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Scope of the lecture
Texte du titre

This DA lecture mostly deals with physical oceanography and 
the ocean circulation, but does not address:


• ocean wave forecasting


• tidal/storm surge forecasting


• ocean chemistry and water quality


• Fish, whales, sharks, jellyfish…


The slides are designed to be more or less "self-sufficient" 
==> wordy sometimes, not extremely fluent
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Atmospheric vs oceanic data assimilation

History and culture

Meteorology:


• strong and historical 
rooting in forecasting 
issues


• the most advanced field 
for high-dim. DA


• Dedicated manpower


• DA is culturally accepted

Oceanography:


• Forecasting is an issue, but 
not the only one 
(importance of observation-
centered DA)


• less maturity than in 
meteorology


• much less manpower


• DA is always questioned
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Illustration: maps of SSH

If a user needs a time series of global maps of Sea 
Level pressure, what will her choice be?
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Atmospheric vs oceanic data assimilation

Illustration: maps of SSH

If a user needs a time series of global maps of Sea 
Level pressure, what will her choice be?


An ECMWF reanalysis, probably.  

If a user needs a time series of global maps of SSH, 
what will her choice be?


DUACS products are the most widely used by 
oceanographers. They are made from nadir altimeter data 
with a space-time linear interpolation.



20

Atmospheric vs oceanic data assimilation

Observations

Meteorology: Oceanography:



21

Atmospheric vs oceanic data assimilation

Observations

Meteorology:


• Large number of 
observations

Oceanography:


• Comparatively small 
number of 
observations



22

Atmospheric vs oceanic data assimilation

Observations

Meteorology:


• Large number of 
observations


• Satellite observations 
are 3D

Oceanography:


• Comparatively small 
number of 
observations


• Satellite observations 
are 2D



23

Atmospheric vs oceanic data assimilation

Observations

Meteorology:


• Large number of 
observations


• Satellite observations 
are 3D


• Very often, observation 
operators are complex

Oceanography:


• Comparatively small 
number of 
observations


• Satellite observations 
are 2D


• Very often, observation 
operators are simple
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Atmospheric vs oceanic data assimilation

Dynamics and models

The scales particularly relevant for weather predictions and important for 
climate require more/finer observations in the ocean.
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Atmospheric vs oceanic data assimilation

Dynamics and models

∗ The scale of eddies is set by the Rossby radius 
of deformation:


	 N: Brunt-Vaïsala frequency


	 H: layer thickness


	 Ω: Earth rotation 

∗ ~30 km in the ocean, ~1000 km in the 
atmosphere


∗ Ocean weather simulations require high 
resolution models!

(Chelton et al, 1998)
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Atmospheric vs oceanic data assimilation

Dynamics and models

Surface current intensity

https://github.com/ocean-next/eNATL60
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Operational oceanography
Use of data assimilation

Operational 
oceanography 
started about 25 
years ago.
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Operational oceanography
Use of data assimilation

The main goal is real-time monitoring and prediction of the state 
of the ocean, including:


• Currents (shipping, sea operations, regattas…)


• Primary production (marine resources, fishing)


• Sea ice (shipping)


• Temperature (climate, weather forecasting…)


Like weather forecast centers, OO centers provide useful 
information to scientists: reanalyses, targeted forecasts for field 
campaigns, etc.
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Operational oceanography
Mercator Ocean International

Mercator Ocean International:


• The French center of OO;


• Created in 1995;


• Located in the area of Toulouse, about 50 agents;


• officially appointed by the European Commission on 11 November, 2014 
to implement and operate the Copernicus Marine Service (CMEMS).


• Development in collab with research labs


• http://www.mercator-ocean.fr/

http://www.mercator-ocean.fr/
http://www.mercator-ocean.fr/
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Ocean models
Primitive equations

Conservation of:


•  momentum


• Mass


• Salt


• Temperature


• Equation of state

Nonlinear terms

+ auxiliary conditions
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Ocean models
Discretization

• Mercator operational 
model: NEMO 1/12°


• Number of gridpoints:


• 1 year of simulation costs 
414 Gb memory, 90000 
CPU hours, 1Tb storage 
(daily outputs)
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Ocean models
Uncertainties: example of forcing conditions

Yellow: atmospheric


Grey: oceanic


Green: parameterizations


White: physical 
processes
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Ocean models
Uncertainties: example of forcing conditions
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Ocean models
Uncertainties: example of forcing conditions
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Observations of the ocean
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Observations of the ocean
In situ observation #1: profilers

http://www.argo.ucsd.edu/
ARGO = network of profiling floats
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Observations of the ocean
In situ observation #1: profilers

