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Scope of this lecture
R

* This DA lecture mostly deals with:

* the ocean circulation

* the ocean primary production (a little bit)
* This lecture does not address:

* ocean wave forecasting

* tidal/storm surge forecasting

* ocean chemistry and water quality

* Fish, whales, sharks, jellyfish...



Scope of this lecture
.’

* This lecture is biased towards realistic applications:
* Realistic models;

* Real observations;
* Practical implementation of DA;
* And a very limited amount of theory.



Operational oceanography: the primary

user of ocean data assimilation

* Operational
oceanography
started about 25
years ago;

1Q0




Operational oceanography: the primary

user of ocean data assimilation

—

* Operational oceanography started about 25 years ago;

* The main goal is real-time monitoring and prediction of the
state of the ocean, including:

* Currents (shipping, sea operations, regattas...)
* Primary production (marine resources, fishing)
* Seaice (shipping)
* Temperature (climate, weather forecasting... )
* Like weather forecast centers, OO centers turn to provide

useful information to scientists: reanalyses, targeted
forecasts for field campaigns, etc.



Mercator-Oceéan

m—

* The French center of OO;
* Created in 1995;
* Located in the area of Toulouse, about 50 agents;

* officially appointed by the European Commission on
11 November, 2014 to implement and operate the
Copernicus Marine Service (CMEMS).




Mercator-Océan and research groups

R

* To develop its operational system, Mercator-Océan relies
on the research community in the labs. In France, these are
primarily (non-exhaustive list in almost arbitrary order):

* |GE/MEOM (Grenoble)

LOCEAN (Paris)

LPO (Brest)

LEGOS (Toulouse)

CERFACS (Toulouse)

Météo-France (Toulouse)

etc

* X X X X X



m—

* Mercator-Océan: http://www.mercator-ocean.fr/

* CMEMS : http://marine.copernicus.eu/

* GODAE Oceanview:
https://www.godae-oceanview.org/

* DRAKKAR project: http://www.drakkar-ocean.eu/
* GFDL Ocean modeling: http://ocean-modeling.org/
* Coriolis data center: http://www.coriolis.eu.org/




Textbooks
B

* Data Assimilation: Methods, Algorithms and
Applications, M. Asch, M. Bocquet & M. Nodet, SIAM,
2016

* Advanced data assimilation for Geosciences, Eds. E.
Blayo, M. Bocquet & E. Cosme, Oxford, 2014

* Data assimilation, Making sense of observations, Eds
W. Lahoz, B. Khattatov & R. Ménard, Springer, 2010

* Ocean Weather Forecasting, Eds. E. Chassignet & J.
Verron, Springer, 2006




-’

* Ocean models

* Observations of the ocean

* Ocean DA using Ensemble Kalman filters

* Ocean DA using variational methods (briefly)
* Future challenges



Ocean models
-’

* Primitive equations

* Scales

* Horizontal discretization
* Uncertainties

* Biogeochemistry



Primitive equations
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+ auxiliary conditions

*  momentum

* Mass

e Salt

* Temperature

Equation of state



Primitive equations
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Primitive equations

Due to nonlinear terms

SST from NATL60 YT.




Primitive equations
e

* Why does this matter for DA?

* Most tractable DA methods are designed for linear or
weakly nonlinear systems;

* All scales are involved and coupled in the dynamics.
Representing the circulation accurately requires high-
resolution (therefore expensive) models.

* And requires a lot of observations!



—

Length scale Velocity scale Time scale
Phenomenon L U T
Atmosphere:
Sea breeze 5-50 km 1-10 m/s 12 h
Mountain waves 10-100 km 1-20 m/s Days
Weather patterns 100-5000 km 1-50 m/s Days to weeks
Prevailing winds Global 5-50 m/s Seasons to years
Climatic variations Global 1-50 m/s Decades and beyond
Ocean:
Internal waves 1-20 km 0.05-0.5 m/s Minutes to hours
Coastal upwelling 1-10 km 0.1-1 m/s Several days
Large eddies, fronts 10-200 km 0.1-1 m/s Days to weeks
Major currents 50-500 km 0.5-2 m/s Weeks to seasons
Large-scale gyres Basin scale 0.01-0.1 m/s Decades and beyond



Scales particularly relevant for weather predictions and important for climate.

