Laboratoire de Glaciologie et Géophysique de I'Environnemen

UNIVERSITE C ‘ r

Ocean data assimilation

OACOS master’s program
March 8t 2016

Emmanuel COSME
Université Grenoble Alpes — CNRS
LGGE
Grenoble




Acknowledgements
——

* This presentation has been set up thanks to the
particular contributions of Pierre Brasseur, Charles-
Emmanuel Testut, Eric Blayo, Jean-Michel Brankart,
Pierre Antoine Bouttier, Clément Ubelmann.

* These names hide many others who indirectly

contributed, particularly from LGGE/MEOM, Mercator-
Océan, LJK/MOISE, and NASA/JPL.

* And thank you for the invitation to give this course.




Scope of this lecture
.’

* This DA lecture mostly deals with:
* the ocean circulation
* the ocean primary production

* This lecture does not address:
* ocean wave forecasting
* tidal/storm surge forecasting
* ocean chemistry and water quality
* Fish, whales, sharks, jellyfish...



Scope of this lecture
.’

* This lecture is biased towards realistic applications:
* Realistic models;

* Real observations;
* Practical implementation of DA;
* And a very limited amount of theory.



Operational oceanography: the primary

user of ocean data assimilation

—

* Operational oceanography started about 20 years ago;

* The main goal is real-time monitoring and prediction of the
state of the ocean, including:
* Currents (shipping, sea operations, regattas...)
* Primary production (marine resources, fishing)
* Seaice (shipping)
* Temperature (climate, weather forecasting... )
* Like weather forecast centers, OO centers turn to provide

useful information to scientists: reanalyses, targeted
forecasts for field campaigns, etc.



Mercator-Océan
\

* The French center of OO;

* Created in 1995;
* Located in the area of Toulouse, about 50 agents;
* officially appointed by the European Commission on 11

November, 2014 to set up the European ocean-
monitoring service (pilot phase: MyOcean EU project,

2009-2015)




Mercator-Océan and research groups

R

* To develop its operational system, Mercator-Océan relies
on the research community in the labs. In France, these are
primarily (non-exhaustive list in almost arbitrary order):

* LGGE/MEOM (Grenoble)

LOCEAN (Paris)

LPO (Brest)

LEGOS (Toulouse)

CERFACS (Toulouse)

Météo-France (Toulouse)

etc

* X X X X X



-’

* Ocean models

* Observations of the ocean

* Ocean DA using Ensemble Kalman filters
* Ocean DA using variational methods

* Mercator-Océan operational DA system
* Future challenges



Ocean models
-’

* Primitive equations

* Scales

* Horizontal discretization
* Uncertainties

* Biogeochemistry



Primitive equations
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Primitive equations
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Primitive equations

Due to nonlinear terms



Primitive equations
\

* Why does this matter for DA?

* Most tractable DA methods are designed for linear or
weakly nonlinear systems;

* All scales are involved and coupled in the dynamics.
Representing the circulation accurately requires high-
resolution (therefore expensive) models.



—

Length scale Velocity scale Time scale
Phenomenon L U T
Atmosphere:
Sea breeze 5-50 km 1-10 m/s 12 h
Mountain waves 10-100 km 1-20 m/s Days
Weather patterns 100-5000 km 1-50 m/s Days to weeks
Prevailing winds Global 5-50 m/s Seasons to years
Climatic variations Global 1-50 m/s Decades and beyond
Ocean:
Internal waves 1-20 km 0.05-0.5 m/s Minutes to hours
Coastal upwelling 1-10 km 0.1-1 m/s Several days
Large eddies, fronts 10-200 km 0.1-1 m/s Days to weeks
Major currents 50-500 km 0.5-2 m/s Weeks to seasons
Large-scale gyres Basin scale 0.01-0.1 m/s Decades and beyond



Scales particularly relevant for weather predictions and important for climate too.

Length scale Velocity scale Time scale
Phenomenon L U T
Atmosphere:
Sea breeze 5-50 km 1-10 m/s 12 h
_ Mountain waves 10-100 km 1-20 m/s Days
Weather patterns 100-5000 km 1-50 m/s Days to weeks
~ Prevailing winds Giobat 5=56—mts Seasons to-years——
Climatic variations Global 1-50 m/s Decades and beyond
Ocean:
Internal waves 1-20 km 0.05-0.5 m/s Minutes to hours
—Coastal-upwelling 1—10-km 0.1-1 m/s
Large eddies, fronts 10-200 km 0.1-1 m/s Days to weeks |
Major currents 50500 km 0.5=2m/sS A
Large-scale gyres Basin scale 0.01-0.1 m/s Decades and beyond



Scales
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require high resolution models!



Horizontal discretisation

* Figure: NEMO ORCA2
grid (2°) 20°N
* In 2015, operational
version at 1/12° at
Mercator-Océan

* Regional configuration
at higher resolutions

* Resolution is pushed
ahead...




Horizontal discretisation

OPERATIONNEL 1,/12, PREVISION, velocity 92m
3059 » 7 , .%r“ 3 AN
‘ : ‘l. ‘ *‘ i ;

2295

* Mercator operational
model: NEMO 1/12°

* Number of gridpoints:

4322 x 3059 x 75 ~ 10”
* 1 year of simulation
costs 414 Gb memory,
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Horizontal discretisation

* NATL60

* Gridpoints:
5454 x 3474 x 300 ~ 5.7 10°

* 13000 processors, 1

month of simulation .4
takes 1 day

* Full storage
impossible




Horizontal discretisation
\

* Why does this matter for ocean DA?