• +++ : Spatial coverage, vertical information, autonomy


• - - - : needs maintenance, some regions hard to sample, poor sampling

http://www.argo.ucsd.edu/
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Observations of the ocean
In situ observation #2: Moorings

• +++ : time sampling, vertical information, autonomy


• - - - : expensive to build and maintain, poor spatial coverage

http://www.whoi.edu/virtual/oceansites/network/index.html
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Observations of the ocean
In situ observation #3: surface drifters

• +++ : Spatial coverage, autonomy


• - - - : needs maintenance, some regions hard to sample, poor 
sampling

A drifter measures surface temperature and currents.

http://www.aoml.noaa.gov/ 
http://www.nefsc.noaa.gov/
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Observations of the ocean
In situ observation #4: marine mammals

• +++: access to poorly observed area, vertical information


• - - - : limited spatial and temporal coverage

A miniaturized CTD (Conductivity-
Temperature-Depth) probe

Sample poorly 
observed areas!
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Observations of the ocean
Satellite observation #1: altimetry

Radar altimeter 
(emitter & antenna)

For atmospheric corrections

Height of the satellite: 
~1340 km

https://www.aviso.altimetry.fr/en/home.html



47

Observations of the ocean
Satellite observation #1: altimetry

Orbit of Jason: Cycle of 10 days.
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Observations of the ocean
Satellite observation #1: altimetry

Orbit of Envisat and Saral:


Cycle of 35 days
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Observations of the ocean
Satellite observation #1: altimetry
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Observations of the ocean
Satellite observation #2: SST

- IR radiometer (e.g. AVHRR)


- Microwave radiometer (e.g. AMSR-E)


- Both at 1-km resolution.


- MW insensitive to clouds but less 
sensitive and easy to calibrate.


Some IR sensors are on-board 
geostationary satellites (res. 5 km). Most 
are polar orbiting.
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Observations of the ocean
Satellite observation #2: SST

Two issues with satellite SST from the DA viewpoint:


- Cloud detection


- SST is a “skin” temperature (representation error)
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EnKF implementations
Kalman filter equations
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EnKF implementations
Kalman filter equations

Too big to store

Often too big to invert

Often nonlinear in practice

Rarely that 
simple, and 
unknown
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EnKF implementations
EnKF forecast step

∗ In the forecast step, each member is advanced with the 
numerical model:
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EnKF implementations
EnKF analysis step

• At the analysis step, each member is corrected using observations.


• Different analysis schemes exist:


• stochastic/deterministic, 


• algebra in observation/ensemble space,


• Serial/batch processing of observations,


• With/without adaptive scheme at some point,


• etc



57

EnKF implementations
Flavors of EnKF: illustration

SANGOMA European project, http://www.data-assimilation.net/)
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EnKF implementations
Flavors of EnKF: illustration

http://hycom.org/
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EnKF implementations
Flavors of EnKF: A simple view

• OI methods


• Forecast of 1 (mean) state


• Analysis using statistics from a fixed ensemble


• Stochastic EnKF


• Correction of each state with perturbed observations


• Deterministic EnKFs


• Correction of mean and anomalies without perturbing observations
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EnKF implementations
Flavors of EnKF: A simple view

• Ocean DA: O(106 - 108) variables, O(103 - 105) obs.


• Ensemble Kalman filters used in operational oceanic DA 
systems:


• Ensemble OI (Mercator-Océan, France; Bureau of 
Meteorology, Australia; and others)


• Deterministic EnKF (NERSC, Norway)
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EnKF implementations
Ensemble Optimal Interpolation

• Ensemble OI:


• Only a mean state is propagated with the model;


• The error modes (ensemble anomalies) are the same at all 
analysis steps.


• - - - : no estimation of uncertainties;


• +++: computationally affordable, robust (no collapse), more 
“physically-based” than historical OI with analytical 
covariance functions.
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EnKF implementations
Localization

• Localization aims at delimiting in space the impact of an 
observation;


•  Localization is necessary for several reasons:


• To avoid long-range corrections due to spurious long-range 
correlations, themselves due to the small size of the 
ensemble;


• To artificially increase the rank of the covariance matrix and 
provide more degrees of freedom to the corrections;


• To make computation possible in some cases.
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EnKF implementations
Localization

• Localization aims at delimiting in space the impact of an 
observation;


•  Localization is necessary for several reasons:


• To avoid long-range corrections due to spurious long-range 
correlations, themselves due to the small size of the 
ensemble;


• To artificially increase the rank of the covariance matrix and 
provide more degrees of freedom to the corrections;


• To make computation possible in some cases.

