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Zhenlan GAO 

 

Etude des  instabilités de la convection naturelle entre 

deux plaques verticales différentiellement chauffées 

Résumé 
La transition vers le chaos de la convection naturelle d’air entre deux plaques infinies verticales 
différentiellement chauffées est étudiée. La première instabilité est une bifurcation de fourche 
conduisant à des rouleaux 2D. L’équation de Ginzburg-Landau est dérivée pour cette première 
bifurcation et comparée aux résultats de la DNS. La DNS 2D montre que les rouleaux sont instables 
via une bifurcation de Hopf. L’écoulement devient ensuite quasipériodique puis chaotique. A plus haut 
Rayleigh (Ra), l’écoulement redevient stationnaire. La DNS dans une configuration 3D comprenant 
quatre rouleaux verticaux, mais de petite dimension transverse, montre que les rouleaux 2D deviennent 
3D par une bifurcation de fourche. Puis l’écoulement devient oscillant via une bifurcation de Hopf. On 
observe une cascade de doublement de période des motifs 3D, dominée par un mécanisme de 
modulation du nombre des rouleaux. Lorsqu’un seul rouleau est considéré, le scénario sous-
harmonique devient persistant et conduit au chaos. A plus grand Ra, on oberve une intermittence de 
crise, correspondant au déplacement du rouleau d’une demi-hauteur. L’analyse de stabilité linéaire des 
rouleaux est effectuée avec la méthode d’Arnoldi. Les résultats sont comparés avec la simulation 
nonlinéaire dans un domaine de grande dimension transverse. Les rouleaux 2D bifurquent vers un état 
3D composé de rouleaux ondulés, qui devienent ensuite des rouleaux brisés. L’écoulement devient 
oscillant via une bifurcation de Hopf. A plus haut Rayleigh une bifurcation sous-harmonique est 
observée, qui conduit au chaos temporel. 

Mots-clés : convection naturelle, instabilités, bifurcation, chaos, simulation numérique directe (DNS) 

 

Résumé en anglais 
The transition to chaos of the natural convection of air between two infinite differentially heated 
vertical plates is studied. The first instability is a pitchfork bifurcation leading to steady 2D rolls. A 
Ginzburg-Landau equation is derived analytically for the flow around the first bifurcation and 
compared with DNS results. 2D DNS shows that rolls become unstable via a Hopf bifurcation. At 
higher Rayleigh numbers, the flow becomes quasiperiodic then chaotic. At  still higher Rayleigh 
numbers the flow becomes steady again. DNS in a 3D configuration with a small transverse extent 
shows that 2D rolls undergo another pitchfork bifurcation to a 3D pattern, which consists of deformed 
rolls connected by counter-rotating vortices. The flow then becomes oscillatory via a Hopf bifurcation. 
Chaotic behavior subsequently occurs through a sequence of period-doubling bifurcations, which 
gives way to a spatial modulation pattern. When only one roll is allowed in the domain, the cascade of 
period-doubling bifurcations becomes persistent, leading the flow to temporal chaos. At higher Ra, a 
crisis-induced intermittency is observed, as the flow structures shift vertically by half a vertical 
wavelength.  We use the Arnoldi method to determine the unstable transverse wavenumbers. 3D DNS 
in a domain of large extent shos that the 2D rolls bifurcate to a steady 3D pattern consisting of pinched 
rolls, which gives way to broken rolls. Then the flow becomes oscillatory via a Hopf bifurcation. 
Subsequently, a period-doubling bifurcation is observed, and eventually the flow becomes temporally 
chaotic.  

Keywords : natural convection, instabilities, bifurcation,  chaos,  direct numerical simulation (DNS) 
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Chapter 1

Introduction

Natural convection in a fluid layer between two differentially heated plates is of substantial

interest for many industrial applications, such as heat exchangers in reactors or insulation of

buildings (e.g. double-paned windows). In the classic Rayleigh-Bénard convection, the fluid

lies between two horizontal plates and is heated from below so that the thermal gradient is

opposite to the direction of gravity. It has drawn sustained attention for more than one hundred

years [1, 2, 3]. The second most studied configuration is a fluid layer between two vertical plates

maintained at different temperatures. In this configuration, the thermal gradient is orthogonal

to the direction of gravity. A number of studies have shed some light on its specific dynamics,

since Batchelor’s pioneering work [4], but most of these studies are two-dimensional. The

detailed sequence of bifurcations leading to chaos in the 3D configuration has not yet been

established, which constitutes the essential interest of the present thesis. In this chapter, we

firstly present the physical problem, then review significant previous studies on the subject, and

then we give an outline of our work and show how it constitutes a complementary contribution

to the existing body of knowledge.

