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Fig. 1: Members of day 7 forecast of 500 hPa geopotential height for the ensemble originated from
25 January 1993.
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Figure 6 Hurricane Katrina mean-sea-level-pressure (MSLP) analysis for 12 UTC of 29 August 2005 and
t+84h high-resolution and EPS forecasts started at 00 UTC of 26 August:

Istrow: I* panel: MSLP analysis for 12 UTC of 29 Aug
2™ panel: MSLP t+84h T;511L60 forecast started at 00 UTC of 26 Aug
3 panel: MSLP t+84h EPS-control T;255L40 forecast started at 00 UTC of 26 Aug
Other rows: 50 EPS-perturbed T;255140 forecast started at 00 UTC of 26 Aug.

The contour interval is 5 hPa, with shading patters for MSLP values lower than 990 hPa.

ECMWEF, Technical Report 499, 2006




Pourquoi les météorologistes ont-ils tant de peine a prédire le temps
avec quelque certitude ? Pourquoi les chutes de pluie, les tempétes
elles-mémes nous semblent-elles arriver au hasard, de sorte que bien
des gens trouvent tout naturel de prier pour avoir la pluie ou le beau
temps, alors qu’ils jugeraient ridicule de demander une éclipse par
une priere ? Nous voyons que les grandes perturbations se produisent
généralement dans les régions ou [’atmosphere est en équilibre
instable. Les météorologistes voient bien que cet équilibre est instable,
qu’un cyclone va naitre quelque part ; mais ou, ils sont hors d’état de
le dire ; un dixieme de degré en plus ou en moins en un point
quelconque, le cyclone éclate ici et non pas la, et il étend ses ravages
sur des contrées qu’il aurait épargnées. Si on avait connu ce dixieme
de degré, on aurait pu le savoir d’avance, mais les observations
n’étaient ni assez serrées, ni assez précises, et c’est pour cela que tout
semble dit a ’intervention du hasard.

H. Poincaré, Science et Méthode, Paris, 1908



Why have meteorologists such difficulties in predicting the
weather with any certainty ? Why is it that showers and even
storms seem to come by chance, so that many people think it
is quite natural to pray for them, though they would consider
it ridiculous to ask for an eclipse by prayer ? [...] a tenth of a
degree more or less at any given point, and the cyclone will
burst here and not there, and extend its ravages over districts
that it would otherwise have spared. If they had been aware of
this tenth of a degree, they could have known it beforehand,
but the observations were neither sufficiently comprehensive
nor sufficiently precise, and that is the reason why it all seems
due to the intervention of chance.

H. Poincaré, Science et Méthode, Paris, 1908
(translated Dover Publ., 1952)



ECMWEF Data Coverage (All obs DA) - Synop-Ship-Metar
12/Jan/2015; 00 UTC
Total number of obs = 63603
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ECMWF Data Coverage (All obs DA) - Temp
12/Jan/2015; 00 UTC
Total number of obs =618
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ECMWEF Data Coverage (All obs DA) - Pilot-Profiler

13/Jan/2015; 00 UTC

Total number of obs = 3790
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ECMWF Data Coverage (All obs DA) - Aircraft
13/Nov/2011; 00 UTC
Total number of obs = 50106

® 1922Airep @ 36955 Acars 11229 Amdar
150°W 120°W B80°W 60°W 30°W 0° ArE B0°E 80°E 1X°E 150°E
L]
3 =a3
L3
- »®
60°N =
- - S ¥ o
e 8 HI 7 ?
B abs ab NP
" g .
L] n L 2 ] ~
30°N
Ve
N -
0 £
»
s .
-.. ’ » %
L v ™
.' . a L) a
o‘ l" %
30°8 o® $
Lot &r
60°S - = 60°S
- ¢ ol L e | *
L . . . N . 9 _uw_‘__,..n._,_\_‘vﬁ w_._hw‘-
B - A Rt ] =
—‘_,_I_F —-‘h-‘.—,.-—f
150°W 120°W 80°W 60°W 30°W 0° AE B0°E 80°E 1X°E 150°E




ECMWF Data Coverage (All obs DA) - AMSU-A
13/Nov/2011; 00 UTC
Total number of obs = 607377
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ECMWEF Data Coverage (All obs DA) - AMV WV
13/Nov/2011; 00 UTC
Total number of obs = 175647
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ECMWF Data Coverage (All obs DA) - SCAT
13/Nov/2011; 00 UTC
Total number of obs = 289170




ECMWF Data Coverage (All obs DA) - GPSRO
13/Nov/2011; 00 UTC
Total number of obs = 48559
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ECMWF Data Coverage (All obs DA) - Buoy
13/Nov/2011; 00 UTC
Total number of obs = 8540
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ECMWF Data Coverage (All obs DA) - OZONE
13/Nov/2011; 00 UTC
Total number of obs = 81811
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Number of data used per day (millions)

ECMWF
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= CONV+AMV
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T N
2005 2006 2007 2008 2009 2010

Value as of early 2013 : around 25 millions per day




Synoptic observations (ground observations, radiosonde observations),

performed simultaneously, by international agreement, in all meteorological
stations around the world (00:00, 06:00, 12:00, 18:00 TU), and are in practice
concentrated over continents.