Short illustration of this, today
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EnKF implementations
Localization

Increments in SSH due to an observation here

m=5000; no rank reduction m=200; no rank reduction m=5000; rank reduction r=20

Without 
localization

With 
localization

m=200; no rank reduction 
Awkward localization

m=200; no rank reduction m=5000; rank reduction r=20

(Brankart et al, 2011)
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EnKF implementations
Incremental Analysis Updating (IAU)

Model not involved during 
analysis: discontinuity, 
balance problems and 
shocks at restart possible.


Right: spurious wave 
generated by the 
assimilation of a single 
observation.


(Rozier et al, 2007)
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EnKF implementations
Incremental Analysis Updating (IAU)

• An empirical solution is Incremental Analysis Updating (IAU, Bloom et al, 1996)


• IAU consists in computing corrections at the analysis step, then re-running the 
ensemble over the forecast window, adding incrementally to each member its 
correction under the form of a forcing term.

Here, IAU is run from the middle of the 
previous forecast window to the 
middle of the next forecast window.


Continuity is guaranteed (perhaps at 
the expense of quality of the analysis).
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EnKF implementations
Incremental Analysis Updating (IAU)

Figure: spatially averaged 
zonal velocity U in the Gulf 
Stream zone.


Black: free run


Red: EnOI


Green: EnOI with IAU

(Ourmières et al, 2005)
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EnKF implementations
Bogus

• Some quantities must be conserved. Example: mass.


• Bogus: a fictitious observation of div u, equal to 0.


• Bogus can be used in regions where the assimilation makes 
things worse…
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EnKF implementations
Gaussian anamorphosis

(Simon et al, 2009)

Distribution of silicate at 3 different dates (over a large oceanic domain)

• Sometimes the distribution of some variables does not 
follow a Gaussian law;
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EnKF implementations
Gaussian anamorphosis

• Sometimes the distribution of some variables does not 
follow a Gaussian law;


• But the EnKFs work better with Gaussian variables;


• Gaussian anamorphosis: transformation of a distribution into 
a Gaussian distribution.

(Bertino et al, 2003)
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EnKF implementations
Gaussian anamorphosis

• The transformation can be 
analytical or empirical;


• On the opposite figure, the 
transformation is empirical;


• Such transformation can be 
performed on each variable 
individually.

(Béal et al, 2010)
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EnKF implementations
Gaussian anamorphosis

• After transformation, the EnKF analysis is performed;


• Then, the physical variables are retrieved by the inverse 
transformation.
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EnKF implementations
Gaussian anamorphosis

Obs. update at BATS station (65◦W-32◦N) using a perfect PHY observation. Prior ensemble (red), mean (green square), linear 
regression line (thin green line), truth (big blue dot), posterior ensemble (blue dots). Left: EnKF analysis; Middle: analysis in the 

transformed state space; Right: Anamorphosis-EnKF posterior. The thick green line on the right is the transformation of the 
thin green line on the middle.

(Béal et al, 2010)
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EnKF implementations
About the observation error covariance matrix 

• The EnKF correction is either calculated with (using a serial processing of 
observations)


• Or, with 
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EnKF implementations
About the observation error covariance matrix 

• For simplification, all ocean DA systems consider the 
observation error covariance matrix diagonal.


• To minimize the impact of the neglected correlations, it is 
common to inflate the variances (in the Norwegian 
operational system, they are multiplied by 2 for the update 
of the anomalies).


• On the other hand, many efforts are dedicated to the 
construction of the state error covariance matrix.
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Assimilation of images
Optical images

Ocean color sensors detect chlorophyll. 

A phytoplankton bloom captured near 
Alaska by Operational Land Imager (OLI) on 

Landsat 8 (NASA).

AVHRR composite image of 
SST.



78

Assimilation of images
Optical images

AVHRR composite image of 
SST.

Example: Optic flow methods

with T observed and w driven 
by a shallow-water model:
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 Altimetric products and the SWOT mission

Sea Level anomaly maps

Present-day nadir 
altimetry is processed to 
provide gridded maps of 
Sea Level Anomaly. This 
is done with the DUACS 
algorithm at CNES/CLS, 
implementing statistical 
interpolation.


These maps resolve 
scales of 200 km and 10 
days.

https://www.aviso.altimetry.fr/en/home.html
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 Altimetric products and the SWOT mission

The SWOT mission

• SWOT: Surface Water and Ocean 
Topography


• Satellite mission launched in 2022


• Revolutionary altimetric observation: 
120 km-wide swath


• Pixel of 2 km, revisit 10 days (mismatch)

https://swot.jpl.nasa.gov/
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 Altimetric products and the SWOT mission

The SWOT mission
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 Altimetric products and the SWOT mission

The SWOT mission

decorrelation time as a function of wavelength

Morrow et al., 2019

• Mismatch between spatial 
and temporal coverage of 
SWOT


• Expectation that dynamics 
must be considered in the 
interpolation


• ==> data assimilation
SWOT spatial 

resolution

SWOT temporal 
resolution
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Mapping balanced motions with a nudging 
technique 
Methodology


• Method: Back-and-forth nudging (BFN) with a 1.5-layer quasi-geostrophic (QG) 
model.