1.1 Physical Problem

We consider the flow of air between two infinite vertical plates maintained at different temper-

atures. The configuration is represented in Figure 1.1. The distance between the two plates

is D, the periodic height and depth of the plates are Lz and Ly respectively. The temperature

difference between the plates is set to ∆T . The x direction is normal to the plates, y represents

the transverse direction, and the gravity g is opposite to the vertical direction z.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Study domain

The Boussinesq approximation is used to study this problem, which means that all the

fluid properties such as the kinetic viscosity ν, thermal diffusivity κ, and thermal expansion

coefficient β are constant. Density variations are neglected in the mass conservation equation

so that the velocity field is assumed to have a zero divergence. Density variations appear only in

the buoyant term of the momentum conservation equation, where the density varies as a linear

function of temperature.

Four nondimensional parameters characterize the flow: the Prandtl number Pr = ν/κ, which

represents the ratio between the viscous and the thermal diffusion; the transverse and vertical

aspect ratios Ay = Ly/D and Az = Lz/D (Ay does not appear in two-dimensional studies); and

the Rayleigh number based on the gap between the two plates Ra = gβ∆TD3

νκ , which represents

the ratio between the buoyancy effect and the diffusive effects. Only the Rayleigh number

dependence is considered in the present study. The Prandtl number is fixed and equal to 0.71,

since most of the previous studies are concerned with gases with Pr = 0.71, such as air.

The flow is governed by the Navier-Stokes equations within the Boussinesq approximation.

We choose the reference parameters to be κ
D

√
Ra for the velocity, D for the length, and ∆T for
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the temperature. Then the nondimensionalized equations are:

∇ · −→u = 0 (1.1)

∂−→u
∂t

+ −→u · ∇−→u = −∇p̃+
Pr√
Ra

∆−→u + Prθ̃ẑ (1.2)

∂θ̃

∂t
+ −→u · ∇θ̃ =

1√
Ra

∆θ̃ (1.3)

with Dirichlet boundary conditions at the plates

−→u (0, y, z, t) = −→u (1, y, z, t) = 0, θ̃(0, y, z, t) = 0.5, θ̃(1, y, z, t) = −0.5 (1.4)

and periodic conditions in the y and z directions. Here t denotes time, −→u = (u, v, w) is the

velocity vector, p is the pressure, θ is the temperature.

1.2 State of the Art

The natural convection heated from the sidewalls was first studied by Batchelor [4]. Exper-

imental studies are necessarily conducted in cavities of finite aspect ratios, while early linear

stability analyses were applied to an infinite configuration. The effect of horizontal boundaries

was accounted for in such studies by a positive temperature stratification [5]. A large number

of studies have been devoted to the case of the cavities with different aspect ratios [4, 6, 7, 8].

The case we study here is that of infinite plates with no stratification, which is likely to be a

model of a very tall cavity.

1.2.1 Laminar region

Batchelor’s study [4] of the flow in a vertical differentially heated 2D slot is considered to be

the first work on this subject. He came to the conclusion that the laminar flow regime depends

only on the Rayleigh number and aspect ratio of the cavity. In the experimental investigation

of Eckert and Carlson [9], the flow was classified into three regimes: if Ra is small (conduction

regime), the fluid temperature is independent of height, and heat is transferred between the
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two vertical walls by conduction. The velocity profile has a centro-symmetric (cubic) form. As

Ra increases, a stable vertical temperature gradient develops in the core of the flow, and the

vertical velocity progressively decreases. This is called the transition regime. Finally, if Ra is

sufficiently large, the flow is almost completely confined in the boundary layers at the walls, and

the dominant mode of heat transfer is convection. This regime is referred to as the convective

regime.

1.2.2 Early experimental investigations

The first investigations about the transition of natural convection between differentially heated

vertical plates relied on experimental descriptions. Elder [10] observed the onset of secondary

flow and ’cat’s-eyes’ tertiary flow in his experiments with two fluids: paraffin and silicone oil.

Vest and Arpaci [11] observed the onset of secondary convection in air flow, and compared it

with their calculations of secondary flow stream patterns as shown in Figure 1.2. Oshima [12]

considered convection in a rectangular water-filled cavity heated through two vertical side-walls.

He observed the development of the wavy motions of streamlines into rows of periodic vortices,

which then burst into turbulence.

1.2.3 2D linear stability analysis

Early computations of the flow structure were based on stability analysis in the neighbourhood

of the critical Rayleigh number Rac and were limited to the 2D case. Vest and Arpaci [11]

relied on 2D linear stability to calculate secondary-flow stream patterns. Gill and Davey [5]

focused on the mechanism due to the buoyancy-driven instability, and showed that the nature

of instabilities (with respect to stationary or traveling wave disturbances) depended on the

Rayleigh number, aspect ratio, and Prandtl number, in the case of vertical differentially heated

slot. Korpela [13] carried out the linear stability dependence analysis on the Prandtl number.

