather	simulations	

require	high	resolution	models!	

L⇢ =
NH

2�

(Chelton	et	al,	1998)	

Ocean	models	



Horizontal	discretisation	

*  Figure:	NEMO	ORCA2	
grid	(2°)	
*  In	2015,	operational	
version	at	1/12°	at	
Mercator-Océan	
*  Regional	configuration	
at	higher	resolutions	
*  Resolution	is	pushed	
ahead…	

Ocean	models	



*  Mercator	operational	
model:	NEMO	1/12°	
*  Number	of	gridpoints:	

*  1	year	of	simulation	
costs	414	Gb	memory,	
90000	CPU	hours,	1Tb	
storage	(daily	outputs)	

Horizontal	discretisation	

4322⇥ 3059⇥ 75 ⇠ 109

Ocean	models	



Horizontal	discretisation	

5454⇥ 3474⇥ 300 ⇠ 5.7 109

Ocean	models	

*  NATL60	
*  Gridpoints:	

*  13000	processors,	1	
month	of	simulation	
takes	1	day	



*  Why	does	this	matter	for	ocean	DA?	

*  The	higher	the	resolution,	the	more	expensive	the	
model.	
*  4DVar	needs	iterations,	EnKF	requires	an	ensemble	and	

accurate	error	covariances.	
*  A	huge	volume	of	observations	is	needed	to	control	

such	models.	

Horizontal	discretisation	
Ocean	models	



*  Unresolved	scales	and	parameterizations	
*  Forcings	and	boundary	conditions	

Uncertainties	
Ocean	models	



*  Example	of	a	generally	ignored	effect:	the	state	
equation	
*  Let	<A>	be	the	average	value	of	A	in	the	model	

gridpoint;	
*  The	model	computes	<T>,	<S>	from	the	conservation	

equations	
*  Then	computes	density	as:	

*  Which	is	different	from:	
� = �(< T >,< S >)

� =< �(T, S) >

Ocean	models	

Uncertainties	due	to	unresolved	scales	
and	parameterizations	



A	

B	

�(A+B) 6= �(A) + �(B)

Ocean	models	

Uncertainties	due	to	unresolved	scales	
and	parameterizations	



A	realistic	temperature	field	and	a	possible	model	grid	

Ocean	models	

Uncertainties	due	to	unresolved	scales	
and	parameterizations	



Ocean	models	

Uncertainties	due	to	unresolved	scales	
and	parameterizations	

Idea:	
-  represent	the	sub-grid	variability	in	T	and	S	with	an	ensemble,	using	

stochastic	(random)	perturbations;	
-  Compute	density	for	each	(T,	S)	pair;	
-  Compute	the	density	mean.	

	Estimate 	 		instead	of	 � = �(< T >,< S >)� =< �(T, S) >



(Brankart,	2013)	

Fields	of	SSH	from	NEMO,	ORCA2	(gridmesh	2°)	

� = �(< T >,< S >) � =< �(T, S) >

Ocean	models	

Uncertainties	due	to	unresolved	scales	
and	parameterizations	



(Brankart,	2013)	

Difference	

Ocean	models	

Uncertainties	due	to	unresolved	scales	
and	parameterizations	



Uncertainties	due	to	boundary	
conditions	

Yellow:	atmospheric	
Grey:	oceanic	
Green:	parameterizations	
White:	physical	processes	

Ocean	models	



Uncertainties	due	to	boundary	
conditions	

!

!

Ocean	models	

(Sommer	et	al,	not	yet	published)	



Uncertainties	due	to	boundary	conditions	

!

Ocean	models	



*  Why	does	this	matter	for	ocean	DA?	

*  Models	has	many	sources	of	uncertainty;	
*  To	set	up	the	DA	system	correctly,	one	must	identify	at	

best	the	various	sources	of	errors	and	parameterize	
their	impact;	

*  DA	can	“guide”	models,	but	also	help	in	reducing	the	
original	uncertainties	(e.g.,	by	estimating	parameters)	

Ocean	models:	uncertainties	
Ocean	models	



Biogeochemistry	

Ocean	primary	production	is	a	key	piece	of	the	ocean	life	and	the	carbon	cycles.	