* The higher the resolution, the more expensive the model.

* 4DVar needs iterations, EnKF requires an ensemble and
accurate error covariances.

* Ahuge volume of observations is needed to control such
models.

(At present, we start to run 4DVar and ensemble with %4°
models)




Uncertainties
“

* Unresolved scales and parameterizations

* Forcings and boundary conditions



Uncertainties due to unresolved scales

and parameterizations

~—

* Example of (generally) ignored effect: the state
equation
* Let <A> be the average value of A in the model
gridpoint;
* The model computes <T>, <S> from the conservation
equations
* Then computes density as:
p=p(<T><8>)
* Which is different from:
p=<p(T,S) >




Uncertainties due to unresolved scales
and parameterizations




Uncertainties due to unresolved scales

and parameterizations
\

A realistic temperature field and a possible model grid
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Uncertainties due to unresolved scales

and parameterizations

——

ldea:

- represent the sub-grid variability in T and S with an ensemble, using
stochastic (random) perturbations;

- Compute density for each (T, S) pair;

- Compute the density mean.

mmm) Estimate p =< p(7T,S) > instead of p=p(<T >, <S5 >)



Uncertainties due to unresolved scales

and parameterizations
\

Fields of SSH from NEMO, ORCA2 (gridmesh 2°)

p=p(<T > <8>)

~

(Brankart, 2013)



Uncertainties due to unresolved scales

and parameterizations

Difference




Uncertainties due to boundary

conditions

Evaporation

OCEAN MODEL

-’

Yellow: atmospheric
Grey: oceanic

Green: parameterizations
White: physical processes



Uncertainties due to boundary

conditions
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(Sommer et al, in preparation)



Uncertainties due to boundary

conditions
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Ocean models: uncertainties

—

* Why does this matter for ocean DA?

* Models has many sources of uncertainty;

* To provide the best representation of the ocean state, models
must be constrained by observations with DA;

* To set up the DA system correctly, one must identify at best
the various sources of errors and parameterize their impact;

* DA can “guide” models, but also help in reducing the original
uncertainties (e.g., by estimating parameters)




Biogeochemistry

\
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Ocean primary production is a key piece of the ocean life and the carbon cycles.



Biogeochemistry

* Simple NPZD ecosystem model
(Nutrients, Phyto, Zoo, Detritus)

* 10-30 tunable parameters:
* Growth rate, mortality
* Sedimentation speed
* Etc
* Already challenging for assimilation

—
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Biogeochemistry

* Generic pelagic
ecosystem models

* More than 100
tunable parameters
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Biogeochemistry
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Biogeochemistry

—

* No basic rule (e.g., Navier-Stokes equations) for
biology

* Many uncertain and tunable parameters

* Biology sensitive to dynamics and dynamical
instabilities
* Tracer concentrations are positive variables




Observations

m—

* In situ observations

* Profiling floats: ARGO project

* Moorings: OceanSITES project

* Ships: SOOP and GOSUD projects, and WOCE program
* Surface drifters: DBCP and E-SURFMAR projects
*
*

Gliders: EGO initiative
Marine mammals
* Satellite observations
* Altimetry
* Sea surface temperature (SST)
* QOcean color



In situ observation #1: profiling floats

ARGO = network of profiling floats
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In situ observation #1: profiling floats

Satellite antenna
Temperature/
/sallnity probe

Circuit boards &
satellite transmitter

Gear

motor Stability disk

Single stroke
pump

Battery

Hydraulic pump
(piston)

Hydraulic fluid

http://www.argo.ucsd.edu/



In situ observation #1: profiling floats
.’

* +++ : Spatial coverage, vertical information, autonomy

* ---:needs maintenance, some regions hard to
sample, poor sampling



In situ observation #2: Moorings

Torroidal Buoy /

<——— Sea Surface
23m

lemperature Sensory
{1m depth)
Temperature
Sensors
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Anchor (4,200 |bs)




In situ observation #2: Moorings
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http://www.whoi.edu/virtual/oceansites/network/index.html



In situ observation #2: Moorings

The French contribution to OceanSITES: PI

20°N

10°S

20°S

50°W 40°W 30°W 20°W 10°W 0° 10°E 20°E

http://www.brest.ird.fr/pirata/pirata.php



In situ observation #2: Moorings
.‘

* +++ : time sampling, vertical information, autonomy

* ---:expensive to build and maintain, poor spatial
coverage



In situ observation #3: Ships
.’

* Volunteer observing ships

* Research vessels



In situ observation #3: Ships
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Ships of Opportunity: XBT
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In situ observation #3: Ships

XBT probe, drOp\

Sensors
housing

XBT: Expendable bathythermograph. Measure temperature and depth to ~1000 m



In situ observation #3: Ships

Research vessels: WOCE anc

This survey
took 10 years!

http://woceatlas.tamu.edu/



In situ observation #3: Ships

-’

* VOS:
* +++: cost effective, vertical information

* ---:limited to commercial routes, rarely deeper than
8oo0m

* Research vessels:

* +++: often go to remote and poorly observed areas
* ---:extremely expensive, extremely poor coverage



In situ observation #4: surface

drifters

Projects DBCP and E-SURFMAR \
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In situ observation #4: surface
drifters

A drifter measures surface temperature and currents.
http://www.aoml.noaa.gov/
http://www.nefsc.noaa.gov/



In situ observation #4: surface

drifters

_‘

* +++ : Spatial coverage, autonomy

* ---:needs maintenance, some regions hard to
sample, poor sampling



In situ observation #5: gliders

T ———

Gliders organized within the EGO initiative

http://www.fastwave.com.au



In situ observation #5: gliders
.’