Length scale Velocity scale Time scale
Phenomenon L U T
Atmosphere:
Sea breeze 5-50 km 1-10 m/s 12 h
_ Mountain waves 10-100 km 1-20 m/s Days
Weather patterns 100-5000 km 1-50 m/s Days to weeks
~ Prevailing winds Giobat 5=56—mts Secasons to-years
Climatic variations Global 1-50 m/s Decades and beyond
Ocean:
Internal waves 1-20 km 0.05-0.5 m/s Minutes to hours
—Coastal-upwelling 1—10-km 0.1-1 m/s
Large eddies, fronts 10-200 km 0.1-1 m/s Days to weeks |
Major currents 50500 km 0.5=2m/sS A
Large-scale gyres Basin scale 0.01-0.1 m/s Decades and beyond



Scales

Baroclinic Rossby radius of deformation
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Ocean weather simulations ( netal, 1998)

require high resolution models!



Horizontal discretisation

* Figure: NEMO ORCA2
grid (2°) 20°N
* In 2015, operational
version at 1/12° at
Mercator-Océan

* Regional configuration
at higher resolutions

* Resolution is pushed
ahead...




Horizontal discretisation
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* Mercator operational
model: NEMO 1/12°

* Number of gridpoints:

4322 x 3059 x 75 ~ 10”
* 1 year of simulation
costs 414 Gb memory,
90000 CPU hours, 1Tb
storage (daily outputs) 1
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Horizontal discretisation
\

* Why does this matter for ocean DA?

* The higher the resolution, the more expensive the
model.

* 4DVar needs iterations, EnKF requires an ensemble and
accurate error covariances.

* A huge volume of observations is needed to control
such models.




Uncertainties
“

* Unresolved scales and parameterizations

* Forcings and boundary conditions



Uncertainties due to unresolved scales

and parameterizations

~—

* Example of a generally ignored effect: the state
equation
* Let <A> be the average value of A in the model
gridpoint;
* The model computes <T>, <S> from the conservation
equations
* Then computes density as:
p=p(<T><8>)
* Which is different from:
p=<p(T,S) >




Uncertainties due to unresolved scales
and parameterizations




Uncertainties due to unresolved scales

and parameterizations
\

A realistic temperature field and a possible model grid

NOEF RN
AR [ "

',
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Uncertainties due to unresolved scales

and parameterizations

——

ldea:

- represent the sub-grid variability in T and S with an ensemble, using
stochastic (random) perturbations;

- Compute density for each (T, S) pair;

- Compute the density mean.

mmm) Estimate p =< p(7T,S) > instead of p=p(<T >, <S5 >)



Uncertainties due to unresolved scales

and parameterizations
\

Fields of SSH from NEMO, ORCA2 (gridmesh 2°)

p=p(<T > <8>)

~

(Brankart, 2013)



Uncertainties due to unresolved scales

and parameterizations

Difference




Uncertainties due to boundary

conditions

Evaporation

OCEAN MODEL

-’

Yellow: atmospheric
Grey: oceanic

Green: parameterizations
White: physical processes



Uncertainties due to boundary

conditions

~a—
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Uncertainties due to boundary conditions
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Ocean models: uncertainties

—

* Why does this matter for ocean DA?

* Models has many sources of uncertainty;

* To set up the DA system correctly, one must identify at
best the various sources of errors and parameterize
their impact;

* DA can “guide” models, but also help in reducing the
original uncertainties (e.g., by estimating parameters)




Biogeochemistry

\
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SURFACE OCEAN
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NUTRIENTS OXYGEN
I—-A &£
~100 m x 22 —
5 222
= ESz
w)
= 5
=S
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NUTRIENTS ZOOPLANKTON OXYGEN

THERMOCLINE AND DEEP OCEAN

Ocean primary production is a key piece of the ocean life and the carbon cycles.



