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-  What is assimilation ?	



-  Numerical  weather  prediction.  Principles  and 
performances	



-  Definition of initial conditions	



-  Bayesian Estimation	



-  One first step towards assimilation : ‘Optimal Interpolation’	



-  The  temporal  dimension  :  Kalman  Filter  and  Variational 
Assimilation 	



	

  





ECMWF, Technical Report 499, 2006  



 Pourquoi  les  météorologistes  ont-ils  tant  de  peine  à  prédire  le  temps 
avec quelque certitude  ? Pourquoi les chutes de pluie,  les tempêtes 
elles-mêmes nous semblent-elles arriver au hasard, de sorte que bien 
des gens trouvent tout naturel de prier pour avoir la pluie ou le beau 
temps, alors qu’ils jugeraient ridicule de demander une éclipse par 
une prière ? Nous voyons que les grandes perturbations se produisent 
généralement  dans  les  régions  où  l’atmosphère  est  en  équilibre 
instable. Les météorologistes voient bien que cet équilibre est instable, 
qu’un cyclone va naître quelque part ; mais où, ils sont hors d’état de 
le  dire   ;  un  dixième  de  degré  en  plus  ou  en  moins  en  un  point 
quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages 
sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième 
de  degré,  on  aurait  pu  le  savoir  d’avance,  mais  les  observations 
n’étaient ni assez serrées, ni assez précises, et c’est pour cela que tout 
semble dû à l’intervention du hasard.	



	

 	

 	

 	

 H. Poincaré, Science et Méthode, Paris, 1908	
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   Why  have  meteorologists  such  difficulties  in  predicting  the 
weather with any certainty ? Why is it that showers and even 
storms seem to come by chance, so that many people think it 
is quite natural to pray for them, though they would consider 
it ridiculous to ask for an eclipse by prayer ? […] a tenth of a 
degree more or less at any given point, and the cyclone will 
burst here and not there, and extend its ravages over districts 
that it would otherwise have spared. If they had been aware of 
this tenth of a degree, they could have known it beforehand, 
but the observations were neither sufficiently comprehensive 
nor sufficiently precise, and that is the reason why it all seems 
due to the intervention of chance.	



	

 	

 	

 H. Poincaré, Science et Méthode, Paris, 1908	


	

 	

 	

 	

 (translated Dover Publ., 1952) 
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Satellite  ADM-Aeolus  has recently been launched (August 22 

2018). It carries a Lidar-Doppler instrument, called Aladin 
(Atmospheric LAser Doppler Instrument), that will measure 
the wind in the volume of the atmosphere. 	



	

  



  Synoptic  observations  (ground  observations,  radiosonde  observations), 
performed simultaneously,  by international  agreement,  in all  meteorological 
stations around the world (00:00, 06:00, 12:00, 18:00 UTC), and are in practice 
concentrated over continents.	



  Asynoptic  observations  (satellites,  aircraft),  performed  more  or  less 
continuously in time.	



  Direct observations (temperature, pressure, horizontal components of the wind, 
moisture), which are local and bear on the variables used for for describing the 
flow in numerical models.	



  Indirect observations (radiometric observations, …), which bear on some more 
or less complex combination (most often, a one-dimensional spatial integral) 
of variables used for for describing the flow 	



y = H(x)   	



	

  H : observation operator (for instance, radiative transfer equation)	





S. Louvel, Doctoral Dissertation, 1999	





17 
E. Rémy, Doctoral Dissertation, 1999 
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Physical laws governing the flow	



  Conservation of mass	


	

 Dρ/Dt + ρ divU  =  0	

 	



  Conservation of energy	


	

 De/Dt - (p/ρ2) Dρ/Dt =  Q	



  Conservation of momentum	


	

 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	



  Equation of state	


	

  f(p, ρ, e) =  0	

 	

 	

 (for a perfect gas p/ρ = rT, e = CvT)	



  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	



	

 Dq/Dt + q divU  = S	



These physical laws must be expressed in practice in discretized (and necessarily	


imperfect) form, both in space and time ⇒ numerical model 	





Parlance of the trade :	



  Adiabatic  and inviscid,  and therefore thermodynamically 
reversible, processes (everything except Q, F and S) make 
up ‘dynamics’	



  Processes described by terms Q, F and S make up ‘physics’ 	
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All  presently  existing  numerical  models  are  built  on 
simplified  forms  of  the  general  physical  laws.  Global 
numerical  models,  used  either  for  large-scale 
meteorological prediction or for climate simulation, are at 
present  built  on the so-called primitive equations.  Those 
equations  rely  on  several  approximations,  the  most 
important  of  which being the hydrostatic approximation, 
which expresses balance, in the vertical direction, of the 
gravity and pressure gradient forces. This forbids explicit 
description  of  thermal  convection,  which  must  be 
parameterized in some appropriate way.	