* +++: flexible, vertical information
* ---:limited to targeted campaigns



In situ observation #6: marine

mammals
\

A miniaturized CTD
(Conductivity-
Temperature-Depth)
probe




In situ observation #6: marine

mammals
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In situ observation #6: marine

mammals

_‘

* +++:access to poorly observed area, vertical
information

* ---:limited spatial and temporal coverage



Satellite observation #1: altimetry

;.\ GPS

N satellite .
\ S i, Radar altimeter

O (emitter & antenna)

¥\ I® <«—— Altimeter

Jason-

Microwave radiometer
measuring water vapour

For atmospheric corrections

Laser

A ’
station

. Height of the satellite:
OSenauiace altitude ~1340 km

Sea surface
height




Satellite observation #1: altimetry

el

Ellipsoid: theoretical ellipsoidal North
surface matching approximately Geoid
the shape of the Earth at sea level. (Approx. Mean

Sea Level) \
Geoid: equipotential surface of the
effective gravitational field of the Centre of the
Earth at | | Earth’s Mass
arth at mean sea level. quator | colncides with
Y- Centre of
Elipsoid/ Elipsoid/Spheroid
Spheroid

Elipsoid/Spheroid
is a best fit to the
Earth as a whole

South




Satellite observation #1: altimetry

GPS

: § satellite
\ P
vt _ﬁ’, — The altimeter measures the distance
"\ <«—— Altimeter .
. Rt to the surface, R,;,, and its own
'measuring water vapour altitude, H_, (ref. ellipsoid). From

. them we get the sea surface height
el (SSH):

'
’ .
Laser / Doris
station ‘ station

SSH=Halt - Ralt

Ocean surface Satellite
topography altitude

Sea surface
height
Ocean floor




Satellite observation #1: altimetry

o ' GPS

t N satellite
\ .
Jason-2

.ﬁﬂs'

"\ <«—— Altimeter

Microwave radiometer
measuring water vapour

’
g
p '
’ '
’
’ '
’ '
’ '
'

'
’ A
Laser ¢ Doris
station ‘ station

Ocean surface Satellite
topography altitude

Sea surface

height
Ocean floor

SSH=Halt - Ralt

The sea surface height (SSH) gathers
contributions from gravity (geoid) and
ocean surface topography (tides,
atmospheric pressure, and ocean
dynamics):

SSH= IA'geond'l'htlde'l'h hdyn



Satellite observation #1: altimetry

\

Jason-2

-ﬁs'

W.e GPS
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§ satellite
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"\ <«—— Altimeter
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'
’
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Laser I’ Doris
station ' station

¢ Ocean surface Satellite

topography altitude

Ocean floor

Microwave radiometer
measuring water vapour

Sea surface
height

SSH= hge01d+htlde+h hdyn

hayn Is the ocean dynamic topography
and is due to the motions of the sea. It
is the relevant term for studying the
ocean circulation.

hdyn:: H alt” RaIt'hgeoid'htide'hatm

The accuracy of h, , estimation does
not depend only on the altimetric
measurement itself.



Satellite observation #1: altimetry
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Satellite observation #1: altimetry

Recent satellite missions
provides a geoid: GOCE,

GRACE. —

But so far we keep hy,,
+hgeig @nd substract the
time mean over many
orbit cycles to obtain the
sea level anomaly (SLA).

SLA does not contain any

nformationsbout he |
20 -100 -80 -60 -40 -20

mean ocean circulation. 0 20 40 80 80

(University of Texas Center for Space Research and NASA)



Satellite observation #1: altimetry

—

Obtaining a “good” SLA products usable in ocean DA systems requires a complex
data post-processing, from quality control to calibration...

This is performed by the company CLS (Collecte Localisation Satellites), affiliate of
CNES and IFREMER, within the project AVISO:

http://www.aviso.altimetry.fr/



Satellite observation #1: altimetry

Orbit of Jason:
Cycle of 10 days.
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Satellite observation #1: altimetry

-‘

Orbit of GFO:
Cycle of 17 days.
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Satellite observation #1: altimetry

-‘

Orbit of Envisat and Saral:
Cycle of 35 days
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Satellite observation #1: altimetry

Epoch of the slope mid point = Distance t
\ N

Echo energy
=p Backscattering coefficlent c0

Leading edge slope
=p Significant wave height SWH

Plateau slope
=p Antenna pointing &

Start level
=p Thermal noise Nt

Radar altimetry provides information about mesoscale ocean topography (50-100 km)
and waves.



Satellite observation #1: altimetry

General Timeline for Satellite Radar Altimeters with Short Repeat Periods

|1985| 86 |87 | 88| 89| 90| 91|92 | 93|94 | 95|96 |97 |98 |99 |2000|01]|02|03|04]|05|06|07|08|09|10]11|12]13|14]| 2015
TOPEX/Poseidon (NASA/CNES)

Jason-1 (NASA/CNES)

I
OSTM/Jason-2 (NASAI/CNES)
4
Jason-3 (NASAI/CNES)
TOPEX/Poseidon (Different Orbit) Jason-1 (Different Orbit)
[ EEEN 0
GeoSat (US Navy)
ERS-1 (ESA)
1
ERS-2 (ESA)
1]
ENVISAT (ESA)
.
SARAL (ISROICNES)
Sentinel-3 (ESA)
Repeat period
10-days
17-days
35-days

27-days



Satellite observation #1: altimetry
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The continuity of satellite altimeters is essential for monitoring the mean sea level.