Asynoptic observations (satellites, aircraft), performed more or less
continuously in time.

Direct observations (temperature, pressure, horizontal components of the wind,

moisture), which are local and bear on the variables used for for describing the
flow in numerical models.

Indirect observations (radiometric observations, ...), which bear on some more

or less complex combination (most often, a one-dimensional spatial integral)
of variables used for for describing the flow

y = H(x)

H : observation operator (for instance, radiative transfer equation)



Echamiilonnage de la circulation océanique par les missions altimétrigues sur 10 jours :
combinaison Topex-Poséidon/ERS-1

S. Louvel, Doctoral Dissertation, 1999




Longitude

N
(@)
1

38 1

10

Latitude

F1G. 1 - Bassin méditerranéen occidental: réseau d observation tomographique de ['ea-

périence Thétis 2 et limites du domaine spatial utilis€ pour les ezxpériences numériques
d’assimilation. . ; 19
E. Rémy, Doctoral Dissertation, 1999



Physical laws governing the flow

= (Conservation of mass

Dp/Dt + pdivU = 0

= Conservation of energy
De/Dt - (p/p?) Dp/Dt = Q

=  Conservation of momentum
DU/Dt + (1/p) gradp - g+ 2 QAU=F

= Equation of state
fip,p,e)=0 (for a perfect gas p/p=rT,e =C,T)

= Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, ...)

Dg/Dt + g divU =S

These physical laws must be expressed in practice in discretized (and necessarily
imperfect) form, both in space and time = numerical model 20



Parlance of the trade :

* Adiabatic and 1nviscid, and therefore thermodynamically
reversible, processes (everything except Q, F and S) make
up ‘dynamics’

" Processes described by terms Q, F and S make up ‘physics’



All presently existing numerical models are built on
simplified forms of the general physical laws. Global
numerical models, wused either {for large-scale
meteorological prediction or for climate simulation, are at
present built on the so-called primitive equations. Those
equations rely on several approximations, the most
important of which being the hydrostatic approximation,
which expresses balance, in the vertical direction, of the
gravity and pressure gradient forces. This forbids explicit
description of thermal convection, which must be
parameterized 1in some appropriate way.

More and more limited-area models have been progressively
developed. They require appropriate definition of lateral
boundary conditions (not a simple problem). Most of them
are non-hydrostatic, and therefore allow description of
convection.

22



There exist at present two forms of discretization

- Gridpoint discretization

- (Semi-)spectral discretization (mostly for global models,
and most often only in the horizontal direction)

Finite element discretization, which is very common in many forms of

numerical modelling, is rarely used for modelling of the atmosphere. It
is more frequently used for oceanic modelling, where it allows to take
into account the complicated geometry of coast-lines.

23



Schematic of a gridpoint atmospheric model
(L. Fairhead /LMD-CNRYS)




The grids of two of the models of Météo-France (La Météorologie)



In gridpoint models, meteorological fields are defined by
values at the nodes of a the grid. Spatial and temporal

derivatives are expressed by finite differences.

In spectral models, fields are defined by the coefficients of
their expansion along a prescribed set of basic functions. In
the case of global meteorological models, those basic
functions are the spherical harmonics (eigenfunctions of

the laplacian at the surface of the sphere).

26
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Linear operations, and 1in particular differentiation, are
performed in spectral space, while nonlinear operations
and ‘physical’ computations (advection, diabatic heating
and cooling, ...) are performed in gridpoint physical space.
This requires constant transformations from one space to
the other, which are made possible at an acceptable cost
through the systematic use of Fast Fourier Transforms.

For that reason, those models are called semi-spectral.

28



Numerical schemes have been progressively developed and
validated for the ‘dynamics’ component of models, which
are by and large considered now to work satlsfactonly
(although regular improvements are still being made).

The situation 1s different as concerns ‘physics’, where many
problems remain (as concerns for instance subgrid scales
parameterization, the water cycle and the associated
exchanges of energy, or the exchanges between the
atmosphere and the underlying medium). ‘Physics’ as a
whole remains the weaker point of models, and is still the
object of active research.