He found that the critical disturbance modes are hydrodynamically driven and stationary when

Pr < 12.45, while they are thermally driven and oscillatory when Pr > 12.45. Bergholz [14]

investigated the 2D linear stability of the flow for different Prandtl numbers and different vertical
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(a) (b) (c)

Figure 1.2: (a) Streak photograph of convection rolls from experiment at Gr = 9500, Az = 33,
Pr = 0.71. Streamline pattern obtained by numerical calculation. (b) Disturbance. (c) Total flow at
Gr = 7877, Pr = 0.71. Vest and Aparci J. Fluid Mech. 1969 [11]

thermal stratifications which model the effect of a finite vertical aspect ratio. It was found that

in the small Pr regime, the nature of instability is changed from stationary to oscillatory, as

the vertical thermal stratification exceeds a certain magnitude. On the other hand, in the

large Pr regime, the transition is from traveling-wave to stationary instability with increasing

stratification. Tao and Zhuang [15] carried out the analysis of different instability mechanisms

occurring in cavities. They found that secondary rolls and traveling waves are absolutely and

convectively unstable, respectively.

1.2.4 2D nonlinear studies

Weakly nonlinear stability calculations in 2D were carried out in [16, 17, 18]. Daniels and Wein-

stein [16] obtained an amplitude equation at high Rayleigh number and large Prandtl number,

with the presence of a vertical thermal stratification, in which case the unstable disturbance

modes are stationary. Cornet and Lamarque [17] worked on the case of air (Pr = 0.71),

and obtained the perturbation amplitude around the first instability, but there was at that
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time no available numerical or experimental data with which to compare. A similar analy-

sis for water (Pr = 7.5) was carried out by Mizushima and Gotoh [18]. They showed that

the curve of the mean Nusselt number Nu versus Grashof number Gr had a small hump at

the critical Grashof number Grc instead of having a constant positive slope (Figure 1.3). A

Newton-Raphson method to compute equilibria was used by Mizushima and Saito [19] in the

zero-Prandtl-number limit. Mizushima [20] extended this analysis to secondary equilibrium

solutions for various values of Prandtl number. More bifurcation diagrams were obtained in

the case of air by Mizushima and Tanaka [21, 22] for subsequent bifurcations. They obtained

a very complicated bifurcation diagram, which showed that the bifurcation structure of the

steady-state solution is composed of a smooth transition and a saddle-node branch. The change

of flow pattern is due to the transition from the saddle-node branch to the smooth transition

branch.

Figure 1.3: Mean Nusselt number vs Gr, Pr = 7.5. Mizushima and Gotoh, J. Phys. Soc. Japan,
1983 [18]

The agreement between the patterns predicted by theory and experimental observations of

the first instabilities suggests that convection between 2D infinite plates is a good representa-

tion of what happens in tall cavities. However, there is some evidence that these simplified

assumptions may not provide an accurate picture of the real dynamics. Firstly, the influence

of the aspect ratio - what exactly makes a cavity "tall enough" - may be difficult to determine

intuitively. From Bergholz [14], it can be seen that the nature of the most unstable disturbances

for water (Pr = 7.5) switches from a stationary to a traveling state for a critical aspect ratio
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A ∼ 70. Moreover, the nature of the higher-order bifurcations is likely to be affected by the

presence of horizontal boundaries. Xin [23] carried out 2D numerical simulations of natural

convection of air in a confined cavity as well as between infinite plates (a channel). Transition

to the chaotic state was observed at a relatively low Rayleigh number in the cavity, while only

regular patterns could be obtained in the channel.

1.2.5 Recent 3D experimental investigations

Although most numerical simulations [24, 25, 26, 27, 28, 29] have been carried out in the

2D case, there is evidence that the flow becomes rapidly three-dimensional as the Rayleigh

(or Grashof) number increases, as was observed by Wright et al. [30] in their experiments

for tall air-filled cavities with an aspect ratio Az = 40.8. They observed several regimes in

the procedure of transition as shown in Figure 1.4. When Ra is between 4850 and 6220, the

flow is in the conduction regime. When Ra ∼ 6800, the secondary flow appears, which is

characterized by co-rotating rolls. A downward motion of the secondary cells is observed at

the small rate vcell ∼ 3.4mm/s (v⋆ = 0.07 scaled with the reference velocity
√
gβ∆TL). The

secondary flow is stable for Ra ∼ 7300 − 8600, with a downward velocity vcell ∼ 9.8mm/s

(v⋆ = 0.17) for the co-rotating rolls. When Ra is increased to 9600 − 10500, the secondary

flow becomes unstable. The secondary cells move and rotate faster and impact the adjacent

fluid. The cells no longer always move downward. Occasional interactions between the rolls are

also observed. For Ra ∼ 11600 − 12600, the flow becomes 3D, with cells of variable sizes and

shapes, and random movements. At Ra ∼ 13600 − 54800, the flow transits to full turbulence.