Satellite observation #2: SST

IR radiometer (e.g. AVHRR)
Microwave radiometer (e.g. AMSR-E)

Both at 1-km resolution.
MW insensitive to clouds but less
sensitive and easy to calibrate.

Aqua AMSR-E - Sea Surface Temperature (38km res)
Ascending passes DATE: 2004-07-23 DAY: 205

Some IR sensors are on-board
geostationary satellites (res. 5 km).
Most are polar orbiting.




Satellite observation #2: SST

R

IR sensors records the radiance detected at the top of the atmospherein
various bands, linked to temperature by the Planck equation (black body
emission):

C1

T2 [exp(Co /AT) — 1]

LNT) =

The spectral radiance is transformed into a brightness temperature after
direct calibration of the sensors using on-board black-body targets.

Atmospheric corrections are derived from the combination of the signals in
different spectral bands. Calibration is based on in-situ measurements of SST.
Alternative approach: explicit simulation of the atmospheric radiative
transfer.



Satellite observation #2: SST

-’

Two issues with satellite SST from the DA viewpoint:
Cloud detection
SSTis a “skin” temperature (representation error)



Satellite observation #3: Ocean color

\

Ocean color sensors record reflectances in the solar spectrum.

What causes the shape of 5, surface reflectance
0.02

. the spectrum? oa

Air moletyles
Aerosolg
Rayleigh/derosd

78

Fre neI

Suspended Particulate Matter(SPM)
CHL (pigment in Algae)

Silt & Clay
Coloured Dissolved Organic material (CDOM)

http://www.seos-project.eu/



Satellite observation #3: Ocean color

Ocean color sensors detect
chlorophyll.

Left: A phytoplankton bloom
captured near Alaska by Operational
Land Imager (OLI) on Landsat 8
(NASA).



Satellite observation #3: Ocean color

—

Proof of concept: CZCS (Coastal Zone Color Scanner), 1978-1986.
First operational ocean color products: SeaWIFS (Sea-viewing Wide Field-of-view

Sensor), 1997-2010

In addition to the various measurement errors (atmospheric corrections, etc), a
significant source of error lies in the algorithm to retrieve chlorophyll
concentrations. The accepted error is 30% in general.



Observations: summary
\

* Quite large diversity of in situ data, but rather sparse;

* Alarge amount of satellite data, but satellites only
see the surface;

* They all contain uncertainties (measurement or
representation) that are difficult to estimate.



Ocean DA using

Ensemble Kalman filters

.!GII>>

* Ensemble Kalman filters

* Localization

* Incremental Analysis Updating (1AU)

* Bogus

* Gaussian anamorphosis

* About the observation error covariance matrix



Ensemble Kalman filters

—

Kalman filter equations:

Initialization: x§ and P

Analysis step:
Ke = (HiPD)T[H(HPLT + R,
x2 = xb+ Ki(y? — Hext),
2 = (1— KkH)PL.

Forecast step:

X1 = Miks1xi,
f _ apaT
Pk+1 = Mk,k+1PkMk,k+1 + Q-



Ensemble Kalman filters

E—

Kalman filter equations:

Initialization: x/ and
Analysis step: "

Too big to store K= T «(HkPL) ™ + R,
X = Xkt Kek —HoG),

Plf(' Often too big to invert

Forecast step:

Often nonlinear in practice X1 1 =@k+1xi, Rarely that

-
f _ apna T simple, and
Piia = Mk,k+1PkMk,k+1 P

unknown




Ensemble Kalman filters

Observation

time



Model

Ensemble Kalman filters

_’

Forecasts A

Observation

time



Ensemble Kalman filters

Analyses

Observation

time



Ensemble Kalman filters
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Ensemble Kalman filters
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Ensemble Kalman filters

Analyses

Observation

time



Ensemble Kalman filters
.’

* In the forecast step, each member is advanced with
the numerical model:

J _ a ,
Xpa1,4 — Mk,kﬂ(xk,z‘) Nk,



Ensemble Kalman filters

Variable 2

(observed) s

Observation

Prior distribution

0 1

5 6 7

(uhobserved)

> 3
Variable 1




Ensemble Kalman filters

EnKF

.
Variable 2

(observed) s

Observation—— 2}

5 6 7

(uhobserved)

> 3
Variable 1



Ensemble Kalman filters
——

* At the analysis step, each member is corrected using
observations.

* Different analysis schemes exist:
* stochastic/deterministic,
* algebra in observation/ensemble space,
* Serial/batch processing of observations,

* With/without adaptive scheme at some point,
* etc



Ensemble Kalman filters

Deliverable 3.1

Contents

1 Introduction 4
1.1 Theproblem . .. .. ... . . .. ... e 4

2 Ensemble Kalman filters 6
2.1 The original ensemble square root filter (EnSRF) . . . ... .. .. 7
2.2 The ensemble transform Kalman filter (ETKF) . . . . ... ... .. 8
2.3 The ensemble adjustment Kalman filter (EAKF) . . . . .. ... .. 10
2.4 The singular evolutive interpolated Kalman filter (SEIK) . ... .. 11
2.5 The error-subspace transform Kalman filter (ESTKF) . . . . .. .. 12
2.6 The original ensemble Kalman filter (EnKF) . . ... ... ... .. 13

SANGOMA European project, http://www.data-assimilation.net/)



Ensemble Kalman filters

HY

COM

Home >> Data Assimilation

* About

¢ HYCOM
o Overview
o Documentation
o Source Code
o Contact Info

« Youtube Videos

Home Need Help? Media Data Server Tools Login / Logout
search...