29



5. SCHEMA DES INTERACTIONS PHYSIQUES DANS LE MODELE
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Centre Européen pour les Prévisions Météorologiques a
Moyen Terme (CEPMMT, Reading, GB)

(European Centre for Medium-range Weather Forecasts, ECMWF)
En avril 2014 :

Troncature triangulaire T1279 (résolution horizontale = 16
kilometres)

137 niveaux dans la direction verticale (0 - 80 km)
Dimension du vecteur d’état correspondant = 2,3 10°

Pas de discrétisation temporelle : 10 minutes
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Monday 5 January 2015 00UTC @ECMWF Analysis t+000 VT: Monday 5 January 2015 00UTC

Surface: Mean sea level pressure / 850-hPa wind speed
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500hPa geopotential
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Figure 3: 500 hPa geopotential height mean square error skill score for Europe (top) and the northem hemisphere
extratropics (bottom), showing 12-month moving averages for forecast ranges from 24 to 192 hours. The last point
on each curve is for the 12-month penod August 2013—July 2014.

Persistence = 0 ; climatology = 50 at long range http://old.ecmwf.int/publications/library/ecpublications/ pdf/tm/
701-800tm742.pdf
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Figure 4: Root mean square (RMS) error of forecasts made by persisting the analysis over 6 days (144 hours) and
verifying it as a forecast for 500 hPa geopotential height over Europe (blue). The RMS emor of the forecast at day
6 15 shown mn red. The 12-month moving average 1s plotted; the last point on the curve 1s for the 12-month peniod
Aungust 2013-Tuly 2014

http://old.ecmwf.int/publications/library/ecpublications/ pdf/tm/701-800tm742.pdf
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Figure 15: WhO-smchanped scores from global forecast centres. EMS emor over northern extratropics for
500 hPa peopotential beizht (top) and mean sea level preszure (bottom). In each panel the upper curves show the
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Metearolopical Office, NCEP = U.5. National Cemters for Environmental Prediction, M-F = Meteo France.
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Anomaly correlation of ECMWF 500hPa height forecasts
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http://old.ecmwf.int/
publications/library/

ecpublications/ pdf/
tm/701-800tm742.pdf
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Figure 14: Forecast performance in the tropics. Curves show the monthly average BMS vector wind ermmors at 200

bPFa (top) and 850 bFa (bottom) for ome-day (blue) and five-day (red) forecasts. 12-month moving averags scores
are also shown (in bold).



Forecast error of 2 m Temperature [ deg C] Europe 30.0-22.0 72.0 420
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Figure 19: Verification of 2 m temperature forecasts against European SYNOP data on the GTS
for 60-hour (night-time) and 72-hour (davtime) forecasts. Lower pair of curves shows bias, upper
curves are standard deviation of error.
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fior forecast days 110 15
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Figure 11: CRFSE for 500 kFa beight (top) and 850 hPa temperature (bottom) ensemble forecases for winter

(December=Febrmary) over the extratropical nonhem hemisphere. Skill from the essemble day 1=15 forecasts is
shomn for winters 2003=14 (red), 20012<13 (bive), 200 1=12 {green), 2000=11 (magenta), J000= 10 {cyam ), 200E-

0% (black) and 200708 {orange).



ECMWF

Fic. 3. Evolution of forecast errors from 1981 to 2012 for N.Hem (a and c¢) and S.Hem (b
and d). Operational forecasts (blue) and ERA Interim (green). Note that before 1986 the

operational analysis is used to verify the operational forecasts, after 1986 ERA Interim is
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used for the verification (with an overlap of 6 months present).

Magnusson and Kéllén, Mon. Wea. Rev., in press



Remaining Problems

Mostly 1n the ‘physics’ of models (Q and F terms in basic
equations)

- Water cycle (evaporation, condensation, influence on radiation
absorbed or emitted by the atmosphere)

- Exchanges with ocean or continental surface (heat, water,
momentum, ...)



Purpose of assimilation : reconstruct as accurately as possible the state of the
atmospheric or oceanic flow, using all available appropriate information. The latter

essentially consists of

= The observations proper, which vary in nature, resolution and accuracy, and

are distributed more or less regularly in space and time.

* The physical laws governing the evolution of the flow, available in practice in

the form of a discretized, and necessarily approximate, numerical model.

= ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although
they basically are necessary consequences of the physical laws which govern the flow, these

properties can usefully be explicitly introduced in the assimilation process.



Both observations and ‘model’ are affected with some uncertainty = uncertainty on the estimate.

For some reason, uncertainty is conveniently described by probability distributions (don’t

know too well why, but it works).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system, knowing

everything we know



Assimilation i1s one of many ‘inverse problems’ encountered
in many fields of science and technology

 solid Earth geophysics

e plasma physics
* ‘nondestructive’ probing

* navigation (spacecraft, aircraft, ....)

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.



Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n = 10%-10° parameters to be
estimated, p = 1-3.107 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to
be ready in time.

- Non-trivial, actually chaotic, underlying dynamics



ratio of supercomputer costs:
1 day's assimilation / 1 day forecast

100

Computer power increased by 1M in 30 years.

Only 0.04% of the Moore’s Law increase over

this time went into improved DA algorithms,
rather than improved resolution!