More  and  more  limited-area  models  have  been  developed 
over  time.  They  require  appropriate  definition  of  lateral 
boundary conditions (not a simple problem). Most of them 
are  non-hydrostatic,  and  therefore  allow  description  of 
convection.  	
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There exist at present two forms of discretization	



-  Gridpoint discretization	



-  (Semi-)spectral  discretization  (mostly  for  global  models, 
and most often only in the horizontal direction)	



Finite  element  discretization,  which is  very  common in  many forms of 
numerical modelling, is rarely used for modelling of the atmosphere. It 
is more frequently used for oceanic modelling, where it allows to take 
into account the complicated geometry of coast-lines.	
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Schematic of a gridpoint atmospheric model 
(L. Fairhead /LMD-CNRS) 



The grids of two of the models of Météo-France (La Météorologie) 
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In  gridpoint  models,  meteorological  fields  are  defined  by 
values  at  the  nodes  of  the  grid.  Spatial  and  temporal 
derivatives are expressed by finite differences.	



In spectral  models,  fields are defined by the coefficients of 
their expansion along a prescribed set of basic functions. In 
the  case  of  global  meteorological  models,  those  basic 
functions are the spherical  harmonics (eigenfunctions of 
the laplacian at the surface of the sphere).   	





Modèles (semi-)spectraux	



	

 	

 T(µ=sin(latitude), λ=longitude) =  	



	

 où les	

            sont les harmoniques sphériques	



	

 	

 	

	

          est la fonction de Legendre de deuxième espèce.	



	

 	



	

  n et m sont respectivement le degré et l'ordre de l’harmonique 	
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Linear  operations,  and  in  particular  differentiation  with 
respect  to  spatial  variables,  are  performed  in  spectral 
space,  while  nonlinear  operations  and  ‘physical’ 
computations  (advection  by  the  movement,  diabatic 
heating  and  cooling,  …)  are  performed  in  gridpoint 
physical  space.  This  requires  constant  transformations 
from one space to the other, which are made possible at an 
acceptable cost through the systematic use of Fast Fourier 
Transforms. 	



For that reason, those models are called semi-spectral.	
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Numerical  schemes have been progressively developed and 
validated for the ‘dynamics’ component of models, which 
are  by  and  large  considered  now  to  work  satisfactorily 
(although regular improvements are still being made).	



The situation is different as concerns ‘physics’, where many 
problems remain (as concerns for instance subgrid scales 
parameterization,  the  water  cycle  and  the  associated 
exchanges  of  energy,  or  the  exchanges  between  the 
atmosphere  and  the  underlying  medium).  ‘Physics’ as  a 
whole remains the weaker point of models, and is still the 
object of active research.  	







Centre Européen pour les Prévisions Météorologiques à 
Moyen Terme (CEPMMT, Reading, GB) 

(European Centre for Medium-range Weather Forecasts, ECMWF) 

Modèle hydrostatique semi-spectral 
Depuis mars 2016 : 

Troncature triangulaire TCO1279 / O1280 (résolution 
horizontale ≈ 9 kilomètres) 

137 niveaux dans la direction verticale (0 - 80 km) 

Discrétisation en éléments finis dans la direction verticale  

Dimension du vecteur d’état correspondant  ≈  4.109  

Pas de discrétisation temporelle (schéma semi-Lagrangien semi-
implicite):  450 secondes 



2019 



2019 







Persistence = 0 ; climatology = 50 at long range	

 http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/
701-800tm742.pdf 



ECMWF 



ECMWF 



ECMWF Technical 
Memorandum 831 

https://
www.ecmwf.int/sites/
default/files/elibrary/
2018/18746-
evaluation-ecmwf-
forecasts-
including-2018-
upgrade.pdf 



ECMWF Technical 
Memorandum 831 

https://
www.ecmwf.int/sites/
default/files/elibrary/
2018/18746-
evaluation-ecmwf-
forecasts-
including-2018-
upgrade.pdf 



ECMWF Technical 
Memorandum 831 

https://
www.ecmwf.int/sites/
default/files/elibrary/
2018/18746-
evaluation-ecmwf-
forecasts-
including-2018-
upgrade.pdf 



ECMWF 

Dotted curves: seasonal values 
Full curves : four-season average 



Magnusson and Källén, Mon. Wea. Rev., in press 

ECMWF 



Remaining Problems 

 Mostly in the ‘physics’ of models (Q  and F  terms in basic 
equations) 

-  Water cycle (evaporation, condensation, influence on radiation 
absorbed or emitted  by the atmosphere) 

-  Exchanges with ocean or continental surface (heat, water, 
momentum, …) 

-  … 



 	


-  What is assimilation ?	



