:UGA

Univ. Grenoble Alpes

\,

Institut
des géosciences
de I'environnement

Ocean data assimilation

SOAC master’s program
February 5, 2024

Emmanuel COSME
Université Grenoble Alpes, IGE, Grenoble



Scope of the lecture

©)

This DA lecture mostly deals with physical oceanography and
the ocean circulation, but does not address:

e ocean wave forecasting

e tidal/storm surge forecasting

e ocean chemistry and water quality
* Fish, whales, sharks, jellyfish...

The slides are designed to be more or less "self-sufficient”
==> wordy sometimes, not extremely fluent
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Meteorology: Oceanography:
* strong and historical * Forecasting is an issue,
rooting in forecasting but not the only one

(importance of
observation-centered
DA)

ISsues

e the most advanced

field for high-dim. DA e |ess maturity than in
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Meteorology:

strong and historical
rooting in forecasting
Issues

the most advanced field
for high-dim. DA

Dedicated manpower

DA is culturally accepted

Atmospheric vs oceanic data assimilation

Oceanography:

Forecasting is an issue, but
not the only one
(importance of observation-
centered DA)

less maturity than in
meteorology

much less manpower

DA is always questioned

15
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An ECMWEF reanalysis, probably.

If a user needs a time series of global maps of
SSH, what will her choice be?
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Atmospheric vs oceanic data assimilation
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If a user needs a time series of global maps of Sea
Level pressure, what will her choice be?

An ECMWEF reanalysis, probably.

If a user needs a time series of global maps of SSH,
what will her choice be?

DUACS products are the most widely used by
oceanographers. They are made from nadir altimeter data

with a space-time linear interpolation.
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Meteorology: Oceanography:
* |Large number of e Comparatively small
observations number of

observations

o Satellite observations
are 3D o Satellite observations

are 2D

* \Very often, observation
operators are complex * Very often, observation
operators are simple
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(/’*\ Atmospheric vs oceanic data assimilation

Length scale Velocity scale Time scale
Phenomenon L U 1
Atmosphere:
Sea breeze 5-50 km 1-10 m/s 12 h
Mountain waves 10-100 km 1-20 m/s Days
Weather patterns 100-5000 km 1-50 m/s Days to weeks
Prevailing winds Global 5-50 m/s Seasons to years
Climatic variations Global 1-50 m/s Decades and beyond
Ocean:
Internal waves 1-20 km 0.05-0.5 m/s Minutes to hours
Coastal upwelling 1-10 km 0.1-1 m/s Several days
Large eddies, fronts 10-200 km 0.1-1 m/s Days to weeks
Major currents 50-500 km 0.5-2 m/s Weeks to seasons
Large-scale gyres Basin scale 0.01-0.1 m/s Decades and beyond
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(/’*\ Atmospheric vs oceanic data assimilation

The scales particularly relevant for weather predictions and important for
climate require more/finer observations in the ocean.

Length scale Velocity scale Time scale

Phenomenon L U 1
Atmosphere:
Sea breeze 5-50 km 1-10 m/s 12 h
Mountain waves 10-100 km 1-20 m/s Days

Weather patterns 100-5000 km 1-50 m/s Days to weeks
Prevailing winds Global 5-50 m/s Seasons to years
Climatic variations Global 1-50 m/s Decades and beyond
Ocean:
Internal waves 1-20 km 0.05-0.5 m/s Minutes to hours
Coastal upwelling 1-10 km 0.1-1 m/s Several days
Large eddies, fronts 10-200 km 0.1-1 m/s Days to weeks
Major currents 50-500 km 0.5-2 m/s Weeks to seasons
Large-scale gyres Basin scale 0.01-0.1 m/s Decades and beyond
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7\ Atmospheric vs oceanic data assimilation

Baroclinic Rosshy radius of deformation
40 60 8D 10C 120 140 116G 180 160 140 120 100 B0

60 S

“ The scale of eddies is set by the Rossby radius
of deformation:

EaRT) N
\ .
.e 20 ==
N: Brunt-Vaisala frequency AN

H: layer thickness
Q): Earth rotation 20

* ~30 km in the ocean, ~1000 km in the 40
atmosphere

o 1 ] ’
&0 w Qom
0.0 ’/\

* Ocean weather simulations require high acliie Jiistindnitelie... - | %0 o

i
resoluhon models' 40 60 80 110G 120 140 186G 180 180 140 120 100 B0 &0 40 20 0 20

(Chelton et al, 1998)
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</’~\ Atmospheric vs oceanic data assimilation

Dynamics and models

I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.6 1.1 1.2 1.3 1.4
m/s

https://github.com/ocean-next/eNATL60
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Operational
oceanography
started about 25
years ago.
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Operational oceanography

©)

The main goal is real-time monitoring and prediction of the state
of the ocean, including:

e Currents (shipping, sea operations, regattas...)
e Primary production (marine resources, fishing)
e Sea ice (shipping)

e Temperature (climate, weather forecasting...)

Like weather forecast centers, OO centers provide useful
information to scientists: reanalyses, targeted forecasts for field
campaigns, etc.

31



Operational oceanography

©)

Mercator Ocean International:
* The French center of OQ;

* Created in 1995;

* Located in the area of Toulouse, about 50 agents;

officially appointed by the European Commission on 11 November, 2014
to implement and operate the Copernicus Marine Service (CMEMS).

* Development in collab with research labs

e http://www.mercator-ocean.fr/
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Ocean models
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Conservation of:

Ou| Ou  Ou  Ou|_ 10p . 0% *  momentum
ot [ "oz T v@y Yor | fv_pc‘? +Ku8z2
v ov ov ov | 10p 0%v
- = P9
Nonlinear terms - « Mass
dive =0
p%s = div (Ksgrad S) Salt
PO DT _ div (Kygrad T)  Temperature
p=pT.5p) e Equation of state

+ auxiliary conditions
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7~ Ocean models

7

OPERATIONNEL 1/12, PREVISION, velocity 92m

3059 . | T =
wa ¥
¥

 Mercator operational
model: NEMO 1/12°

2295

e Number of gridpoints:

4322 % 3059 x 75 ~ 10

e 1 year of simulation costs
414 Gb memory, 90000
CPU hours, 1Tb storage
(daily outputs)

1 1081 2162 3242 4322

0.01 0.02 0.03 0.05 0.10 0.20 0.30 0.50 1.00

LEGI-MEOM
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—\ Ocean models

surface forcmg of an OGCM (DRAKKAR exp., Barnier et al)
1958-2004

ospheric AL -
| "o, B | T T Shourly || R ADen Yellow: atmospheric
oo | I Bulk Formula Bulk Formulae (irall et '

Grey: oceanic

Green: parameterizations

X
Turbulent Precip. & Radiative

heat flux River runoff Heat flux

14C, CFC,, flux Evaporation || Wind stress

White: physical
processes

OCEAN MODEL
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—\ Ocean models
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—\ Ocean models
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—\ Observations of the ocean

Satellite antenna
: Temperature/
1 /salinity probe

Circuit boards &
satellite transmitter

Gear

motor Stability disk

Single stroke
pump

Battery

Hydraulic pump
(piston)

Hydraulic fluid
Bladder

http://www.argo.ucsd.edu/
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—\ Observations of the ocean

SALINITY
o arl 8, Data%sent to weather and climate 33.8 34.0 34.2 34.4 34.6 34.8
v/l / / P forecastingieentresiarounditheiworld 1 1l S
5 TEMPERATURE (°C)
0. 4, 8. 12. 16. 20. 24,
1. Float deployed by : .‘ 0. L l__.__.l——L—l !
ship or aircraft - I ——
i } 6. Up to 12 hours at surface to I
3 “ transmit data to satellite N B
1
400- = -
1 - —
7. Oil pumped back to internal reservoir
2. Slow descent to 2000 metres 5! Te'mperature & salinity profile New cycle begins _
6 hours at 10 cm/s récorded during ascent % 800. - n
: m
1 x - n
: =2
wv
v
w
E 1200. - -
= 4. Oil'pumped from internal
reservoir to inflate external -
bladder causing float to rise - =
3. Drift for 9 days with
ocean currents
16m. ~ p—
2000, - -