Login
Data Assimilation

A hierarchy of data assimilation techniques are evaluated as a function of computational resources and prediction
accuracy:

1. the Optimal Interpolation (Ol)

2. the Parameter Matrix Objective Analysis algorithm (PMOA)
3. the Reduced Order Adaptive Filter (ROAF)

4. the Reduced Order Information Filter (ROIF)

http://hycom.org/



Ensemble Kalman filters

m—

A simple view

* Ol methods

* Forecast of 1(mean) state

* Analysis using statistics from a fixed ensemble
* Stochastic EnKF

* Correction of each state with perturbed observations
* Deterministic EnKFs

* Correction of mean and anomalies without perturbing
observations



Ensemble Kalman filters

—

* Ocean DA: O(10° - 108) variables, O(103 - 10°) obs.
* Ensemble Kalman filters used in operational oceanic
DA systems:

* Ensemble Ol (Mercator-Océan, France; Bureau of
Meteorology, Australia; and others)

* Deterministic EnKF (NERSC, Norway)




Ensemble Kalman filters

—

* Ensemble Ol:
* Only a mean state is propagated with the model;

* The error modes are the same at any analysis step.
* ---:no estimation of uncertainties;

* +++: computationally affordable, robust (no collapse),
more “physically-based” than historical Ol with
analytical covariance functions.



| ocalization
\

* Localization aims at delimiting in space the impact an
observation;

* Localization is necessary for several reasons:

* To avoid long-range corrections due to spurious long-
range correlations, themselves due to the small size of

the ensemble;



Localization

Increments in SSH due to an observatio

‘
40
Without
localization
"
a0
With
localization
"
0- - = - - _ = - - . - - - . - - - -V - _ 30- 0- - - ‘0-
-04 02 00 02 04 06 08 10 -04 02 00 02 04 06 08 10 -04 -02 00 02 04 06 08 10

m=200; no rank reduction m=200; no rank reduction mM=5000; rank reduction r=20
Awkward localization (Brankart et al 2011)
)



| ocalization
\

* Localization aims at delimiting in space the impact an
observation;

* Localization is necessary for several reasons:

* To avoid long-range corrections due to spurious long-
range correlations, themselves due to the small size of
the ensemble;

* To artificially increase the rank of the covariance matrix
and provide more degrees of freedom to the
corrections.



Localization

—

* Why increasing the rank of the covariance matrix?

* Remember that in the ETKF, the correction on the
mean is a linear combination of the anomalies (see
Marc Bocquet’s course, Eq. 5.34):

x{ =x! 4+ X/,
* There is only m (ensemble size, ~10-100) degrees of
freedom to correct a vector of typical size > 10° with

103-10> observations!



| ocalization
\

* Localization aims at delimiting in space the impact an
observation;

* Localization is necessary for several reasons:

* To avoid long-range corrections due to spurious long-range
correlations, themselves due to the small size of the
ensemble;

* To artificially increase the rank of the covariance matrix and
provide more degrees of freedom to the corrections;

* To make computation possible in some cases.



| ocalization
.’

* The Kalman gain can be computed directly if the
number of local observations (i.e., the size of R) is
limited:




Model not involved during
analysis: discontinuity,
balance problems and shocks
at restart possible.

Right: spurious wave
generated by the assimilation
of a single observation.

—

Latitude

T (days) : 16970

DATA SET: incrS02_S00_016970

40°N

30°N —

20°N | \

10°N

Longitude

(Rozier et al, 2007)



—

* An empirical solution is Incremental Analysis Updating

(IAU, Bloom et al, 1996)

* |AU consists in computing corrections at the analysis
step, then re-running the ensemble over the forecast
window, adding incrementally to each member its
correction under the form of a forcing term.



Here, IAU is run from the
middle of the previous forecast
window to the middle of the
next forecast window.

Continuity is guaranteed
(perhaps at the expense of
quality of the analysis).

—

State
Avariablc

forecast

integration forecast

analysis  jnteoration

Y
analvsis
} } { } t B
i-1 i i+l i+2 i+3 t

FiG. 1. IAU method from Bloom et al. (1996); & represents the
increment.



Figure: spatially averaged
zonal velocity U in the Gulf
Stream zone.

Black: free run

Red: EnOl

Green: EnOl with |IAU

'i*,’l "’ ” i

it ‘;l, '

U (mvs)

1 L i L L

15700 15750 15800 15850 15900 15950 16000
Julian Days

1 L

FI1G. 12. Same as in Fig. 11, but at a 55-m depth (model depth level 5) from Julian day 15678
(4 Dec 1992) to 16038 (5 Dec 1993): black line represents FREE run, red line represents INT
run, and green line represents IAU run.

(Ourmiéres et al, 2005)



* Some quantities must be conserved. Example: mass.

divu=0

* Bogus: a fictitious observation of div u, equal to o.

* Bogus can be used in regions where the assimilation
makes things worse...



Gaussian anamorphosis
\

* Sometimes the distribution of some variables does
not follow a Gaussian law:

Silicate
s siL gx10° Sl o siL
as 7
8
3 6
§25 é 5 5 6
32 24 3
b4 B <
o015 o3 o 4
1 2r
2
0.5 1 | I I
N 0 1000 2000 3000 4000 0 0 1000 2000 3000 4000 0 0 1000 2000 3000 4000
Biological values (mg/m°) Biological values (mg/m°) Biological values (mg/m°)

Distribution of silicate at 3 different dates (over a large oceanic domain)
(Simon et al, 2009)



Gaussian anamorphosis
\

* Sometimes the distribution of some variables does
not follow a Gaussian law;

* But the EnKFs work better with Gaussian variables;

* Gaussian anamorphosis: transformation of a
distribution into a Gaussian distribution.