Ocean	models	



*  Simple	NPZD	ecosystem	model	
(Nutrients,	Phyto,	Zoo,	Detritus)	

*  10-30	tunable	parameters:	
*  Growth	rate,	mortality	
*  Sedimentation	speed	
*  Etc	

*  Already	challenging	for	assimilation	

Biogeochemistry	
Ocean	models	

NO3 PHY 

DET ZOO 



*  Generic	pelagic	
ecosystem	models	

*  More	than	100	
tunable	parameters	

Biogeochemistry	

(Vichy	et	al,	2007)	

Ocean	models	



*  An	“bad”	assimilation	in	
the	dynamics	can	be	
detrimental	to	biology	

Biogeochemistry	

Free	run	

Assimilation	

FREE	 ASSIM	

Kz	Kz	

(Berline	et	al,	2005)	

Ocean	models	



*  No	basic	rule	(e.g.,	Navier-Stokes	equations)	for	
biology	
*  Very	nonlinear	system	
*  Many	uncertain	and	tunable	parameters	
*  Biology	sensitive	to	dynamics	and	dynamical	
instabilities	
*  Tracer	concentrations	are	positive	variables	

Biogeochemistry	
Ocean	models	



*  In	situ	observations	
*  Profiling	floats:	ARGO	project	
*  Moorings:	OceanSITES	project	
*  Ships:	SOOP	and	GOSUD	projects,	and	WOCE	program	
*  Surface	drifters:	DBCP	and	E-SURFMAR	projects	
*  Gliders:	EGO	initiative	
*  Marine	mammals	

*  Satellite	observations	
*  Altimetry	
*  Sea	surface	temperature	(SST)	
*  Ocean	color	

Observations	



In	situ	observation	#1:	profiling	floats	
Observations	

http://www.argo.ucsd.edu/	



In	situ	observation	#1:	profiling	floats	
Observations	

http://www.argo.ucsd.edu/	

ARGO	=	network	of	profiling	floats	



*  +++	:	Spatial	coverage,	vertical	information,	autonomy	
*  -	-	-	:	needs	maintenance,	some	regions	hard	to	
sample,	poor	sampling	

In	situ	observation	#1:	profiling	floats	
Observations	

http://www.argo.ucsd.edu/	



In	situ	observation	#2:	Moorings	
Observations	

http://www.whoi.edu/virtual/oceansites/network/index.html	

*  +++	:	time	sampling,	vertical	information,	autonomy	
*  -	-	-	:	expensive	to	build	and	maintain,	poor	spatial	coverage	



*  Volunteer	observing	ships	(VOS):	
*  +++:	cost	effective,	vertical	information	
*  -	-	-	:	limited	to	commercial	routes,	rarely	deeper	than	

800	m	
*  Research	vessels:	
*  +++:	often	go	to	remote	and	poorly	observed	areas	
*  -	-	-	:	extremely	expensive,	extremely	poor	coverage	

In	situ	observation	#3:	Ships	
Observations	

XBT:	Expendable	
bathythermograph.	
Measure	temperature	
and	depth	to	~1000	m	
		



In	situ	observation	#4:	surface	
drifters	

*  +++	:	Spatial	coverage,	autonomy	
*  -	-	-	:	needs	maintenance,	some	regions	hard	to	
sample,	poor	sampling	

Observations	

A	drifter	measures	surface	temperature	and	currents.	
http://www.aoml.noaa.gov/	
http://www.nefsc.noaa.gov/	



In	situ	observation	#5:	gliders	

http://www.fastwave.com.au	

Observations	

*  +++:	flexible,	vertical	information	
*  -	-	-	:	limited	to	targeted	campaigns	



*  +++:	access	to	poorly	observed	area,	vertical	
information	
*  -	-	-	:	limited	spatial	and	temporal	coverage	

In	situ	observation	#6:	marine	
mammals	

Observations	

A	miniaturized	CTD	
(Conductivity-Temperature-
Depth)	probe	

Sample	poorly	
observed	areas!	