10

1
1985 1990 1995 2000 2005 2010

Courtesy A. Lorenc



Relative cost of the various components of the operational prediction
suite at ECMWF (september 2011, J.-N. Thépaut) :

4DVAR: 17%

Ensemble Data Assimilation (EDA) : 15%
Deterministic model : 13%

Ensemble Prediction System (EPS) : 53%
others : 2%

EDA produces both the background error covariances for 4D-Var and
the initial perturbations (in addition to Singular Vectors) for EPS.



z1=x+ ¢ density function p,() « exp[ - (£»)/2s,]

,=x+G& density function p,(&) x expl - (£2)/2s,]

&, and &, mutually independent

P(x=2Slz,2) ?



Z1=x+ & density function p,() « exp[ - (£»)/2s,]
=x+G& density function p,(&) x expl - (£2)/2s,]
&, and &, mutually independent

P(X=§|Z1,Z2) ?
x=£f « §=z-Eand & =2,-E

* P(x=&1z,25) ¢ pi(2-8) py(2,-8)
o« expl - (§-x9)*/2p7]

where 1/p®=1/s, + 1/s, , x4=p*(z,/s, + 2,/5,)

Conditional probability distribution of x, given z, and z, N [x, p?
p* < (sy, s,) iIndependent of z, and z,



prorx -~ N[0S
Ikathcod piyoix) ~ N3 1)
postanorx ~ N2 25 075)

peicex ~ N(0O.3)
athood piyod ~ NUS 1)
posierrx ~ NATS 075)

priorx ~ NiD,3)
Ikathood plyoix) ~ N7 1)
pasteniorx ~ NS 25,075)

pricex ~ N(0.3)
athood poyopd ~ N9, 1)
pasirirx ~ NE75,075)

Fig. 1.1: Prior pdf p(z) (dashed line), posterior pdf p(x
likelihood of observation p(y°

y°. (Adapted from Lorenc and Hammon 1988.)

y°) (solid line), and Gaussian

r) (dotted line), plotted against 2 for various values of



Z1=x+ g
L=x+ G,

Same as before, but &, and &, are now distributed according to exponential law
with parameter a, i. e.

p (&) x exp[-ICl/a]l ; Var({) =2ad?

Conditional probability density function is now uniform over interval [z, 2,],
exponential with parameter a/2 outside that interval

E(x1z,2) = (21422
Var(x | z;, 2,) = a> Q&3 + &+ 8 +1/2) / (1 + 208), with § = | z,-2, | /(2a)

Increases from a?/2 to o as ¢ increases from 0 to o. Can be larger than variance 2a?
of original errors (probability 0.08)

(Entropy -[plnp always decreases in bayesian estimation. False !)



Bayesian estimation

State vector x, belonging to state space S (dim.S'= n), to be estimated.
Data vector z, belonging to data space 77 (dimZ) = m), available.

z=F(x, §) (1)

where £ is a random element representing the uncertainty on the data (or, more
precisely, on the link between the data and the unknown state vector).

For example

z=Ix+_C



Bayesian estimation (continued)
Probability that x = & for given & ?
x=& = z=F(E 0
P(x=Elz)=Plz=F(& 0]/ [s Plz=F(&, D]
Unambiguously defined iff, for any C, there is at most one x such that (1) is verified.

< data contain information, either directly or indirectly, on any component of
x. Determinacy condition.



Bayesian estimation is however impossible in its general theoretical
form in meteorological or oceanographical practice because

It 1s impossible to explicitly describe a probability distribution in a space
with dimension even as low as n = 10°, not to speak of the dimension n =
10 of present Numerical Weather Prediction models.

Probability distribution of errors on data very poorly known (model errors
in particular).



One has to restrict oneself to a much more modest goal. Two
approaches exist at present

= Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, ...), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

" Produce an ensemble of estimates which are meant to sample the
conditional probability distribution (dimension N = O(10-100)).
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Figare 2. SOmbd ficid produced by the operational analysis procedure of Dercction de la
for OGMT, 26 Apedl ) Unsts: dam, contour interval: 4 dam. The ficld has been truncated to the truncation
of the model used for the expenments described in the article.

Courtier and Talagrand, QJRMS, 1987
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Figure 1. Geographical dstribution of the observations used for the assimelation cxperiments. (a) geopo-
tential observations, (b): wind observations. Al most of the pomts plotted, several observations were made at
successve synoptic hours. On cach of the two charts, the heavy hine delincates the Aleutian depression (see

Figure 2)
Courtier and Talagrand, QJRMS, 1987
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Figure 2. S0 mb height ficld produced by the operational analysis procedure of Dircction de la Méséorologic
for OGMT, 26 April 1984, Units: dam, contour interval: 4 dam. The Sicld has been truncated 1o the truncation o W-bh*hi:r;hn:ﬂ:z?mb@lmb{th\:-mdm—m&
of the model used for the expeniments described in the article. Gnc fnciee Gled by B over 2 24-hows period. Usits: dam: costour mterval: 4dam.