ARGO = network of profiling floats

http://www.argo.ucsd.edu/ 41



—\ Observations of the ocean

* +++ : Spatial coverage, vertical information, autonomy

* - - - needs maintenance, some regions hard to sample, poor sampling

http://www.argo.ucsd.edu/ 42



Observations of the ocean

* +++ : time sampling, vertical information, autonomy

* - - - expensive to build and maintain, poor spatial coverage
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3 —
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P ) J 20°5 ]
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" | |
Temperature s
4 | |
Sensors ® ]

lemperature 60°S—
Sensor u g LI -
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i/ﬂ W'r(’ rom T T T T T T T T T
P 60°E 90°E 120°E 150°E 180° 150°W 120°W 90°W 60°W 0 W
< . jcom mjs
3/4* Nylon line OceansITES OceanSITES Status Map 2009 - Operating Sites |~ =%~
OceanSITES Moorings and Observatories (91) Transport sites (16)
© OPERATING Real time data (44) OPERATING
M OPERATING Delayed Mode data (47) ®  Transport Stations

&
o Accoustic release

Note: This status was based on information provided in 20089.

B Anchar 42009 http://www.whoi.edu/virtual/oceansites/network/index.html




—\ Observations of the ocean

* +++ : Spatial coverage, autonomy

* - - - needs maintenance, some regions hard to sample, poor
sampling

A drifter measures surface temperature and currents.
http://www.aoml.noaa.gov/
http://www.nefsc.noaa.gov/ 44



—\ Observations of the ocean

J

* +++: access to poorly observed area, vertical information

* - - - limited spatial and temporal coverage

x10°  (b) DIVE DEPTH

6
|
0

0 500 1000 1500

(a) MEOP-CTD dataset: 245863 profiles, 547 tags

A miniaturized CTD (Conductivity-
Temperature-Depth) probe

(c) YEAR

04050607080910 1112 13

x10°  (d)MONTH

;Iillln....

JFMAMJ JASOND

o — n w B

105 (e) GEO. ZONE

Sample poorly !59-—
observed areas!
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Observations of the ocean

( J Satellite observation #1: altimetry

" satellit Radar altimeter
(emitter & antenna)

Jason-2
.rﬂ'l
W —— Altimeter

Microwave radiometer
measuring water vapour

For atmospheric corrections

altitude

¢ Ocean surface Satellite

topography

Sea surface

height Height of the satellite:
‘ ~1340 km

https://www.aviso.altimetry.fr/len/home.html 46



(‘\ Observations of the ocean
5)

Orbit of Jason: Cycle of 10 days.

P O T s S

4: f’}t’ :‘g“ "‘.’}" " ’v ’V ’V v. H=1336km i=66

:;s ” “"’s‘.‘ “ “ “ "é‘\’ (sub-)cycles (days) : 0.9 3.3 9.9
- AR
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Observations of the ocean
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12°N
8°N
A°N
o*
4°S
8*s
12°S

Orbit of Envisat and Saral:

Cycle of 35 days

Orbit-3 (Envisat, Saral

&‘: o;'gwéé g QWW i &9 .,
Q %W; % {f H=782km i=98
RKAN
J o) () 0

QQ\ (sub-)cycles (days) : 1.0 3.0 17.5 35.0
’M w’ N

i
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—\ Observations of the ocean
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Observations of the ocean

©)

- IR radiometer (e.g. AVHRR)

- Microwave radiometer (e.g. AMSR-E)

- Both at 1-km resolution.

N\Qé Aqua AMSR-E - Sea Surface Temperature (38km res) -
f-\ Ascending passes DATE: 2004-07-23 DAY: 205 "’

- MW insensitive to clouds but less
sensitive and easy to calibrate.