Satellite	observation	#1:	altimetry	

Radar	altimeter	
(emitter	&	antenna)	

For	atmospheric	corrections	

Height	of	the	satellite:	
~1340	km	

Observations	



Satellite	observation	#1:	altimetry	

Orbit	of	Jason:	
Cycle	of	10	days.	

Observations	



Satellite	observation	#1:	altimetry	

Orbit	of	GFO:	
Cycle	of	17	days.	

Observations	



Satellite	observation	#1:	altimetry	

Orbit	of	Envisat	and	Saral:	
Cycle	of	35	days	

Observations	



Satellite	observation	#1:	altimetry	

Radar	altimetry	provides	information	about	mesoscale	ocean	topography	(50-100	km)	
and	waves.	

~7	km	

Observations	



Satellite	observation	#1:	altimetry	
Observations	



Satellite	observation	#1:	altimetry	

The	continuity	of	satellite	altimeters	is	essential	for	monitoring	the	mean	sea	level.	

Observations	



Satellite	observation	#2:	SST	

-  IR	radiometer	(e.g.	AVHRR)	
-  Microwave	radiometer	(e.g.	AMSR-E)	
	
-  Both	at	1-km	resolution.	
-  MW	insensitive	to	clouds	but	less	

sensitive	and	easy	to	calibrate.	
	
Some	IR	sensors	are	on-board	
geostationary	satellites	(res.	5	km).	
Most	are	polar	orbiting.	

Observations	



Satellite	observation	#2:	SST	

Two	issues	with	satellite	SST	from	the	DA	viewpoint:	
-  Cloud	detection	
-  SST	is	a	“skin”	temperature	(representation	error)	

Observations	



Satellite	observation	#3:	Ocean	color	

Ocean	color	sensors	record	reflectances	in	the	solar	spectrum.	

http://www.seos-project.eu/	

Observations	



Satellite	observation	#3:	Ocean	color	

Ocean	color	sensors	detect	
chlorophyll.	
	
Left:	A	phytoplankton	bloom	
captured	near	Alaska	by	Operational	
Land	Imager	(OLI)	on	Landsat	8	
(NASA).	

Observations	



Satellite	observation	#3:	Ocean	color	

Proof	of	concept:	CZCS	(Coastal	Zone	Color	Scanner),	1978-1986.	
First	operational	ocean	color	products:	SeaWIFS	(Sea-viewing	Wide	Field-of-view	
Sensor),	1997-2010	
	
In	addition	to	the	various	measurement	errors	(atmospheric	corrections,	etc),	a	
significant	source	of	error	lies	in	the	algorithm	to	retrieve	chlorophyll	
concentrations.	The	accepted	error	is	30%	in	general.	

Observations	



*  Quite	large	diversity	of	in	situ	data,	but	rather	sparse;	
*  A	significant	amount	of	satellite	data,	but	satellites	only	

see	the	surface;	
*  They	all	contain	uncertainties	(measurement	or	

representation)	that	are	difficult	to	estimate.	
*  An	important	aspect	perhaps:	observation	operators	are	

generally	much	simpler	than	for	atmospheric	data	
assimilation.	
*  SST	and	ocean	color:	perhaps	a	big	potential	as	images.		