500-hPa geopotential field as determined by : (left) operational assimilation system of
French Weather Service (3D, primitive equation) and (right) experimental variational system
(2D, vorticity equation)

Courtier and Talagrand, QJRMS, 1987



Random vector x = (x;, x5, ..., x,)T = (x,) (e. g. pressure, temperature, abundance of
given chemical compound at n grid-points of a numerical model)

= Expectation E(x) = [E(x;)] ; centred vector x’ =x- E(x)
= (Covariance matrix
E(x’x’T) = [E(x;x;)]

dimension nxn, symmetric non-negative (strictly definite positive except if linear
relationship holds between the x;”‘s with probability 1).

= Two random vectors
X=Xy, .0y x,)T
y = (yl’y2’ "°’yp)T

E(x’y™) = E(x;’y;")

dimension nxp



Random function @(&) (field of pressure, temperature, abundance of given
chemical compound, ... ; & is now spatial and/or temporal coordinate)

= Expectation E[D(§)] ; D'(&) = D) - E[D(&)]
= Variance Var[@(§)] = E{[¢'(§)]*}

= (Covariance function

(&, 5) = Ci&, &) = E[P(§) P(5)]

=  Correlation function

Cor (& &) = ELP'(§) P (5)]/ {Var[M(&))] Var[d(E)]}"



I1solines for the auto-correlations of the 500 mb
geopotential between the station in Hannover and
surrounding stations. :
From Bertoni and Lund (1963)

After N. Gustafsson

“

. Isolines of the cross-correlation between the 500 mb

geopotential in station 01 384 (R) and the surface
pressure in surrounding stations.



P ol

Figure 4.2.4.3: Isolines for the auto-correlation of the 500 mb

After N. Gustafsson

u-wind component (dashed line) and the auto-
correlation of the 500 mb v-wind component (full
line). The "star" indicates the position of the re-
ference station. (Prom Buel (1972).



Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-
casts of surface pressure in a reference station
(Stockholm) and other stations. :

After N. Gustafsson



Optimal Interpolation

Random field &(&)
Observation network &, &, ..., &,
For one particular realization of the field, observations

y=dE+¢g . j=1,...,p, making up vector y = (y,)
Estimate x = @(&) at given point &, in the form

x=a+Z By =a+ply |, where = (f5)

a and the [5’s being determined so as to minimize the expected quadratic
estimation error E[(x-x%)?]



Optimal Interpolation (continued 1)

Solution
x4 =E@x)+ Exy ™) [EQ’y DI [y - EQ)]
i.e., B=[EQ@y DI Ex’y’)
a=E(x) - BTE(y)
Estimate 1s unbiased E(x-x4) =0

Minimized quadratic estimation error
p* = E[(x-x?)?] = E(x?) - E(y™") [EQ'y D] E(y'x))
Estimation made in terms of deviations from expectations x’and y’.

If random variables x and y are globally gaussian, Optimal Interpolation achieves
bayesian estimation, in the sense that P(x | y) = N [x, p?].



Optimal Interpolation (continued 2)

x4=E@x)+E@y™) [EQy D] [y- E(y)]
Y= @(gj) + &
E(y;'y,) = E[D(5) + &’ 1[DP(§) + €]

If observation errors ¢ are mutually uncorrelated, have common variance s, and are
uncorrelated with field @, then

E(y;’y,’) = Cqﬁ(gj, §) + Séjk
and

Ex’y;) =Cy& &)



AAAAA













Optimal Interpolation (continued 3)

x=E(x)+Ex’y' ") [EQy D! [y - EQy)]

Vector

p=(u)=[EYy DI [y-Ey]
is independent of variable to be estimated
x?=E(x) + 2 U E(x’yj’)

D9 = E[D)] + 3, 11, E[D'(D) ;'
= E[D(8)] + 2 W Cy(& SJ)

Correction made on background expectation is a linear combination of the p functions
E[D’(§) yi' 1= Cy(& §])]

considered as a function of estimation position &, E[D'(§) y,’] is the representer
associated with observation y;.



Optimal Interpolation (continued 4)

Univariate interpolation. Each physical field (e. g. temperature) determined
from observations of that field only.

Multivariate interpolation. Observations of different physical fields are used

simultaneously. Requires specification of cross-covariances between various
fields.

Cross-covariances between mass and velocity fields can simply be
modelled on the basis of geostrophic balance.

Cross-covariances between humidity and temperature (and other) fields still
a problem.



-----

Schlatter’s (1975) multivariate covariances

Specified as
multivariate 2-point
functions.

Not easy to ensure
that specified
functions are
actually valid
covariances.

Used in Ol and
related observation-
space methods.