Biogeochemistry

* Simple NPZD ecosystem model
(Nutrients, Phyto, Zoo, Detritus)

* 10-30 tunable parameters:
* Growth rate, mortality
* Sedimentation speed
* Etc
* Already challenging for assimilation

—
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A

Z00




Biogeochemistry

* Generic pelagic
ecosystem models

* More than 100
tunable parameters

P
==

e [ Ol DissoRedlGasas
- O®) Oxygen
Organic Matter : Z | Mesozooplankton
: OF)| Carbon dioxide
R(" | Dissolved 2/ | carnivorous b R

R{) | Particulate (detritus) A A4

Z¥ | omnivorous

Microzooplankton
Microzooplankton
(s.5.)
Heterotrophic — N®) [ Ammonium
nanoflagellates ¢ NG | silicate

Phytoplankton N | Red. Equivalents

Diztoms

Flagellates

Picophytoplankton

B [Bacterioplankton

Large Phyto.

B, | Bacteria (zerobic

and ana=robic)

(Vichy et al, 2007)



Biogeochemistry
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Biogeochemistry
L

* No basic rule (e.g., Navier-Stokes equations) for
biology

* Very nonlinear system

* Many uncertain and tunable parameters

* Biology sensitive to dynamics and dynamical
instabilities

* Tracer concentrations are positive variables



Observations

m—

* In situ observations

* Profiling floats: ARGO project

* Moorings: OceanSITES project

* Ships: SOOP and GOSUD projects, and WOCE program
* Surface drifters: DBCP and E-SURFMAR projects
*
*

Gliders: EGO initiative
Marine mammals
* Satellite observations
* Altimetry
* Sea surface temperature (SST)
* QOcean color



In situ observation #1: profiling floats

Satellite antenna
Temperature/
/sallnity probe

Circuit boards &
satellite transmitter

Gear

motor Stability disk

Single stroke
pump

Battery

Hydraulic pump
(piston)

Hydraulic fluid

http://www.argo.ucsd.edu/



In situ observation #1: profiling floats

ARGO = network of profiling floats

sabatassentitoweatheriand climate
// / / / orecastingicentresiaround the world
| - «

| 1. Float deployed by SALINITY
| ship or aircraft 33.8 34.0 342 34.4 34.6 34.8
) L 1 1 1 1 1 1 1 1 1 ]
] 6.Up to 12 hours at surface to | TEMPERATURE (°C)
% __ transmit data to satellite 0. 4, 8. 12 16. 20. 24,
e o. 1 1 1 1 1 1 1 1 L 1 1
=
1 \ 400, -
1 : 7. Oil pumped back to internal reservoir
. Slow descent to 2000 metres 5. Témperature & salinity profile Néw cycle begins ] i
6 hours at 10 cm/s recorded during ascent
o 800. - L
K2
w
[
£ - L
wv
wv
&
! £ 1200. -
- 4. Oil'pumped from internal
reservoir to inflate external - . L
bladder causing float to rise
3. Drift for 9 days with 1600. L
ocean currents

2000.

http://www.argo.ucsd.edu/



In situ observation #1: profiling floats
\

* +++ : Spatial coverage, vertical information, autonomy

* ---:needs maintenance, some regions hard to
sample, poor sampling

60E 120 180° 120W 60'W 0 http://www.argo.ucsd.edu/



In situ observation #2: Moorings

T ———

* +++ : time sampling, vertical information, autonomy

* ---:expensive to build and maintain, poor spatial coverage

Standard ATLAS Mooring
Wind sensor 4/
1 i*—— ARGOS Antenna
(g Data Logger/
o

Transmitter

Sea Surface

[emperature Sensory

{1m depth)

femperature
Sensor

3/4" Nylon line

Accoustic release

Anchor (4,200 Ibs)

P 60°E 90°E 120°E 150°E 180° 150°W 120°W 0w 60°W

30°wW 0°
I )
OceansITES OceanSITES Status Map 2009 - Operating Sites jcommgg)