Observations:	summary	



*  Ensemble	Kalman	filters	
*  Localization	
*  Incremental	Analysis	Updating	(IAU)	
*  Bogus	
*  Gaussian	anamorphosis	
*  About	the	observation	error	covariance	matrix	

Ocean	DA	using	
Ensemble	Kalman	filters	



Ensemble	Kalman	filters	

Kalman	filter	equations:	

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

Kalman	filter	equations:	

Too	big	to	store	

Often	too	big	to	invert	

Often	nonlinear	in	practice	 Rarely	that	
simple,	and	
unknown	

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

time	

Physical	state	

Observation	

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

time	

Model	

Forecasts	

Observation	

Physical	state	

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

time	

Observation	

Analyses	

Physical	state	

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

time	

Observation	

Analyses	

Physical	state	

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

time	

Observation	

Analyses	

Physical	state	

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

time	

Observation	

Analyses	

Physical	state	

Ocean	DA	using	EnKFs	



*  In	the	forecast	step,	each	member	is	advanced	with	
the	numerical	model:	

Ensemble	Kalman	filters	

xf
k+1,i = Mk,k+1(x

a
k,i) + �k,i

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

Variable	1	(unobserved)	

Variable	2	
(observed)	

Observation	

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

Variable	1	(unobserved)	

Variable	2	
(observed)	

Observation	

Ocean	DA	using	EnKFs	



*  At	the	analysis	step,	each	member	is	corrected	using	
observations.	
*  Different	analysis	schemes	exist:	
*  stochastic/deterministic,		
*  algebra	in	observation/ensemble	space,	
*  Serial/batch	processing	of	observations,	
*  With/without	adaptive	scheme	at	some	point,	
*  etc	

Ensemble	Kalman	filters	
Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

SANGOMA	European	project,	http://www.data-assimilation.net/)	

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	

http://hycom.org/	

Ocean	DA	using	EnKFs	



Ensemble	Kalman	filters	
Ocean	DA	using	EnKFs	

A	simple	view	
*  OI	methods	
*  Forecast	of	1	(mean)	state	
*  Analysis	using	statistics	from	a	fixed	ensemble	
*  Stochastic	EnKF	
*  Correction	of	each	state	with	perturbed	observations	
*  Deterministic	EnKFs	
*  Correction	of	mean	and	anomalies	without	perturbing	

observations	



*  Ocean	DA:	O(106	-	108)	variables,	O(103	-	105)	obs.	
*  Ensemble	Kalman	filters	used	in	operational	oceanic	
DA	systems:	
*  Ensemble	OI	(Mercator-Océan,	France;	Bureau	of	

Meteorology,	Australia;	and	others)	
*  Deterministic	EnKF	(NERSC,	Norway)	

Ensemble	Kalman	filters	
Ocean	DA	using	EnKFs	



*  Ensemble	OI:	
*  Only	a	mean	state	is	propagated	with	the	model;	
*  The	error	modes	are	the	same	at	any	analysis	step.	

*  -	-	-	:	no	estimation	of	uncertainties;	
*  +++:	computationally	affordable,	robust	(no	collapse),	
more	“physically-based”	than	historical	OI	with	
analytical	covariance	functions.	

Ensemble	Kalman	filters	
Ocean	DA	using	EnKFs	



*  Localization	aims	at	delimiting	in	space	the	impact	of	an	
observation;	
*  	Localization	is	necessary	for	several	reasons:	
*  To	avoid	long-range	corrections	due	to	spurious	long-range	

correlations,	themselves	due	to	the	small	size	of	the	
ensemble;	

*  To	artificially	increase	the	rank	of	the	covariance	matrix	and	
provide	more	degrees	of	freedom	to	the	corrections;	

*  To	make	computation	possible	in	some	cases.	

Localization	
Ocean	DA	using	EnKFs	



*  Localization	aims	at	delimiting	in	space	the	impact	of	an	
observation;	
*  	Localization	is	necessary	for	several	reasons:	
*  To	avoid	long-range	corrections	due	to	spurious	long-range	

correlations,	themselves	due	to	the	small	size	of	the	
ensemble;	

*  To	artificially	increase	the	rank	of	the	covariance	matrix	and	
provide	more	degrees	of	freedom	to	the	corrections;	

*  To	make	computation	possible	in	some	cases.	