Courtesy A. Lorenc

© Crown copyright Met Office Andre'

|

b hu i-h—v

F1c. 3. Correlations among the variables 7, %, and v based upon the expression p=0.95 exp(—1.24s?)
for height-height correlation and the geostrophic relations. Diagrams centered at 110°W, 35°N, Tick
marks 500 km apart.



Best Linear Unbiased Estimate
State vector x, belonging to state space S'(dim.S'= n), to be estimated.

Available data in the form of

= A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n

xt = x+ &

= An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx+ ¢
H is known linear observation operator.
Assume probability distribution is known for the couple (&, ¢).

Assume E(&P) =0, E(¢) =0, E(&€) = 0 (not restrictive)
Set E(&PEPT) = PP (also often denoted B), E(e€™) = R



Best Linear Unbiased Estimate (continuation 1)

xt =x+& (1)
y = Hx+¢ (2)

A probability distribution being known for the couple (&, €), eqs (1-2)
define probability distribution for the couple (x, y), with

Ex)=xt, x’=x-Ex)=-&
E(y)=Hx", y'=y-E(y)=y-Hx"=¢-HE

d =y - Hx? is called the innovation vector.



Best Linear Unbiased Estimate (continuation 2)

Apply formula for Optimal Interpolation

x¢=xP+ PPHT [HP"H" + R]"' (y - Hx)
P¢ = P°- PPHT[HP’HT + R]'' HP?

x? is the Best Linear Unbiased Estimate (BLUE) of x from x” and y.
Equivalent set of formule

x*=xb+ P*HTR' (y - Hx?)
(P4 =[PP+ HTR'H

Matrix K = PP H' [HP?H" + R]'' = P* H' R"' is gain matrix.

If probability distributions are globally gaussian, BLUE achieves bayesian
estimation, in the sense that P(x | x?, y) = Mx“, P4].
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Fig. 4 BSea level pressure and wind forecast corresponding to the central area of
Fig. 1, with plotted surface observations of pressure and wind

(each fleche = 5 m/s).

After A. Lorenc

o
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¢
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Fig. 5 As Fig. 4 for the analysis in the data assimilation cycle



Best Linear Unbiased Estimate (continuation 4)

Variational form of the BLUE

BLUE x“ minimizes following scalar objective function, defined on state space
se S —
. J&) = 1/2) P -HTPT (¥ - &) + (1/2) (y - HY'R' (v - HE)
= jb + jo

‘3D-Var’

Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.

Used operationally in USA, Australia, China, ...



Question. How to introduce temporal dimension in
estimation process ?

Logic of Optimal Interpolation can be extended to time dimension.

But we know much more than just temporal correlations. We know
explicit dynamics.

Real (unknown) state vector at time k (in format of assimilating model) x,. Belongs
to state space S (dim.S'= n)

Evolution equation

Xip1 = Mi(x) + 1,

M, is (known) model, 1, 1s (unknown) model error



Sequential Assimilation

e Assimilating model is integrated over period of time over which observations
are available. Whenever model time reaches an instant at which observations
are available, state predicted by the model is updated with new observations.

Variational Assimilation

e Assimilating model is globally adjusted to observations distributed over
observation period. Achieved by minimization of an appropriate scalar
objective function measuring misfit between data and sequence of model states
to be estimated.



Observation vector at time k

Vi = Hpx +
E(g) =0 ; E(gg") =R, 6
H, linear

Evolution equation

Xpp1 = Mix + 1y
E(n) =0 ; E(leUJT) = Q) Oy
M, linear

E( nksz) =0 (errors uncorrelated in time)



At time k, background x?, and associated error covariance matrix P?, known

Analysis step

Xy =x0 + PP HT [HPYHT + R (- Hx)
Po = P’ PR HT [HPOH,T + R H PPy

Forecast step

xbk+1 = M x%
PPy = EL - X DO - X)) = E[WM, XY - Myxy - ) (M x% - Mixg - m)T]
= M E[(x% - x)(x% - x)TIM, " - E[m, (5 - )] - E[(x* - x)n, "] + E[n,n,"]

=M, P M+ Q,



At time k, background x?, and associated error covariance matrix P?, known

Analysis step
x4 =x+ PO HT HPYHE + R (v - Hx)
Forecast step

xbk+l = M, x%,
PP = M, PYM,™+ Q,

Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate (x’,, P?,)



If all operators are linear, and if errors are uncorrelated in time,
Kalman filter produces at time k the BLUE x”, (resp. x%,) of the real
state x, from all data prior to (resp. up to) time k, plus the associated
estimation error covariance matrix P?, (resp. P%)).