JCOMM it Obuarving Rationn Suppert cortis
OceanSITES Moorings and Observatories (91) Transport sites (16)

©® OPERATING Real time data (44) OPERATING

B OPERATING Delayed Mode data (47) ®  Transport Stations

Note: This status was based an information provided in 2009.

http://www.whoi.edu/virtual/oceansites/network/index.html



In situ observation #3: Ships

* Volunteer observing ships (VOS):

* +++: cost effective, vertical information -
* ---:limited to commercial routes, rarely deeper than
800 m

* Research vessels:

* +++: 0ften go to remote and poorly observed areas
* ---:extremely expensive, extremely poor coverage

XBT: Expendable
bathythermograph.
Measure temperature
and depth to ~1000 m




In situ observation #4: surface

drifters
* +++ : Spatial coverage,mﬁﬂ\

* ---:needs maintenance, some regions hard to
sample, poor sampling

—-

e T
e

A drifter measures surface temperature and currents.
http://[www.aoml.noaa.gov/

http://www.nefsc.noaa.gov/



In situ observation #5: gliders

* +++: flexible, vertical infor

* ---:limited to targeted campaigns

http://www.fastwave.com.au



In situ observation #6: marine

mammals

* +++:access to poorly observed area, \
information

* ---:limited spatial and temporal coverage

Sample poorly
A miniaturized CTD observed areas!
(Conductivity-Temperature- L

(a) MEOP-CTD dataset: 245863 profiles, 547 tags

Depth) probe




Satellite observation #1: altimetry

;.\ GPS

N satellite .
\ S i, Radar altimeter

O (emitter & antenna)

¥\ I® <«—— Altimeter

Jason-

Microwave radiometer
measuring water vapour

For atmospheric corrections

Laser

A ’
station

. Height of the satellite:
OSenauiace altitude ~1340 km

Sea surface
height




Satellite observation #1: altimetry

Orbit of Jason:
Cycle of 10 days.

2 AAANAAAAAAAAAAN/ Orbit-1 (Jason
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Satellite observation #1: altimetry

-‘

Orbit of GFO:
Cycle of 17 days.
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Satellite observation #1: altimetry

-‘

Orbit of Envisat and Saral:
Cycle of 35 days
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Satellite observation #1: altimetry

Epoch of the slope mid point = Distance t
\ N

Echo energy
=p Backscattering coefficlent c0

Leading edge slope
=p Significant wave height SWH

Plateau slope
=p Antenna pointing &

Start level
=p Thermal noise Nt

Radar altimetry provides information about mesoscale ocean topography (50-100 km)
and waves.



Satellite observation #1: altimetry
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Satellite observation #1: altimetry

) L) 1 b 1 L ) . 1 - 1 - |
Multi-missions MSL Slope = 3.13 mm/yr
6" —— Topex/Poseidon # =

] o -qpﬁ”’“ ‘.
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- 4_ —

5 . Envisat

Q —

& 2F a4
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T

= 1pF =
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1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

The continuity of satellite altimeters is essential for monitoring the mean sea level.



Satellite observation #2: SST

IR radiometer (e.g. AVHRR)
Microwave radiometer (e.g. AMSR-E)

Both at 1-km resolution.
MW insensitive to clouds but less
sensitive and easy to calibrate.

Aqua AMSR-E - Sea Surface Temperature (38km res)
Ascending passes DATE: 2004-07-23 DAY: 205

Some IR sensors are on-board
geostationary satellites (res. 5 km).
Most are polar orbiting.




Satellite observation #2: SST

-’

Two issues with satellite SST from the DA viewpoint:
Cloud detection
SSTis a “skin” temperature (representation error)



Satellite observation #3: Ocean color

\

Ocean color sensors record reflectances in the solar spectrum.

What causes the shape of 5, surface reflectance
0.02

. the spectrum? oa

Air moletyles
Aerosolg
Rayleigh/derosd

78

Fre neI

Suspended Particulate Matter(SPM)
CHL (pigment in Algae)

Silt & Clay
Coloured Dissolved Organic material (CDOM)

http://www.seos-project.eu/



Satellite observation #3: Ocean color

Ocean color sensors detect
chlorophyll.