Localization	
Ocean	DA	using	EnKFs	

I	discuss	only	this	one	today	



Localization	
Increments	in	SSH	due	to	an	observation	here	

m=5000;	no	rank	reduction	 m=200;	no	rank	reduction	 m=5000;	rank	reduction	r=20	

Without	
localization	

With	
localization	

m=200;	no	rank	reduction	
Awkward	localization	

m=200;	no	rank	reduction	 m=5000;	rank	reduction	r=20	

(Brankart	et	al,	2011)	

Ocean	DA	using	EnKFs	



IAU	

Model	not	involved	during	
analysis:	discontinuity,	
balance	problems	and	shocks	
at	restart	possible.	
	
Right:	spurious	wave	
generated	by	the	assimilation	
of	a	single	observation.	
	

(Rozier	et	al,	2007)	

Ocean	DA	using	EnKFs	



IAU	

*  An	empirical	solution	is	Incremental	Analysis	Updating	
(IAU,	Bloom	et	al,	1996)	
*  IAU	consists	in	computing	corrections	at	the	analysis	
step,	then	re-running	the	ensemble	over	the	forecast	
window,	adding	incrementally	to	each	member	its	
correction	under	the	form	of	a	forcing	term.	

Ocean	DA	using	EnKFs	



IAU	

Here,	IAU	is	run	from	the	
middle	of	the	previous	forecast	
window	to	the	middle	of	the	
next	forecast	window.	
	
Continuity	is	guaranteed	
(perhaps	at	the	expense	of	
quality	of	the	analysis).	

Ocean	DA	using	EnKFs	



IAU	

Figure:	spatially	averaged	
zonal	velocity	U	in	the	Gulf	
Stream	zone.	
Black:	free	run	
Red:	EnOI	
Green:	EnOI	with	IAU	

(Ourmières	et	al,	2005)	

Ocean	DA	using	EnKFs	



*  Some	quantities	must	be	conserved.	Example:	mass.	

*  Bogus:	a	fictitious	observation	of	div	u,	equal	to	0.	

*  Bogus	can	be	used	in	regions	where	the	assimilation	
makes	things	worse…	

Bogus	

div u = 0

Ocean	DA	using	EnKFs	



*  Sometimes	the	distribution	of	some	variables	does	
not	follow	a	Gaussian	law:	

Gaussian	anamorphosis	

(Simon	et	al,	2009)	
Distribution	of	silicate	at	3	different	dates	(over	a	large	oceanic	domain)	

Ocean	DA	using	EnKFs	



*  Sometimes	the	distribution	of	some	variables	does	
not	follow	a	Gaussian	law;	
*  But	the	EnKFs	work	better	with	Gaussian	variables;	
*  Gaussian	anamorphosis:	transformation	of	a	
distribution	into	a	Gaussian	distribution.	

Gaussian	anamorphosis	

(Bertino	et	al,	2003)	

Ocean	DA	using	EnKFs	



Gaussian	anamorphosis	

*  The	transformation	can	
be	analytical	or	empirical;	
*  On	the	opposite	figure,	
the	transformation	is	
empirical;	
*  Such	transformation	can	
be	performed	on	each	
variable	individually.	

(Béal	et	al,	2010)	

Ocean	DA	using	EnKFs	



Gaussian	anamorphosis	

Here,	the	anamorphosis	tends	to	“Gaussianize”	the	bivariate	distribution.	

(Brankart	et	al,	2012)	

Ocean	DA	using	EnKFs	



*  After	transformation,	the	EnKF	analysis	is	performed;	
*  Then,	the	physical	variables	are	retrieved	by	the	
inverse	transformation.	