-  Numerical  weather  prediction.  Principles  and 
performances	



-  Definition of initial conditions	



-  Bayesian Estimation	



-  One first step towards assimilation : ‘Optimal Interpolation’	



-  The  temporal  dimension  :  Kalman  Filter  and  Variational 
Assimilation 	



	

  



 Purpose of assimilation : reconstruct as accurately as possible the state of the 
atmospheric or oceanic flow, using all available appropriate information. The latter 
essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, and 
are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in practice in 
the form of a discretized, and necessarily approximate, numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although 
they basically are necessary consequences of the physical laws which govern the flow, these 
properties can usefully be explicitly introduced in the assimilation process. 
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Both observations and ‘model’ are affected with some uncertainty ⇒ 
uncertainty on the estimate. 

 For some reason, uncertainty is conveniently described by probability 
distributions (don’t know too well why, but it works; see, e.g. Jaynes, 
2007, Probability Theory: The Logic of Science, Cambridge University 
Press). 

 Assimilation is a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of the 
system, knowing everything we know (see Tarantola, A., 2005, Inverse 
Problem Theory and Methods for Model Parameter Estimation, SIAM). 



 Assimilation  is  one  of  many  ‘inverse  problems’ encountered 
in many fields of science and technology	



•  solid Earth geophysics	



•  plasma physics	



•  ‘nondestructive’ probing	



•  navigation (spacecraft, aircraft, ….)	



•  …	



	

 Solution  most  often  (if  not  always)  based  on  Bayesian,  or 
probabilistic,  estimation.  ‘Equations’ are  fundamentally  the 
same. 



Difficulties specific to assimilation of meteorological observations :	



	

 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  4.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	



	

 - Non-trivial, actually chaotic, underlying dynamics	





	

 Relative  cost  of  the  various  components  of  the  operational  prediction 
suite at ECMWF (september 2015, J.-N. Thépaut) :	



	

 - 4DVAR: 9.5%	


	

 - Ensemble Data Assimilation (EDA) : 30%	


	

 EDA  produces  both  the  background  error  covariances  for  4D-Var  and 

the initial perturbations (in addition to Singular Vectors) for EPS.	


	

 - High resolution deterministic model : 4.5%	


	

 - Ensemble Prediction System (EPS) : 22%	


	

 - Ensemble hindcasts : 14%	


	

 -  Others  :  20%  (among  which  17%  for  computation  of  boundary 

conditions of a number of limited-area models ; those 17% include both 
assimilation and forecast)	



	

 Assimilation  over  24  hour  of  observations  takes  more  than  40%  of  the 
computing power devoted to 10-day operational prediction   



   

	

 	

 z1 = x + ζ1	

 density function 	

 p1(ζ) ∝ exp[ - (ζ2)/2s1]	



  z2 = x + ζ2	

  density function 	

p2(ζ) ∝ exp[ - (ζ2)/2s2]	



	

 	

 	

 	

 ζ1 and ζ2 mutually independent	



	

 	

 P(x = ξ | z1, z2)  ?	





  z1 = x + ζ1	

 density function 	

 p1(ζ) ∝ exp[ - (ζ2)/2s1]	


  z2 = x + ζ2	

  density function 	

p2(ζ) ∝ exp[ - (ζ2)/2s2]	


	

 	

 	

 	

 ζ1 and ζ2 mutually independent 	


	

 	

 P(x = ξ | z1, z2)  ?	



x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ	



•  P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)	



	

 	

 	

         ∝  exp[ - (ξ -xa)2/2pa]  

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)	



Conditional probability distribution of x, given z1 and z2 :N [xa, pa]	


pa < (s1, s2) independent of z1 and z2 	







 Conditional  expectation  xa  minimizes  following  scalar  objective 
function, defined on ξ-space	



	

 	

  ξ →   J(ξ) ≡  (1/2) [(z1 - ξ)2 / s1 + (z2 - ξ)2 / s2 ] 

	

  In addition	



	

 	

  pa = 1/ J’’(xa)  

 Conditional probability distribution in Gaussian case 

   P(x = ξ | z1, z2) ∝ exp[ - (ξ -xa)2/2pa]  

	

 	

 	

 	

 	

 J(ξ) + Cst  



 Estimate	



	

 	

 	

 xa = pa (z1/s1
 + z2/s2)	



	

 with error pa such that	



	

 	

 	

  1/pa = 1/s1 + 1/s2  	



 can also be obtained, independently of any Gaussian hypothesis, as 
simply corresponding to the linear combination of z1 and z2 that minimizes 
the error Ε [(xa-x) 2]  

   Best Linear Unbiased Estimator (BLUE)  



  z1 = x + ζ1	

 	


  z2 = x + ζ2	

 	



	

 	

 Same as before, but ζ1 and ζ2 are now distributed according to exponential law 
with parameter a, i. e.  	