Some IR sensors are on-board
geostationary satellites (res. 5 km). Most
are polar orbiting.
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Observations of the ocean

©)

Two issues with satellite SST from the DA viewpoint:
- Cloud detection

- SST is a “skin” temperature (representation error)

51
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EnKF implementations

©)

Initialization: x} and P}
Analysis step:
(HkPZ)T[Hk(HkPIi)T + Rk]_la
x2 X} + Ki(ys — Hix}),
2 = (1— KkHk)P}.

A
-
|

Forecast step:

a
Xjet1 My k+1X5,
f L anaT
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Initialization: xj an

Analysis step:

EnKF implementations

Often too big to invert

(PP + R

Too big to store 3

Forecast step:

Often nonlinear in practice

Ko ’
k k+1P Mk k+1

xj + Ky (yg — Hex}),

(1 — K{H,)PL.

Rarely that
s1mple, and
unknown
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EnKF implementations
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* |In the forecast step, each member is advanced with the
numerical model:

f

. a
Xk+1,5 — Mk,kﬂ(xk,z‘) + Nk,i
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EnKF implementations

©)

* At the analysis step, each member is corrected using observations.
* Different analysis schemes exist:

* stochastic/deterministic,

* algebra in observation/ensemble space,

* Serial/batch processing of observations,

* With/without adaptive scheme at some point,

* etc

56



~ ) EnKF implementations

/

Deliverable 3.1

Contents

1 Introduction 4
11 Theproblem ... .. ... ... . . .. . . . e e 4

2 Ensemble Kalman filters 6
2.1 The original ensemble square root filter (ENSRF) . . . ... .. .. 7
2.2 The ensemble transform Kalman filter (ETKF) . . . . . .. ... .. 8
2.3 The ensemble adjustment Kalman filter (EAKF) . . . . .. ... .. 10
2.4 The singular evolutive interpolated Kalman filter (SEIK) . ... .. 11
2.5 The error-subspace transform Kalman filter (ESTKF) . . . . .. .. 12
2.6 The original ensemble Kalman filter (EnKF) . . . ... .. ... .. 13

SANGOMA European project, http://www.data-assimilation.net/) 57



7\ EnKF implementations

7

Consortium
for Data
Assimilative
COM Modeling
Home Need Help? Media Data Server,, Tools , Login / Logout ,
Home >> Data Assimilation search...
Login
R Data Assimilation
ierarchy of data assimilation techniques are evaluated as a function of computational resources and prediction
e HYCOM A hi hy of data imilation techni luated functi f tational d dicti
o Overview accuracy:
© Documentation 1. the Optimal Interpolation (Ol)
o Source Code 2. the Parameter Matrix Objective Analysis algorithm (PMOA)
o Contact Info 3. the Reduced Order Adaptive Filter (ROAF)
4. the Reduced Order Information Filter (ROIF)
¢ Youtube Videos
http://hycom.org/ 58



EnKF implementations

©)

e Ol methods

e Forecast of 1 (mean) state

* Analysis using statistics from a fixed ensemble
e Stochastic EnKF

e Correction of each state with perturbed observations
* Deterministic EnKFs

e Correction of mean and anomalies without perturbing observations

59



EnKF implementations

©)

* Ocean DA: O(106é - 108) variables, O(103 - 109%) obs.

* Ensemble Kalman filters used in operational oceanic DA
systems:

* Ensemble Ol (Mercator-Ocean, France; Bureau of
Meteorology, Australia; and others)

* Deterministic EnKF (NERSC, Norway)

60



EnKF implementations

©)

* Ensemble Ol:
* Only a mean state is propagated with the model;

* The error modes (ensemble anomalies) are the same at all
analysis steps.

* - - -:no estimation of uncertainties;

* +++: computationally affordable, robust (no collapse), more
“physically-based” than historical Ol with analytical
covariance functions.
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EnKF implementations

©)

* Localization aims at delimiting in space the impact of an
observation;

* Localization is necessary for several reasons:

* To avoid long-range corrections due to spurious long-range
correlations, themselves due to the small size of the
ensemble;

* To artificially increase the rank of the covariance matrix and
provide more degrees of freedom to the corrections;

* To make computation possible in some cases.