Gaussian	anamorphosis	
Ocean	DA	using	EnKFs	



Gaussian	anamorphosis	

Obs.	update	at	BATS	station	(65◦W-32◦N)	using	a	perfect	PHY	observation.	Prior	ensemble	(red),	mean	(green	
square),	linear	regression	line	(thin	green	line),	truth	(big	blue	dot),	posterior	ensemble	(blue	dots).	Left:	EnKF	
analysis;	Middle:	analysis	in	the	transformed	state	space;	Right:	Anamorphosis-EnKF	posterior.	The	thick	green	
line	on	the	right	is	the	transformation	of	the	thin	green	line	on	the	middle.	

(Béal	et	al,	2010)	

Ocean	DA	using	EnKFs	



Gaussian	anamorphosis	
Ocean	DA	using	EnKFs	

(Metref	et	al,	2014)	

Gaussian	anamorphosis	works	well	with	weakly	non	Gaussian	variables…	

Obs.	



*  The	EnKF	correction	is	either	calculated	with	(using	a	
serial	processing	of	observations)	

*  Or,	with		

About	the	observation	error	
covariance	matrix	

	
Pf = SfSfT

Ocean	DA	using	EnKFs	



*  For	simplification,	all	ocean	DA	systems	consider	the	
observation	error	covariance	matrix	diagonal.	
*  To	minimize	the	impact	of	the	neglected	correlations,	
it	is	common	to	inflate	the	variances	(in	the	
Norwegian	operational	system,	they	are	multiplied	by	
2	for	the	update	of	the	anomalies).	
*  On	the	other	hand,	many	efforts	are	dedicated	to	the	
construction	of	the	state	error	covariance	matrix.		

About	the	observation	error	
covariance	matrix	

	

Ocean	DA	using	EnKFs	



Ocean	DA	using	
variational	methods	

*  Variational	methods	
*  Parameterization	of	the	covariance	matrix	



Variational	methods	

*  Problem	posed	as	the	minimization	of	a	cost	function	to	
find	the	best	compromise	between	a	prior	knowledge	xb	
and	observations	y:	

*  With	respect	to	a	control	vector	x	to	choose	carefully	(very	
often:	initial	condition)	

	

Jb Jo

J(x) =
1

2
kx� x

bk2b +
1

2
kH(x)� yk2o

Ocean	DA	using	Var.	



Variational	methods	

*  3DVar	and	4DVar:	the	cost	functions	are	quadratic.	

	
*  Efficient	minimisation	algorithms	are	iterative	and	require	
the	gradient		
*  Adjoint	methods	are	(by	far)	the	cheapest	ways	to	compute	
the	gradient	at	each	iteration.	
*  The	adjoint	model	is	often	2-4	times	more	expensive	than	
the	direct	model.	

rJ(x0)

J3D(x0) =
1

2
(x0 � x

b)TB�1(x0 � x
b) +

1

2
(H(x0)� y0)

TR�1(H(x0)� y0)

J4D(x0) =
1

2
(x0 � x

b)TB�1(x0 � x
b) +

1

2

NX

i=0

(H(M0!i(x0))� yi)
TR�1(H(M0!i(x0))� yi)

Ocean	DA	using	Var.	



Variational	methods	

time	

Physical	state	

Observation	

Ocean	DA	using	Var.	



Variational	methods	

time	

Physical	state	

Observation	

Background	state	

Model	

Ocean	DA	using	Var.	



Variational	methods	

time	

Physical	state	

Observation	

Analysis	

Model	

Ocean	DA	using	Var.	



*  As	with	the	EnKF,	the	full	covariance	matrix	cannot	be	
built	and	stored.	

Parameterization	of	
the	covariance	matrix	

Ocean	DA	using	Var.	



*  Modelling	of	the	covariance	matrix	with	a	series	of	
operators:	
	

with	
*  K:	balance	operator	
*  D:	variances	(diagonal)	
*  C:	correlations	(block	diagonal),	built	with	a	diffusion	

operator	

Parameterization	of	
the	covariance	matrix	

B = KD1/2C1/2(C1/2)TD1/2KT

(Weaver	et	al,	2005)	

Ocean	DA	using	Var.	