	

 	

 	

 p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2	



Conditional probability density function is now uniform over interval [z1, z2], 	


exponential with parameter a/2 outside that interval	



	

 E(x | z1, z2)  = (z1+z2)/2	



	

 Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =  ⏐z1-z2⏐/(2a)	


	

 Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2	



	

 of original errors (probability 0.08)	



	

 	





Bayesian estimation   

State vector x, belonging to state space S (dimS = n), to be estimated.	



Data vector z, belonging to data space D (dimD = m), available.	



	

  z = F(x, ζ)     (1) 

where  ζ  is  a  random  element  representing  the  uncertainty  on  the  data  (or,  more 
precisely, on the link between the data and the unknown state vector).	



For example	



	

 z = Γx + ζ	





 Bayesian estimation (continued)	



	

 Probability that x = ξ for given ξ ?	



  x = ξ    ⇒   z = F(ξ, ζ) 

	

 	

 P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)] 

	

 Unambiguously defined iff, for any ζ, there is at most one x such that  z = F(x, ζ).	



	

 ⇔    data  contain  information,  either  directly  or  indirectly,  on  any  component  of 
x. Determinacy condition.	





 Bayesian  estimation  is  however  impossible  in  its  general  theoretical 
form in meteorological or oceanographical practice because	



•  It is impossible to explicitly describe a probability distribution in a space 
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈ 
106-9 of  present  Numerical  Weather  Prediction  models  (‘curse  of 
dimensionality’).	



•  Probability distribution of errors on data very poorly known (model errors 
in particular).	





One has to restrict oneself to a much more modest goal. Two	


approaches exist at present	



  Obtain  some  ‘central’  estimate  of  the  conditional  probability 
distribution  (expectation,  mode,  …),  plus  some  estimate  of  the  
corresponding  spread  (standard  deviations  and  a  number  of 
correlations). 

  Produce an ensemble of estimates which are meant to sample the 
conditional probability distribution (dimension N ≈ O(10-100)).	





Courtier and Talagrand, QJRMS, 1987	





Courtier and Talagrand, QJRMS, 1987	





500-hPa  geopotential  field  as  determined  by  :  (left)  operational  assimilation  system  of 
French Weather Service (3D, primitive equation) and (right) experimental variational system 
(2D, vorticity equation)	



Courtier and Talagrand, QJRMS, 1987	





	

 Random  vector  x  =  (x1,  x2,  …,  xn)T  =  (xi)  (e.  g.  pressure,  temperature,  abundance  of 
given chemical compound at n grid-points of a numerical model)	



  Expectation E(x) ≡ [E(xi)] 	

 ;    centred vector    x’  ≡ x - E(x) 	



  Covariance  matrix 	



	

 	

 	

 	

 E(x’x’T) = [E(xi’xj’)]	

  	


	

 	


	

 dimension  nxn,  symmetric  non-negative  (strictly  definite  positive  except  if  linear 

relationship holds between the xi’‘s with probability 1).	



  Two random vectors	


	

 x = (x1, x2, …, xn)T	


	

 y = (y1, y2, …, yp)T	


	

 	

 	

 	



	

 	

 	

 	

 E(x’y’T) = E(xi’yj’)	

  	



	

         dimension nxp	



	

 	





	

     Covariance  matrices will be denoted	



	

 	

 	

 	

 Cxx  ≡  E(x’x’T) 	



	

 	

 	

 	

 Cxy  ≡  E(x’y’T) 	

  	


	

 	


	

 	



	

 	



	

 	





	

 Random  function  Φ(ξ)  (field  of  pressure,  temperature,  abundance  of  given 
chemical compound, … ; ξ is now spatial and/or temporal coordinate)	



  Expectation E[Φ(ξ)]  ; 	

 Φ’(ξ) ≡ Φ(ξ) - E[Φ(ξ)]	


  Variance      Var[Φ(ξ)] = E{[Φ’(ξ)]2}	



  Covariance function	



	

 	

 	

 (ξ1, ξ2) →  CΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)]	



  Correlation function	



	

 	

 	

 Corϕ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)] / {Var[Φ(ξ1)] Var[Φ(ξ2)]}1/2	


•     	
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