Left: A phytoplankton bloom
captured near Alaska by Operational
Land Imager (OLI) on Landsat 8
(NASA).



Satellite observation #3: Ocean color

—

Proof of concept: CZCS (Coastal Zone Color Scanner), 1978-1986.
First operational ocean color products: SeaWIFS (Sea-viewing Wide Field-of-view

Sensor), 1997-2010

In addition to the various measurement errors (atmospheric corrections, etc), a
significant source of error lies in the algorithm to retrieve chlorophyll
concentrations. The accepted error is 30% in general.



Observations: summary
\

* Quite large diversity of in situ data, but rather sparse;

* A significant amount of satellite data, but satellites only
see the surface;

* They all contain uncertainties (measurement or
representation) that are difficult to estimate.

* An important aspect perhaps: observation operators are
generally much simpler than for atmospheric data
assimilation.

* SST and ocean color: perhaps a big potential as images.



Ocean DA using

Ensemble Kalman filters

.!GII>>

* Ensemble Kalman filters

* Localization

* Incremental Analysis Updating (1AU)

* Bogus

* Gaussian anamorphosis

* About the observation error covariance matrix



Ensemble Kalman filters

—

Kalman filter equations:

Initialization: x§ and P

Analysis step:
Ke = (HiPD)T[H(HPLT + R,
x2 = xb+ Ki(y? — Hext),
2 = (1— KkH)PL.

Forecast step:

X1 = Miks1xi,
f _ apaT
Pk+1 = Mk,k+1PkMk,k+1 + Q-



Ensemble Kalman filters

E—

Kalman filter equations:

Initialization: x/ and
Analysis step: "

Too big to store K= T «(HkPL) ™ + R,
X = Xkt Kek —HoG),

Plf(' Often too big to invert

Forecast step:

Often nonlinear in practice X1 1 =@k+1xi, Rarely that

’ -
f _ apna T simple, and
Piia = Mk,k+1PkMk,k+1 P

unknown




Ensemble Kalman filters

Observation

time



Model

Ensemble Kalman filters

_’

Forecasts A

Observation

time



Ensemble Kalman filters

Analyses

Observation

time



Ensemble Kalman filters

Analyses

Observation

time



Ensemble Kalman filters

Analyses

Observation

time



Ensemble Kalman filters

Analyses

Observation

time



Ensemble Kalman filters
.’

* In the forecast step, each member is advanced with
the numerical model:

J _ a ,
Xpa1,4 — Mk,kﬂ(xk,z‘) Nk,



Ensemble Kalman filters

Variable 2

(observed) s

Observation

Prior distribution

0 1

5 6 7

(uhobserved)

> 3
Variable 1




Ensemble Kalman filters

EnKF

.
Variable 2

(observed) s

Observation—— 2}

5 6 7

(uhobserved)

> 3
Variable 1



Ensemble Kalman filters
——

* At the analysis step, each member is corrected using
observations.

* Different analysis schemes exist:
* stochastic/deterministic,
* algebra in observation/ensemble space,
* Serial/batch processing of observations,

* With/without adaptive scheme at some point,
* etc



Ensemble Kalman filters
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Ensemble Kalman filters

HY

COM

Home >> Data Assimilation

* About

¢ HYCOM
o Overview
o Documentation
o Source Code
o Contact Info

« Youtube Videos

Home Need Help? Media Data Server Tools Login / Logout
search...