62



EnKF implementations

©)

* Localization aims at delimiting in space the impact of an
observation;

* Localization is necessary for several reasons:

* To avoid long-range corrections due to spurious long-range
correlations, themselves due to the small size of the
ensemble;

* To artificially increase the rank of the covariance matrix and
provide more degrees of freedom to the corrections;

* To make computation possible in some cases.

Short illustration of this, today 63



~ ) EnKF implementations

J

Increments in SSH due to an observation here

m=5000; no rank reduction m=200; ngtrank reduction m=5000; rank reduction r=20

Without
localization

With
localization

L [!1[[! [IIlll

-04 -02 00 02 04 06 08 10 -04 -02 00 02 04 06 08 10 -04 -02 00 02 04 06 08 10

m=200; no rank reduction

AR m=200; no rank reduction m=5000; rank reduction r=20
Awkward localization

(Brankart et al, 2011) 64



) EnKF implementations

T (days) : 16970 DATA SET: incrSO2_S00_016970

Model not involved during
analysis: discontinuity,
balance problems and
shocks at restart possible.

Latitude

Right: spurious wave
generated by the
assimilation of a single
observation.

Longitude

(Rozier et al, 2007) 45



EnKF implementations

©)

* An empirical solution is Incremental Analysis Updating (IAU, Bloom et al, 1996)

* 1AU consists in computing corrections at the analysis step, then re-running the
ensemble over the forecast window, adding incrementally to each member its
correction under the form of a forcing term.

State
Avariablc

forecast

Here, IAU is run from the middle of the
previous forecast window to the

: el forecast
integration | 5
1Y

v

middle of the next forecast window. WA ntegration—
Continuity is guaranteed (perhaps at e
the expense of quality of the analysis). — .

FiG. 1. IAU method from Bloom et al. (1996); & represents the
increment.

66



EnKF implementations

©)

0.065 -

0.06

Figure: spatially averaged
zonal velocity U in the Gulf oo} |
Stream zone. oo | M1

U (m/s)

0.045

Black: free run

0.04 - |

Red: EnOl o

0.03

Green EnOI W|th IAU 15700 15750 15800 15850 15900 15950 16000

Julian Days

F1G. 12. Same as in Fig. 11, but at a 55-m depth (model depth level 5) from Julian day 15678
(4 Dec 1992) to 16038 (5 Dec 1993): black line represents FREE run, red line represents INT
run, and green line represents IAU run.

(Ourmieres et al, 2005) 67



EnKF implementations

©)

* Some guantities must be conserved. Example: mass.

divu =0
* Bogus: a fictitious observation of div u, equal to 0.

* Bogus can be used in regions where the assimilation makes
things worse...
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EnKF implementations
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* Sometimes the distribution of some variables does not
follow a Gaussian law;

Silicate
8 SIL
6 SIiL x 10 6 SIL
aX 10 . 8— T T - 10 X 10 .
3.5} Ui
at 6/ 8
.§ 2.5 i é 5 | .5 6 -
-: ﬁ .5
=z = 2 4
o 1.5} O 3f (=}
1t 2f ‘
2 L
0.5} 1t I | | ‘
%% 1000 2000 3000 4000 % 1000 2000 3000 4000 0% 1000 2000 3000 4000
Biological values (mg/m°) Biological values (mg/m") Biological values (mg/m°)

Distribution of silicate at 3 different dates (over a large oceanic domain)

(Simon et al, 2009)



EnKF implementations
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* Sometimes the distribution of some variables does not
follow a Gaussian law;

* But the EnKFs work better with Gaussian variables;

* Gaussian anamorphosis: transformation of a distribution into
a Gaussian distribution.

(Bertino et al, 2003)  ,,



EnKF implementations
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* The transformation can be
analytical or empirical;

| /
T
Y

= WM W = =

* On the opposite figure, the
transformation is empirical;

. 9
i 1
* Such transformation can be - 9 -
performed on each variable ’ T

individually.