• Why a simple 1.5-layer QG model?


It is a simple model able to capture a large part of mesoscale ocean dynamics as 
observed by altimetry. 

• Why BFN?


It is a conceptually simple method. 

The QG dynamics is governed by a single variable, almost directly observed.

Le Guillou et al, 2020
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Mapping balanced motions with a nudging 
technique 
Methodology


Forward nudging: 
∂X
∂t

= M (X ,t)+ K( yobs − X )

∂X
∂t

= M (X ,t) X (T ) = xT(QG) Backward propagation:

Backward nudging: 
∂X
∂t

= M (X ,t)− K( yobs − X )

BFN algorithm (Auroux et al., 2008):  combination of the forward 
nudging and the backward nudging in an iterative process over a 

temporal window

∂X
∂t

= M (X ,t) X (0) = x0(QG) Forward propagation:
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Mapping balanced motions with a nudging 
technique 
Experimental setup


Our studied 
region
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Mapping balanced motions with a nudging 
technique 
Experimental setup


- 4 conventional 
along-track 

altimeters (Nadirs) 


- SWOT


- No errors 
considered

88
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Mapping balanced motions with a nudging 
technique 
Results


Example with SWOT + Nadirs constellation

Le Guillou et al, 2020
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Nudging nadir altimetry only 

Results
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Nudging is so flexible 

Results
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Eddy/wave separation with a 4DVar technique

Problem statement

SWOT

Conventional 
nadir altimetry
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Eddy/wave separation with a 4DVar technique

Problem statement and experimental setup

ηtruth ηIT
truthηBM

truth

Observation 
One snapshot every 75 h (=3d+3h),  
free of noise

ηBM
truth(t0) =

1
2T ∫

t0+T

t0−T
ηtruth(t)dt

ηIT
truth(t0) =

1
T ∫

t0+T

t0−T
ηtruth(t) ⋅ cos ( 2π

T
t) dt

ηtruth = ηBM
truth + ηIT

truth

Reference

BM: Balanced motions    IT: Internal tides

Simulation: Ponte et al, 2017
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Eddy/wave separation with a 4DVar technique

Method: coupled BM and IT estimations

BM estimation

• Dynamics 

1-layer linear shallow water model…











…forced by open boundary conditions


• Data assimilation technique: 

4Dvar, minimizing the cost function: 
                
where  : model parameters  (  and boundary             
conditions)    

∂tu − f v = − g∂xη

∂tv + fu = − g∂yη

∂tη = − He(∂xu + ∂yv)

J(p) = | |ηobs − η | |2

p He

IT estimation

• Dynamics 

1.5-layer quasi-geostrophic model





where:  , 


• Data assimilation technique 

BFN, based on nudging equation: 
 

Le Guillou, F., Metref, S., Cosme, E., Ubelmann, C., Ballarotta, M., Le 
Sommer, J., & Verron, J. (2021). Mapping Altimetry in the Forthcoming 
SWOT Era by Back-and-Forth Nudging a One-Layer Quasigeostrophic 
Model, Journal of Atmospheric and Oceanic Technology, 38(4), 
697-710. 
 

∂tq + J(ψ, q) = 0

ψ =
g
f

η q = ∇2ψ −
1

LR
2 ψ

∂tq + J(ψ, q) − K(qobs − q) = 0
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4DVar control parameters: illustration

He[m]

Eddy/wave separation with a 4DVar technique
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Alternating minimization

ηobs

BM 
estimation

̂ηBM

IT 
estimation

̂ηIT

ηIT
obs = ηobs− ̂ηBM

ηBM
obs = ηobs− ̂ηIT

Eddy/wave separation with a 4DVar technique
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Results: convergence

• Convergence reached after 
10 iterations.


• Throughout iterations, both 
components are 
progressively separated.


• IT estimation looks very 
similar to the truth

Eddy/wave separation with a 4DVar technique

Le Guillou et al, 2021
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Results: estimation of nonstationary IT
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• Data Assimilation: Methods, Algorithms and Applications, 
M. Asch, M. Bocquet & M. Nodet, SIAM, 2016


• Advanced data assimilation for Geosciences, Eds. E. 
Blayo, M. Bocquet & E. Cosme, Oxford, 2014


• Data assimilation, Making sense of observations, Eds W. 
Lahoz, B. Khattatov & R. Ménard, Springer, 2010


• Ocean Weather Forecasting, Eds. E. Chassignet & J. 
Verron, Springer, 2006
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Eddy/wave separation with a 4DVar technique

Problem statement