Login
Data Assimilation

A hierarchy of data assimilation techniques are evaluated as a function of computational resources and prediction
accuracy:

1. the Optimal Interpolation (Ol)

2. the Parameter Matrix Objective Analysis algorithm (PMOA)
3. the Reduced Order Adaptive Filter (ROAF)

4. the Reduced Order Information Filter (ROIF)

http://hycom.org/



Ensemble Kalman filters

m—

A simple view

* Ol methods

* Forecast of 1(mean) state

* Analysis using statistics from a fixed ensemble
* Stochastic EnKF

* Correction of each state with perturbed observations
* Deterministic EnKFs

* Correction of mean and anomalies without perturbing
observations



Ensemble Kalman filters

—

* Ocean DA: O(10° - 108) variables, O(103 - 10°) obs.
* Ensemble Kalman filters used in operational oceanic
DA systems:

* Ensemble Ol (Mercator-Océan, France; Bureau of
Meteorology, Australia; and others)

* Deterministic EnKF (NERSC, Norway)




Ensemble Kalman filters

—

* Ensemble Ol:
* Only a mean state is propagated with the model;

* The error modes are the same at any analysis step.
* ---:no estimation of uncertainties;

* +++: computationally affordable, robust (no collapse),
more “physically-based” than historical Ol with
analytical covariance functions.



| ocalization
\

* Localization aims at delimiting in space the impact of an
observation;

* Localization is necessary for several reasons:

* To avoid long-range corrections due to spurious long-range
correlations, themselves due to the small size of the
ensemble;

* To artificially increase the rank of the covariance matrix and
provide more degrees of freedom to the corrections;

* To make computation possible in some cases.



| ocalization
\

* Localization aims at delimiting in space the impact of an
observation;

* Localization is necessary for several reasons:

* To avoid long-range corrections due to spurious long-range
correlations, themselves due to the small size of the
ensemble;

* To artificially increase the rank of the cowariance matrix and
provide more degrees of freedom to the cgrrections;

* To make computation possible in some casesy

| discuss only this one today



Localization

Increments in SSH due to an observatio

‘
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m=200; no rank reduction m=200; no rank reduction mM=5000; rank reduction r=20
Awkward localization (Brankart et al 2011)
)



Model not involved during
analysis: discontinuity,
balance problems and shocks
at restart possible.

Right: spurious wave
generated by the assimilation
of a single observation.

—

Latitude

T (days) : 16970

DATA SET: incrS02_S00_016970

40°N

30°N —

20°N | \

10°N

Longitude

(Rozier et al, 2007)



—

* An empirical solution is Incremental Analysis Updating

(IAU, Bloom et al, 1996)

* |AU consists in computing corrections at the analysis
step, then re-running the ensemble over the forecast
window, adding incrementally to each member its
correction under the form of a forcing term.



Here, IAU is run from the
middle of the previous forecast
window to the middle of the
next forecast window.

Continuity is guaranteed
(perhaps at the expense of
quality of the analysis).

—

State
Avariablc

forecast

integration forecast

analysis  jnteoration

Y
analvsis
} } { } t B
i-1 i i+l i+2 i+3 t

FiG. 1. IAU method from Bloom et al. (1996); & represents the
increment.



Figure: spatially averaged
zonal velocity U in the Gulf
Stream zone.

Black: free run

Red: EnOl

Green: EnOl with |IAU

'i*,’l "’ ” i

it ‘;l, '

U (mvs)

1 L i L L

15700 15750 15800 15850 15900 15950 16000
Julian Days

1 L

FI1G. 12. Same as in Fig. 11, but at a 55-m depth (model depth level 5) from Julian day 15678
(4 Dec 1992) to 16038 (5 Dec 1993): black line represents FREE run, red line represents INT
run, and green line represents IAU run.

(Ourmiéres et al, 2005)



* Some quantities must be conserved. Example: mass.

divu=0

* Bogus: a fictitious observation of div u, equal to o.

* Bogus can be used in regions where the assimilation
makes things worse...



Gaussian anamorphosis
\

* Sometimes the distribution of some variables does
not follow a Gaussian law:

Silicate
s siL gx10° Sl o siL
as 7
8
3 6
§25 é 5 5 6
32 24 3
b4 B <
o015 o3 o 4
1 2r
2
0.5 1 | I I
N 0 1000 2000 3000 4000 0 0 1000 2000 3000 4000 0 0 1000 2000 3000 4000
Biological values (mg/m°) Biological values (mg/m°) Biological values (mg/m°)

Distribution of silicate at 3 different dates (over a large oceanic domain)
(Simon et al, 2009)



Gaussian anamorphosis
\

* Sometimes the distribution of some variables does
not follow a Gaussian law;

* But the EnKFs work better with Gaussian variables;

* Gaussian anamorphosis: transformation of a
distribution into a Gaussian distribution.