(Bertino et al, 2003)



Gaussian anamorphosis

* The transformation can %:ﬁ /T—T\ |
be analytical or empirical; Al ¥L§_

* On the opposite figure, T
the transformation is |
empirical; I

* Such transformation can J \, . , h
be performed on each : ?‘
variable individually. e

(Béal et al, 2010)



Gaussian anamorphosis

T
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Here, the anamorphosis tends to “Gaussianize” the bivariate distribution.

(Brankart et al, 2012)



Gaussian anamorphosis
—

* After transformation, the EnKF analysis is performed,;

* Then, the physical variables are retrieved by the
inverse transformation.



MLD

Gaussian anamorphosis

. . . 1.4 1.
PHY PHY PHY

Obs. update at BATS station (65°W-32°N) using a perfect PHY observation. Prior ensemble (red), mean (green
square), linear regression line (thin green line), truth (big blue dot), posterior ensemble (blue dots). Left: EnKF
analysis; Middle: analysis in the transformed state space; Right: Anamorphosis-EnKF posterior. The thick green
line on the right is the transformation of the thin green line on the middle.

(Béal et al, 2010)



Gaussian anamorphosis

R

EnKF with anamorphosis EnKF with anamorphosis

Gaussian anamorphosis works well with weakly non Gaussian variables...

(Metref et al, 2014)



About the observation error
covariance matrix

Clakla

* The EnKF correction is either calculated with (using a
serial processing of observations)

5x = Sf(HS")T [(Hsf)(Hsf )T+ R] ~(y - Hx),

p/f — gfgf?

* Or, with T = (HS")TR-1(HS)

ox =S 1+ (HSH)TR 1 (y — Hx").



About the observation error
covariance matrix

.

* For simplification, all ocean DA systems consider the
observation error covariance matrix diagonal.

* To minimize the impact of the neglected correlations,
it is common to inflate the variances (in the
Norwegian operational system, they are multiplied by
2 for the update of the anomalies).

* On the other hand, many efforts are dedicated to the
construction of the state error covariance matrix.




Ocean DA using

variational methods

\

* Variational methods
* Incremental 4DVar
* Parameterization of the covariance matrix



Variational methods
——

* Problem posed as the minimization of a cost function to
find the best compromise between a prior knowledge x°
and observations y:

e {%Hw . bu%}EHH(x) - yui}
Jp Jo

* With respect to a control vector x to choose carefully (very
often: initial condition)




Variational methods

* 3DVar and 4DVar: the cost functions are qmg

1 1
Jsp(w0) = 5 (w0 — ") "B (20 — 2%) + 5 (H(wo) — yo) "R (H (o) — o)
Tap(w0) = (w0 — 2T B e — %) + 5 3 (H(Mo-si(w0)) — ) R (H (Moi(0) — 1)

* Efficient minimisation algorithms are iterative and require
the gradient VJ(xo)

* Adjoint methods are (by far) the cheapest ways to compute
the gradient at each iteration.

* The adjoint model is often 2-4 times more expensive than
the direct model.



Variational methods

Observation

time



Variational methods

Background state

Observation

time



Variational methods

Model

\4

o

Analysis

Observation

time



Incremental 4DVar

—

* When the model is non-linear, the cost function can be non-
convex.

* Incremental 4D-Var splits the minimisation problem into a
series of minimisations of quadratic (convex) cost
functions.

* This leads to define outer and inner loops in the
minimisation process.



Incremental 4DVar

Iére boucle externe

'..J[Sx( )

r
. ‘
boucle interne K

J[8x(1)]
=J(x(1)) K

Tt ),

) _." "O’J[SX(IO)]‘:-S

X(t
J >




Parameterization of

the covariance matrix

\

* As with the EnKF, the full covariance matrix cannot be
built and stored.



Parameterization of

the covariance matrix

—

* Areduced-rank approach can be considered.

* The 4DVar increment is searched as a linear
combination of a fixed set of error modes:

-
(5X0 — E wZL{z} = Lw
i=1
* Minimization is carried out on w, a vector of sizer.

(Robert et al, 2005)



Parameterization of

the covariance matrix

The observation is here ical section

Experiment with a Full 4DVar | Lo .
Tropical Atlantic (diagonal B)# -+, - i =
model and 1 T - -
observation of T. R s -
Figure shows the —? Y T e T e e
incrementinT. e

Maximal correction is TP = .
0.94 on top Reduced  5.1i% - :
0.06 on bottom rank 4DVar VTS : =

Fig. 4. Temperature component of the optimal increment &x, for single observation experiments. Left: horizontal structure at z=—45 m; right:
vertical section along the equator. Top: full-space 4D-Var; bottom: reduced-space 4D-Var.

(Robert et al, 2005)



Parameterization of

the covariance matrix

—

* Modelling of the covariance matrix with a suite of

perators:
B — KD1/201/2(01/2)TD1/2KT

with
* K: balance operator
* D: variances (diagonal)

* C: correlations (block diagonal), built with a diffusion
operator

(Weaver et al, 2005)



Parameterization of

the covariance matrix

——

* The balance operator is introduced to form
uncorrelated variables from the physical variables:

(T,S,SSH,U,V) X (T, Sy, SSHy, Uy, Vi)

* The uncorrelated variables are then used in the
control vector.