If in addition errors are gaussian, the corresponding conditional
probability distributions are the respective gaussian distributions

Nxb,, Pb] and N[xe,, P*].
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Fig. 2

The components of the total expected rms error (Erng), (trace: P )1/2.
in the estimation of solutions to the stochastic-dynanic system (¥,H),
with ¥ given by (3.6) and H = (I 0), System noise iz absent, Q » 0. The
filter used 13 the standard K-B filter (2.11) for the model.

a) Erms over land; ©¥) Erns over the ocean;

In each one of the figures, each curve represents one component of the
total Erms error. The curves labelled U, V, and P represent the u component
v component and $ component, respcotively. They are found by sunning the
dingonal elaments of Py which corrvspond to u, v, and $, respectively,
dividing by the number of terms in the sum, and then taking the square root.
In a) the aunmntinn extends over land points only, in b) over ocesn points
only, and in c) over the entire L-domain, The vertical axis is scaled in
such = way that 1.0 corresponds to an Erms error of vy, for the U and ¥
curves, and of $g for the P curve. The cbservational error level is 0,089
for the U and V curves, and 0.080 for the P curve. The curves labelled

T represent the total Frma error over esch region. Each T curve is a
weighted nverage of the corresponding U, ¥V, and P curves, with the weights
chosen in such a way that the T curve measures the error in the total
energy uZ + vZ + 4271, conserved by the system (3.1). The observational
noise level for the T curve is then 0,088, Notice the immediate error
decrease over land and the gradual decrease over the ocean., The total
estimation error tends to zero.

¢) Erms over the entire L-domain
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Nonlinearities ?

Model is usually nonlinear, and observation operators (satellite
observations) tend more and more to be nonlinear.

Analysis step

x4 = x4+ P H T [HPYHT + R [y - Hy(x))]
P4 =Pt - PP HT[H P+ R H PP
Forecast step

xbk+l = M,(x%)
Pl =M, PY M.+ Oy

Extended Kalman Filter (EKF, heuristic !)



Costliest part of computation
PP = My PO M+ Oy

Multiplication by M, = one integration of the model between times k and k+1.
Computation of M, P4, M,T =2n integrations of the model

Need for determining the temporal evolution of the uncertainty on
the state of the system 1s the major difficulty in assimilation of
meteorological and oceanographical observations



Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC
(ECMWEF, spectral truncation T21, unit m. After F. Bouttier)



Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.



Two solutions :

e Low-rank filters (Heemink, Pham, ...)

Reduced Rank Square Root Filters, Singular Evolutive Extended
Kalman Filter, ....

e Ensemble filters (Evensen, Anderson, Kalnay, ...)

Uncertainty is represented, not by a covariance matrix, but by an
ensemble of point estimates in state space which are meant to sample the
conditional probability distribution for the state of the system
(dimension N = O(10-100)).

Ensemble is evolved in time through the full model, which eliminates
any need for linear hypothesis as to the temporal evolution.



How to update predicted ensemble with new observations ?

Predicted ensemble at time ¢ : {x” }, i=1,....N

Observation vector at same time : y = Hx + ¢
e Gaussian approach

Produce sample of probability distribution for real observed quantity Hx

Yi=y-§&
where ¢;1s distributed according to probability distribution for observation error
E.

Then use Kalman formula to produce sample of ‘analysed’ states
x4 =xP.+ PPHY[HPPH" + R (y, - Hx?) , i=1,...,N (2)
where P”is covariance matrix of predicted ensemble {x }.

Remark. If PP was exact covariance matrix of background error, (2) would
achieve Bayesian estimation, in the sense that {x%} would be a sample of
conditional probability distribution for x, given all data up to time .



Called Ensemble Kalman Filter. Has now become one of the two major
powerful algorithms for assimilation of meteorological and
oceanographical observations.

Local Ensemble Transform Kalman Filter (LETKF, Kalnay and colleagues)



Month-long Performance of EnKF vs. 3Dvar with WRF

— EnKF —3DVar (prior, solid; posterior, dotted)

200+ u 200+
400t 400+
600 600+
800 800+
1000, 1000
200 T 200
400} 400}
600 600+
800} 800+
1000 : : : : 1000

0.5 1 1.5 2 (K) 0 0.5 1 1.5 é (g/kg)

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior
analysis in terms of root-mean square difference averaged over the entire month

(Meng and Zhang 2007c, MWR, in review )



Variational Assimilation

Observation vector at time k

Ve = Hx + &

Evolution equation

X1 = Mypxg + 1,
Em) =0 ; E(mn") = 0,8,
E(ng") =0

Background estimate at time O

xby = xp + &
E(Cbo):o 3 E(CboéboT)EPbo
E(Cbong) =0 ; E(C"omT)=0

Errors uncorrelated in time



Variational assimilation leads to the following weak constraint objective function

(507 51’ ) 5[() g

(&> &1 -+ Eg)
= (172) (xbo - go)T [P bo]_l (xbo - &)
+ (112) Zi kO - HE)' R - Hi S
+ (112) 2, k1 (G- MGEDT O (G- ML)

ceoy



If model error is ignored (Q,=0), problem reduces to minimizing

§o g J(‘So) = (1/2) (xbo - go)T [Pbo]_1 (xbo - 50)
+ (1/2) 2/<=0, k Ox - HEY' R (v - HLE)

ceey

subject to

i1 = My, , k=0,...,K-1

Strong  constraint four-dimensional variational assimilation, or strong
constraint 4D-Var

Used operationally in several meteorological centres (Météo-France, UK
Meteorological Office, Canadian Meteorological Centre (maybe not any
more ?), Japan Meteorological Agency, ...) and, until recently, at ECMWF.
The latter now has a ‘weak constraint’ component in its operational system.