*  The	balance	operator	is	introduced	to	form	
uncorrelated	variables	from	the	physical	variables:	

*  The	uncorrelated	variables	are	then	used	in	the	
control	vector.	
*  The	uncorrelated	(unbalanced)	variables	are	formed	
by	removing	their	parts	that	are	balanced	by	the	
others.	

Parameterization	of	
the	covariance	matrix	

(T, S, SSH,U, V )
K�1

���! (T, SU , SSHU , UU , VU )

(Weaver	et	al,	2005)	

Ocean	DA	using	Var.	



Parameterization	of	
the	covariance	matrix	

(Weaver	et	al,	2005)	

A	single	obs	of	T,	located	at	160W,	0N,	100	m	depth.	10-day	4DVar	increments	
on	SSH,	without	(left)	and	with	(right)	the	balance	operator.	

Ocean	DA	using	Var.	



*  A	reduced-rank	approach	can	be	considered.	
*  The	4DVar	increment	is	searched	as	a	linear	
combination	of	a	fixed	set	of	error	modes:	

*  Minimization	is	carried	out	on	w,	a	vector	of	size	r.	

Parameterization	of	
the	covariance	matrix	

�x0 =
rX

i=1

wiL{i} = Lw

(Robert	et	al,	2005)	

Ocean	DA	using	Var.	



Parameterization	of	
the	covariance	matrix	

(Robert	et	al,	2005)	

Experiment	with	a	
Tropical	Atlantic	
model	and	1	
observation	of	T.	
Figure	shows	the	
increment	in	T.	
	
Maximal	correction	is	
0.94	on	top	
0.06	on	bottom	

Full	4DVar	
(diagonal	B)	

Reduced	
rank	4DVar	

Vertical	section	The	observation	is	here	

Ocean	DA	using	Var.	



*  Big	data	assimilation	
*  Is	it	worse	the	effort?	
	

Future	challenges	



Big	data	assimilation	

*  Images	(here,	
chlorophyll)	clearly	
reveal	the	structure	
of	the	flow;	

*  How	can	such	data	
be	assimilated	into	
models	as	images?	

*  SWOT:	Surface	Water	
and	Ocean	Topography	

*  Satellite	mission	to	be	
launched	in	2021	

*  Revolutionary	altimetric	
observation:	120	km-
wide	swath	

*  Pixel	of	2	km,	Tb	of	data	

*  SKIM:	Surface	
KInematics	and	
Waves	

*  launched	in	2025?	
*  New	Doppler	radar	

system	
*  Tb	of	data	



*  Correlated	observation	errors	

Big	data	assimilation	

A	simulation	of	SWOT	noise	in	the	Med	Sea	



*  Big	models,	high	resolution,	small	scale	processes	
*  Increasing	number	of	uncertainty	sources	
*  Some	hope	in	IA	methods	to	help	

Big	data	assimilation	

E-NATL60	movies	



SWOT	
Future	challenges	

Snapshot	of	ΔSSH	from	
the	1/60°	North	Atlantic	
simulation	



SWOT	
Future	challenges	

Physical	processes	or	
numerical	artefact?	



SWOT	
Future	challenges	

SWOT	
Conventional	
nadir	altimetry	



*  Challenges:	
*  The	physical	processes	that	will	be	observed	are	not	

well	known;	
*  The	signature	of	internal	tides	cam	be	superposed	to	

the	balanced	dynamics;	
*  The	satellite	will	provide	well	separated	(in	time)	

snapshots	of	short-lived	structures.	

SWOT	
Future	challenges	



SWOT	

60	km	
mesoscale	

eddy	

Longitude	

La
tit

ud
e	

Future	challenges	



SWOT	

10	days	
later	

Longitude	

La
tit

ud
e	 Can	we	retrieve	the	SSH	evolution	

between	the	two	satellite	revisits?		

Future	challenges	



Thank	you	