* The uncorrelated (unbalanced) variables are formed
by removing their parts that are balanced by the
others.

(Weaver et al, 2005)



Parameterization of

the covariance matrix

——

A single obs of T, located at 160W, oN, 100 m depth. 10-day 4DVar increments
on SSH, without (left) and with (right) the balance operator.

10N ] 10NT ]
(a) ] S N (b);
SNI- E SNE 7 T :

g | A S [

2 of 1 £ of e 1
5 ; S [~ = = ]
5S¢ . NG I ]
: ' - amE ‘
10SC . \ 10S¢ - ) ]

160E 180 160W 140W 120W 160E 180 160W 140W 120W

Longitude Longitude

Figure 4. Horizontal section of the SSH analysis increments generated by the 4D-Var assimilation of a

single-temperature observation (positive innovation) located ten days into an assimilation window at the same

geographical location as in the example in Fig. 2. The increments are displayed on day 10 for a 4D-Var experiment

(a) without and (b) with the balance operator activated. The fields have been multiplied by a factor 100 and the

same contour interval has been used here as in Fig. 2(e). Solid (dashed) contours indicate positive (negative)
values.

(Weaver et al, 2005)



Mercator-Oceéan

operational DA system

-’

* Input from C.-E. Testut, O. Legalloudec, J.-M.

Lellouche, L. Parent, E. Remy (Mercator-Ocean),
M. Benkiran, E. Greiner, B. Tranchant (CLS)




Mercator-Oceéan

operational DA system

\

* System overview
* Covariance matrix
* Bogus

* Localization

* AU

* Some perspectives



System overview

)\ Mercator Ocean Monitoring and Forecasting
Ocean .
—_

Ocean Forecasters

Ocean Forecasts
Provided by the Operational Systems.

Daily Global Physical Bulletin 1/12° Daily Iberian Biscay Irish Physical Weekly Global Biogeochemical
Bulletin 1/36° Bulletin 1/4°

[~ =

¢ Daily Global Physical Bulletin 1/12° » Daily Regional Physical Bulletin 1/12° » Weekly Global Biogeochimical Bulletin 1/4°
» Global coverage » Regional coverage (Iberian Biscay Irish) * Global coverage

* Physical variables » Physical variables » Biogeochimical variables

o 1/12° resolution * 1/36° resolution * 1/4° resolution

¢ Daily updated o Daily updated * Weekly updated

Show Bulletin Show Bulletin Show Bulletin




System overview

—

* The current global system
* ORCA12 (1/12°) (NEMO 3.1 code)
* SEEK (EnOl, RRSQRT filter with fixed error basis)
* 3D-Var slowly evolving large-scale T/S bias correction
* 1AU

* Assimilated Data
* SLA (DUACS)
* “AVHRR+AMSRE” SST
* T[S vertical profiles from CORIOLIS data center



System overview

Thursday

Forecasted

Analysed Atmospheric Friday

( “updated”) forcing

Atmospheric
forcing Saturday
Sunday
Monday
Tuesday
Wednesday
Model Model
Hindcast Nowcast

Wednesday

(Ti+1=Ti+7)
T;1q-14 Tiq-7 Titq Ti 117 T +14



System overview

NEMO _init
Initialisation

Assim_init
Initialisation & datasets load

SAM2V2 uptodate tool:

- Ksh chain only

- multi analyses (OCEAN+ICE+BIO analyses)
- Full implementation of 4D approach

- Preliminary implementation of Gaussian
anamorphosis approach

- Preliminary implementation of an ensemble
approach (EnOl)

- New 10 system => Necessary for huge
configuration or biogeochemical assimilation
- load on one processor and mpi to send
the information to the other
- separate files (multi cpmx file)
- load absolute state (misfit on the fly)

Model executable

Estimation of
Observation error

Read restart Load data.db, Model Run Diagnostics File.ola
correction.cmx —>
A .
& & %,
£y S ©,
& <@ %®
0 &
(e -
% Bias correction 2 Estimation of local 23
3Dvar s Gaussian transformation \s’-’/:/@s
\ 4
Assim executable
Initialisation || Hcov »| Ker_SAM _ |,| DeltaSAM2
2 A X
" N
S &
<<.§0. o




System overview

-’

* The analyses are performed using an ETKF kernel:
ox =S [1+ 1 (HS)TR I (y — Hx").

with T = (HSf)TR-1(HS')

* with a fixed basis of error, IAU, localization, bogus



System overview

—

* The control vector is composed of:
* Temperature, Salinity, U, V
* Seaice concentration

* SSH, HBAR (barotropic component of SSH), and HBRST
(temporal and spatial smoothing of HBAR)

HBAR and HBRST are involved to circumvent the fact
that the assimilated SLA does not contain any
information about the mean ocean circulation.



Covariance matrix

—

* Construction of the error basis.

> We generate a pseudo-ensemble from a forced simulation

e = T =

Model trajectory

maly

Temporal window

Running mean of the model trajectory




Covariance matrix

E—

* Construction of the error basis.

> We use these anomalies to compute Pf in the analysis
2001 2003 2005

2002 2004 2006
NN 4 _::::- \ /A/\:]?cmctory

Analysis date 1 Analysis date 2

And some adaptive adjustment of the forecast error variance at each assimilation
cycle in order to be consistent with innovation statistics.