J(&) = (1/2) (xp” - E) [P (" - &) + (1/2) Zillyy - HG I Ry [y - Hi&l

Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

Minimization achieved by iterative algorithm, each step of which requires
the explicit knowledge of the local gradient V] = (9/]/du;) of /] with respect to
u.

Gradient computed by adjoint method, which proceeds, in the space of
partial derivatives, in reverse order of direct computations.



How to numerically compute the gradient V] ?

Direct perturbation, in order to obtain partial derivatives 0‘)/0u; by finite
differences ? That would require as many explicit computations of the
objective function /] as there are components in u. Practically impossible.



Adjoint Method

Input vector u = (u;), dimu =n

Numerical process, implemented on computer (e. g. integration of
numerical model)

u—v=G(u)
* v=(v) is output vector ,dimy = m

* Perturbation ou = (du,) of input. Resulting first-order perturbation on v
* Ov;=ZX,(dv/ouy) oy

* or,1n matrix form

e ov = G’ du

* where G’= (dv/du,) is local matrix of partial derivatives, or jacobian matrix, of
G.



Adjoint Method (continued 1)

ov = G’ ou

* Scalar function of output
Jv) = JiGw)]
Gradient V /] of /] with respect to input u?
‘Chain rule’
dJ/du;= 2;9J/dv; (dv/du,)

or

‘ V.J=G"V,]

(D)

(A)



Adjoint Method (continued 2)

G i1s the composition of a number of successive steps

G=Gy.....G,.G,
‘Chain rule’
G =G, ..G, G/
Transpose
GT=G’TG,T...G"
Transpose, or adjoint, computations are performed in reversed order of direct computations.

If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used again in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in

the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).



Adjoint Approach

J(&o) = (1/2) (xob - Eo)T [Pob]_1 (x()b - Eo) +(1/2) Zkb’k - Hkgk]TRk_l [yk - Hkgk]
subjectto &, = M,§&,, k=0,...,K-1

Control variable E=u
Adjoint equation
Ag= Hy' Ry [Hy 8 - vl

d=MA ., +HTR ! [HE -y, k=K-1,...,1

Ao=My"A + Hy Ry [Hy & - yol + [PP11 (& - xP)

V.J =%

Result of direct integration (&), which appears in quadratic terms in expression of
objective function, must be kept in memory from direct integration.



Adjoint Approach (continued 2)

Nonlinearities ?

J(go) = (1/2) (xob - ‘So)T [Pob]_1 (Xob - go) +(172) ZkLYk - Hk(gk)]TRk_l [y - Hk(‘:a:k)]
subject to &, = M (&), k=0,...,K-1

Control variable E=u
Adjoint equation
Ay = Hi "R [H(Eg) - vkl

M= M M+ HUTR TH(E) -yl k=K-1,...,1

Ao=My A+ Hy PRy [HY(E) - yol + [P (& - XD

V.J =%

Not heuristic (it gives the exact gradient V), and really used as described here.
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3D-Var verifying analysis

=

4D-Var verifying analysis
M : :; PY 3 )
l‘ :%
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ECMWEF, Results on one FASTEX case (1997)




Buehner (2008)

For the same numerical cost, and in meteorologically realistic
situations, Ensemble Kalman Filter and Variational Assimilation
produce results of similar quality.



Conclusions

Assimilation, which originated from the need of defining initial conditions for numerical weather
forecasts, has progressively extended to many diverse applications

*  Oceanography

e Atmospheric chemistry (both troposphere and stratosphere)

e Oceanic biogeochemistry

e Ground hydrology

e  Terrestrial biosphere and vegetation cover

*  Glaciology

e  Magnetism (both planetary and stellar)

e  Plate tectonics

e  Planetary atmospheres (Mars, ...)

e  Reassimilation of past observations (mostly for climatological purposes, ECMWEF, NCEP/NCAR)
e Identification of source of tracers

e  Parameter identification

e A priori evaluation of anticipated new instruments

e Definition of observing systems (Observing Systems Simulation Experiments)
e  Validation of models

e Sensitivity studies (adjoints)

It has now become a major tool of numerical environmental science



Assimilation is related to

* Estimation theory

e Probability theory

e Atmospheric and oceanic dynamics

e Atmospheric and oceanic predictability
e Instrumental physics

e Optimisation theory

e Control theory

e Algorithmics and computer science
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