(Béal et al, 2010) 71



EnKF implementations
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* After transformation, the EnKF analysis is performed,;

* Then, the physical variables are retrieved by the inverse
transformation.
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7~ EnKF implementations

MLD

Obs. update at BATS station (650W-320N) using a perfect PHY observation. Prior ensemble (red), mean (green square), linear
regression line (thin green line), truth (big blue dot), posterior ensemble (blue dots). Left: EnKF analysis; Middle: analysis in the
transformed state space; Right: Anamorphosis-EnKF posterior. The thick green line on the right is the transformation of the
thin green line on the middle.

(Beal et al, 2010)



EnKF implementations
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pf—sfgf’

* The EnKF correction is either calculated with (using a serial processing of
observations)

ox = ST(HS)T [(Hsf)(Hsf )" + R] - (y — Hx),

* Or, with T = (HS")TR-1(HS')

ox = ST 1+ T (HSH)TR(y — Hx").
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EnKF implementations
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* For simplification, all ocean DA systems consider the
observation error covariance matrix diagonal.

* To minimize the impact of the neglected correlations, it is
common to inflate the variances (in the Norwegian
operational system, they are multiplied by 2 for the update
of the anomalies).

* On the other hand, many efforts are dedicated to the
construction of the state error covariance matrix.
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—) Assimilation of images

Example: Optic flow methods

oT

N +VT -w=0

with T observed and w driven
by a shallow-water model:

r Ou + u@ + v ou  _ fv —  Oh
at ' ox oy 9 5
ov 6’0 8’0 B ,Oh
AVHRR composite image of < ot tu Yoz = —fu-d5g, oy
SST. Oh  0(hu) B(Uhg _ 0
. Ot ox oy N
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Present-day nadir
altimetry is processed to
provide gridded maps of
Sea Level Anomaly. This
is done with the DUACS
algorithm at CNES/CLS,
implementing statistical
interpolation.

These maps resolve
scales of 200 km and 10
days.

Altimetric products and the SWOT mission

-10.0 -7.5 -5.0 —25 0.0 2.5 5.0 7.5 10.0

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

https://www.aviso.altimetry.fr/len/home.html 80



Altimetric products and the SWOT mission

A~
()

Interferometer
Antennai <+——10 m baseline—

* SWOT: Surface Water and Ocean Ny .

/i Nadi /
TOpOg raphy / \?\\\\\ ;:": ?\‘ Alatin:eter ) // /; / \\\ o r::tnsmet:.
/I \\ \ \\\ ,"’ :: ""“‘ / 7 / /// \ — - Main Interf.
I/ \ \\ \\:’ i “‘ // // // \\ o :Is:::t swath
. . . . \ o B ace
* Satellite mission launched in 2022 | ) <. L
s | RV VA \
@ \ A FER Y G
7N | Nadir \
Revolutionary altimetric observation: / /\ﬂ A | e \
y - / H-Poyﬁferometgr,"swa}h\:' V/ 1‘\ / V-Pounteferomete* Swath
120 km-wide swath | il N 1Y CECIEY

* Pixel of 2 km, revisit 10 days (mismatch)

Intrinsic
Resolution
from25mx70m

to25mtoidm

rface Water. =

Y’ Ocean Topography L Topography

KNC Swath KNC KNC Swath

5-15km Alt. 5-15km

https://swot.jpl.nasa.gov/ 81



Altimetric products and the SWOT mission

o~

Le Gulf Stream
vu par Copernicus et le satellite SWOT
Copernicus Marine Service: 2023-03-16 SWOT: 2023-03-16
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Altimetric products and the SWOT mission

A~
()

decorrelation time as a function of wavelength

e Mismatch between spatial L
and temporal coverage of b
SWOT |
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resolution\
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interpolation | T
ay ‘W\h
o P s s 1 o M A
e ==> data assimilation 10° LEDRF 157 g 10" s
SWOT spatial

resolution

Morrow et al., 2019  s3
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technique

(/1\ Mapping balanced motions with a nudging

 Method: Back-and-forth nudging (BFN) with a 1.5-layer quasi-geostrophic (QG)
model.