* Bogus (forced null innovation with R= coef x Pf):
* HBRST (strong constraint)

* Salinity (Run Off)
* HTSUV (underice)
* TSUV  (Tropic)



Bogus on HBRST

using R=0.1 x Pf



Localization

AT

=10 T T T T T T T 1
1I30°W  120°W 110°W  100"W  90°W 80w 70w o'W 50w

4 independent representer of height (color) and SST
(isoline) for 4 single SST innovation of 1°C
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* |AU is run over 8 days;

* The weight function
* Increases during 1 day,
* |s constant during 6 days,
* Decreases during 1 day.

Observation window

__________________________

1 |
I_ 1 Forecast run 1

i 3D model update

B}

TAU weight function
X ¢
fagna

1 ]
I Analysed run




Some perspectives
e

* Move towards an ensemble approach to
* Increase efficiency
* Provide probabilistic forecasts

* Upgrade of the model: Global 1/36, 100000
processors, 100 millions of observation, 100 000
observations for each local bubbles

* New schemes for sea ice, biogeochemistry



Future challenges
.‘

* Modeling the model error with stochastic
parameterizations

* Assimilation of images
* SWOT



Modeling the model error with

stochastic parameterizations

-’

* Stochastic parameterizations emerge as an essential
tool for representing uncertainties in models, hence
for DA.

* But the set-up can be challenging.



Modeling the model error with

stochastic parameterizations

-’

* Stochastic parameterizations emerge as an essential
tool for representing uncertainties in models, hence
for DA.

* But the set-up can be challenging.



Modeling the model error with

stochastic parameterizations

——

Example:

Ensemble of simulations of the biogeochemical cycle in the North Atlantic
Perturbation of 7 parameters (phyto growing rate, grazing rate, etc) around the values
prescribed originally in “deterministic’” model.

7o
0z

)+S(c,.,cj,an)

(Garnier et al, 2016)



Modeling the model error with

stochastic parameterizations

A correct
representation of
phytoplankton

requires a full retuning

of the reference
parameters.

D

Classic perturbed

SeaWIFS

Reference

M 3
100°W  BO*W  60°W  40°W

s ) Surface Chlorophyll time serie (2005)

—— reference

—— classic

—— classic perturbed
seawifs

] ] A s o ~
Time (in month)

(Garnier et al, 2016)



Assimilation of images

* Images (here, chlorophyll)
clearly reveal the structure
of the flow;

* How can such data be
assimilated into models as

images?



* SWOT: Surface Water and
Ocean Topography

* Satellite mission to be
[aunched in 2021

* Revolutionary altimetric
observation: 120 km-wide
swath

* Pixel of 1 km

Interferometer

P \ — - Main Interf.
\ / Left swath
/I \\ \ // / // \ — - Main Interf.
| \\ / / / \ Right swath
| \ 7 /) \  --- Nadir
| \ / / \ channels
gl \
= /
® // Nsl‘}""«\
| AItiﬂet-er /k\
| 77N\ ! Fopmrmtl N
H-Poyn’ferometgr ,Swa}lu / 1 \
PAPRLLLIL S A

; : o Intrinsic
rface Water... = . Resolution
Topography - from2.5m x 70 m
4 DY, to25mto10m

KNC Swath KNC KNC Swath
5-15km  Alt. 5-15km
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* Challenges:

* The physical processes that will be observed are not
well known;



Snapshot of ASSH from
# the 1/60° North Atlantic
~ simulation



"@}

/‘ Physical processes or

numerical artefact?




-’

* Challenges:

* The physical processes that will be observed are not
well known;

* The signature of internal tides can be superposed to the
balanced dynamics;



SWOT

Conventional
nadir altimetry

Length scale Velocity scale Time scale
Phenomenon L U /4
Atmosphere:
Sea breeze 5-50 km 1-10 m/s 12 h
Mountain waves 10-100 km 1-20 m/s Days
Weather patterns 100-5000 km 1-50 m/s Days to weeks
Prevailing winds Global 5-50 m/s Seasons to years
Climatic variations Global 1-50 m/s Decades and beyond
Ocean:
Internal waves 1-20 km 0.05-0.5 m/s Minutes to hours
Coastal upwelling 1-10 km 0.1-1 m/s Several days
Large eddies, fronts 10-200 km 0.1-1 m/s Days to weeks
Major currents 50-500 km 0.5-2 m/s Weeks to seasons
Large-scale gyres Basin scale 0.01-0.1 m/s Decades and beyond



m—

* Challenges:

* The physical processes that will be observed are not
well known;

* The signature of internal tides cam be superposed to
the balanced dynamics;

* The satellite will provide well separated (in time)
snapshots of short-lived structures.



3
109

60 km
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——

Can we retrieve the SSH evolution
between the two satellite revisits?
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* SWOT observations will be
affected by correlated noise
(due to roll, tropospheric

water vapor, dilation of the
baseline, etc)
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Correlations of errors.

At a 9 km resolution, KaRIn noise is filtered out.
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* Mercator-Océan: http://www.mercator-ocean.fr/

* MyOcean: http://www.myocean.eu/

* GODAE Oceanview:
https://www.godae-oceanview.org/

* DRAKKAR project: http://www.drakkar-ocean.eu/
* GFDL Ocean modeling: http://ocean-modeling.org/
* Coriolis data center: http://www.coriolis.eu.org/




Textbooks
——

* Advanced data assimilation for Geosciences, Eds. E.
Blayo, M. Bocquet & E. Cosme, Oxford, 2014

* Data assimilation, Making sense of observations, Eds
W. Lahoz, B. Khattatov & R. Ménard, Springer, 2010

* Ocean Weather Forecasting, Eds. E. Chassignet & J.
Verron, Springer, 2006