(Bertino et al, 2003)



Gaussian anamorphosis

* The transformation can
be analytical or empirical;

* On the opposite figure,
the transformation is
empirical;

* Such transformation can

be performed on each
variable individually.

= W W m w=m

3! JLL

N

35

(Béal et al, 2010)



Gaussian anamorphosis
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Here, the anamorphosis tends to “Gaussianize” the bivariate distribution.

(Brankart et al, 2012)



Gaussian anamorphosis
—

* After transformation, the EnKF analysis is performed,;

* Then, the physical variables are retrieved by the
inverse transformation.



MLD

Gaussian anamorphosis

. . . 1.4 1.
PHY PHY PHY

Obs. update at BATS station (65°W-32°N) using a perfect PHY observation. Prior ensemble (red), mean (green
square), linear regression line (thin green line), truth (big blue dot), posterior ensemble (blue dots). Left: EnKF
analysis; Middle: analysis in the transformed state space; Right: Anamorphosis-EnKF posterior. The thick green
line on the right is the transformation of the thin green line on the middle.

(Béal et al, 2010)



Gaussian anamorphosis

R

EnKF with anamorphosis EnKF with anamorphosis

Gaussian anamorphosis works well with weakly non Gaussian variables...

(Metref et al, 2014)



About the observation error
covariance matrix

Clakla

* The EnKF correction is either calculated with (using a
serial processing of observations)

5x = Sf(HS")T [(Hsf)(Hsf )T+ R] ~(y - Hx),

p/f — gfgf?

* Or, with T = (HS")TR-1(HS)

ox =S 1+ (HSH)TR 1 (y — Hx").



About the observation error
covariance matrix

.

* For simplification, all ocean DA systems consider the
observation error covariance matrix diagonal.

* To minimize the impact of the neglected correlations,
it is common to inflate the variances (in the
Norwegian operational system, they are multiplied by
2 for the update of the anomalies).

* On the other hand, many efforts are dedicated to the
construction of the state error covariance matrix.




Ocean DA using

variational methods

\

* Variational methods
* Parameterization of the covariance matrix



Variational methods
——

* Problem posed as the minimization of a cost function to
find the best compromise between a prior knowledge x°
and observations y:

e {%Hw . bu%}EHH(x) - yui}
Jp Jo

* With respect to a control vector x to choose carefully (very
often: initial condition)




Variational methods

* 3DVar and 4DVar: the cost functions are qmg

1 1
Jsp(w0) = 5 (w0 — ") "B (20 — 2%) + 5 (H(wo) — yo) "R (H (o) — o)
Tap(w0) = (w0 — 2T B e — %) + 5 3 (H(Mo-si(w0)) — ) R (H (Moi(0) — 1)

* Efficient minimisation algorithms are iterative and require
the gradient VJ(xo)

* Adjoint methods are (by far) the cheapest ways to compute
the gradient at each iteration.

* The adjoint model is often 2-4 times more expensive than
the direct model.



Variational methods

Observation

time
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Variational methods
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Parameterization of

the covariance matrix

\

* As with the EnKF, the full covariance matrix cannot be
built and stored.



Parameterization of

the covariance matrix

—

* Modelling of the covariance matrix with a series of

OperatorS:
B — KD1/201/2(01/2)TD1/2KT

with
* K: balance operator
* D: variances (diagonal)

* C: correlations (block diagonal), built with a diffusion
operator

(Weaver et al, 2005)



Parameterization of

the covariance matrix

——

* The balance operator is introduced to form
uncorrelated variables from the physical variables:

(T,S,SSH,U,V) X (T, Sy, SSHy, Uy, Vi)

* The uncorrelated variables are then used in the
control vector.