* Why a simple 1.5-layer QG model?

It is a simple model able to capture a large part of mesoscale ocean dynamics as
observed by altimetry.

e Why BFN?
It is a conceptually simple method.

The QG dynamics is governed by a single variable, almost directly observed.

Le Guillou et al, 2020 85



</’~\ Mapping balanced motions with a nudging

technique

=
;: (QG) Forward propagation:

|

Forward nudging:

—

(QG) Backward propagation: —— — A[f ( X : l‘) X (T) =X
ot
. aX obs
Backward nudging: SN—— M(X,t) — K(y — X)
ot
BFN algorithm (Auroux et al., 2008): combination of the forward
nudging and the In an iterative process over a

temporal window
86



technique

(/1\ Mapping balanced motions with a nudging

SSH AO-DUACS (2012-10-01)
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technique
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/1\ Mapping balanced motions with a nudging
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Mapping balanced motions with a nudging
technique

Example with SWOT + Nadirs constellation

2013-05-01
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Le Guillou et al, 2020 89



( 77—\ Nudging nadir altimetry only

SSH on 20230410

SWOT KaRIn
DUACS BFN-QG
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Nudging is so flexible
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(/’\\ Eddy/wave separation with a 4DVar technique

Length scale Velocity scale Time scale
Phenomenon L U /&
Atmosphere:
Sea breeze 5-50 km 1-10 m/s 12 h
Mountain waves 10-100 km 1-20 m/s Days
Weather patterns 100-5000 km 1-50 m/s Days to weeks
Prevailing winds Global 5-50 m/s Seasons to years
Climatic variations Global 1-50 m/s Decades and beyond
Ocean:
SWOT | Internal waves 1-20 km 0.05-0.5 m/s Minutes to hours
, Coastal upwelling 1-10 km 0.1-1 m/s Several days

Conventional T

~adir altimetrlzarge eddies, fronts 10-200 km 0.1-1 m/s Days to weeks
Major currents 50-500 km 0.5-2 m/s Weeks to seasons
Large-scale gyres Basin scale 0.01-0.1 m/s Decades and beyond
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Eddy/wave separation with a 4DVar technique

()

BM: Balanced motions IT: Internal tides
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Eddy/wave separation with a 4DVar technique

A~
&)

BM estimation IT estimation

* Dynamics

e Dynamics
1-layer linear shallow water model...

1.5-layer quasi-geostrophic model

ou—fv=—gd
0q + Iy, q) =0 I = a0
g ) 1 Oy +fu = —goy
Where:l//=7;7,q=v —Fl//
R

on=-—H,0u+ 0yv)

* Data assimilation technique
a ...forced by open boundary conditions

BFN, based on nudging equation:

0q+Jw,q)—K(g,,,—q) =0 « Data assimilation technique:

4Dvar, minimizing the cost function:

2
J(p) = Nops — N
where p : model parameters (H, and boundary
conditions)

Le Guillou, F., Metref, S., Cosme, E., Ubelmann, C., Ballarotta, M., Le
Sommer, J., & Verron, J. (2021). Mapping Altimetry in the Forthcoming
SWOT Era by Back-and-Forth Nudging a One-Layer Quasigeostrophic
Model, Journal of Atmospheric and Oceanic Technology, 38(4),
697-710.
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Eddy/wave separation with a 4DVar technique
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77—\ Eddy/wave separation with a 4DVar technique
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77—\ Eddy/wave separation with a 4DVar technique
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Textbooks

©)

* Data Assimilation: Methods, Algorithms and Applications,
M. Asch, M. Bocquet & M. Nodet, SIAM, 2016

* Advanced data assimilation for Geosciences, Eds. E.
Blayo, M. Bocquet & E. Cosme, Oxford, 2014

* Data assimilation, Making sense of observations, Eds W.
Lahoz, B. Khattatov & R. Ménard, Springer, 2010

* Ocean Weather Forecasting, Eds. E. Chassignet & J.
Verron, Springer, 2006
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Eddy/wave separation with a 4DVar technique
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