* The uncorrelated (unbalanced) variables are formed
by removing their parts that are balanced by the
others.

(Weaver et al, 2005)



Parameterization of

the covariance matrix

——

A single obs of T, located at 160W, oN, 100 m depth. 10-day 4DVar increments
on SSH, without (left) and with (right) the balance operator.

10N ] 10NT ]
(a) ] S N (b);
SNI- E SNE 7 T :

g | A S [

2 of 1 £ of e 1
5 ; S [~ = = ]
5S¢ . NG I ]
: ' - amE ‘
10SC . \ 10S¢ - ) ]

160E 180 160W 140W 120W 160E 180 160W 140W 120W

Longitude Longitude

Figure 4. Horizontal section of the SSH analysis increments generated by the 4D-Var assimilation of a

single-temperature observation (positive innovation) located ten days into an assimilation window at the same

geographical location as in the example in Fig. 2. The increments are displayed on day 10 for a 4D-Var experiment

(a) without and (b) with the balance operator activated. The fields have been multiplied by a factor 100 and the

same contour interval has been used here as in Fig. 2(e). Solid (dashed) contours indicate positive (negative)
values.

(Weaver et al, 2005)



Parameterization of

the covariance matrix

—

* Areduced-rank approach can be considered.

* The 4DVar increment is searched as a linear
combination of a fixed set of error modes:

-
(5X0 — E wZL{z} = Lw
i=1
* Minimization is carried out on w, a vector of sizer.

(Robert et al, 2005)



Parameterization of

the covariance matrix

The observation is here ical section

Experiment with a Full 4DVar | Lo .
Tropical Atlantic (diagonal B)# -+, - i =
model and 1 T - -
observation of T. R s -
Figure shows the —? Y T e T e e
incrementinT. e

Maximal correction is TP = .
0.94 on top Reduced  5.1i% - :
0.06 on bottom rank 4DVar VTS : =

Fig. 4. Temperature component of the optimal increment &x, for single observation experiments. Left: horizontal structure at z=—45 m; right:
vertical section along the equator. Top: full-space 4D-Var; bottom: reduced-space 4D-Var.

(Robert et al, 2005)



Future challenges
—_

* Big data assimilation
* |s it worse the effort?



Big

Yy

* Images (here,

chlorophyll) clearly
reveal the structure
of the flow;

How can such data
be assimilated into
models as images?

data assimilation

Ocean Topography

*
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Big data assimilation

* Correlated observation errors

-0.03

-0.06

A simulation of SWOT noise in the Med Sea



Big data assimilation
.’

* Big models, high resolution, small scale processes
* Increasing number of uncertainty sources
* Some hope in IA methods to help

E-NATL60 movies




Snapshot of ASSH from
# the 1/60° North Atlantic
~ simulation



"@}

/‘ Physical processes or

numerical artefact?




SWOT

Conventional
nadir altimetry

Length scale Velocity scale Time scale
Phenomenon L U /4
Atmosphere:
Sea breeze 5-50 km 1-10 m/s 12 h
Mountain waves 10-100 km 1-20 m/s Days
Weather patterns 100-5000 km 1-50 m/s Days to weeks
Prevailing winds Global 5-50 m/s Seasons to years
Climatic variations Global 1-50 m/s Decades and beyond
Ocean:
Internal waves 1-20 km 0.05-0.5 m/s Minutes to hours
Coastal upwelling 1-10 km 0.1-1 m/s Several days
Large eddies, fronts 10-200 km 0.1-1 m/s Days to weeks
Major currents 50-500 km 0.5-2 m/s Weeks to seasons
Large-scale gyres Basin scale 0.01-0.1 m/s Decades and beyond



m—

* Challenges:

* The physical processes that will be observed are not
well known;

* The signature of internal tides cam be superposed to
the balanced dynamics;

* The satellite will provide well separated (in time)
snapshots of short-lived structures.
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——

Can we retrieve the SSH evolution
between the two satellite revisits?

109 110 m 112