The flow in this regime consists of both co-rotating, counter-rotating cells, and paired cells.

Their length scales are generally smaller than the secondary rolls observed at lower Ra. The

downward motion of secondary cells was also independently observed by Lartigue et al. [29].

However, the dimensionless downward velocities obtained numerically (2D) and experimentally

are respectively v⋆ = 0.0110 and v⋆ = 0.0107 at Ra = 9222 which are much lower than values

obtained by Wright et al. [30] at even higher Rayleigh numbers. No physical explanation was

available for this disagreement.
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Figure 1.4: Streak flow pattern at Ra from 4850 to 12 600. Wright et al. Int. J. Heat Mass Trans.
2006 [30]
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1.2.6 3D numerical studies

Experimental observations agree with several 3D linear stability calculations [31, 32], which

predicted that the flow in a tall air-filled cavity should become rapidly three-dimensional. Na-

gata and Busse [31] considered a shear layer of fluid with sidewalls at different temperatures.

Their 3D computations of equilibria were performed in the limit of vanishing Prandtl number.

Since Pr = 0, the velocity of the base flow has a cubic profil and the first instability should be

associated with a stationary disturbance. (In the case Pr 6= 0, the nature of the first instability

could be a traveling wave.) The stability diagram for the secondary rolls shows the limits of the

Eckhaus instability, a monotone instability, and an oscillatory instability. A steady 3D pattern

was found to be associated with the secondary monotone instability as shown in Figure 1.5

(a). The growth rate of the 3D pattern was found to be weakly dependent on kz, the vertical

wavenumber of the primary rolls, and the growth rates are only positive for a finite range of

transverse wavenumber ky. They also found that although the critical transverse wavenumber

kyc was found to be about 1.6 at kz = 2.8, when the vertical wavenumber of primary rolls

was set to kz = 2.6, ky = 2.0 is preferred at higher Gr. They also explored the perturbation

associated with the oscillatory instability (Figure 1.5 (b)), where the waves propagate in the

positive or the negative y-directions. They noted that the existence of this oscillatory pattern is

improbable, since the steady 3D pattern associated with the monotone instability already gives

way to a new 3D pattern before Ra reaches the limit of the oscillatory instability [31]. This

new 3D pattern shifts backward and forward periodically in time and has a wavelength twice

that of the steady 3D flow in the spanwise direction, due to a subharmonic instability.

By the same method as Nagata and Busse [31], Chait and Korpela [32] analyzed the sta-

bility of the secondary flow in a vertical enclosure filled with air at Pr = 0.71. Besides the

monotone instability found by Nagata and Busse [31], which was noted as monotone instability

A, they found another monotone instability, which was referred to as monotone instability B in

their paper. The occurence of these two kinds of monotone instability as well as the Eckhaus

instability depends on the wavenumbers of primary rolls in the vertical direction as shown in

the stability diagram (Figure 1.6). In fact, the stability curve of monotone instability A con-
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(a)

(b)

Figure 1.5: Vertical velocity isocontours of 3D flow pattern: (a) steady 3D pattern associated with the
monotone instability, (b) 3D perturbation pattern associated with the oscillatory instability. (Note: the
x direction in their paper is the vertical direction z in our configuration.) Nagata and Busse J. Fluid
Mech. 1983 [31]
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strains the domain of stable rolls from above while the neutral curve of monotone instability B

originates in the vicinity of the critical point (kzc = 2.81 and Grc = 8037). To the left of it, i.e.

for lower wavenumbers, the primary rolls are unstable. The characteristic wavelength of the

3D pattern associated with the monotone B instability was found to be much larger than the

original wavelength of the 2D rolls (kz = kzc+∆kz, where ∆kz = 0.6, and ky = 0.4 for Gr up to

9000). The corresponding pattern consists of periodic thickening and thinning secondary rolls in

the transverse direction y, which resembles the skewed varicose instability in Rayleigh-Bénard

convection.

Figure 1.6: Stability diagram of the multicellular flow for air (Pr = 0.71). The shaded area represents
the domain of stable secondary rolls. (Note: α in the figure corresponds to kz in our notation.) Chait
and Korpela J. Fluid Mech. 1989 [32]

Clever and Busse [33] carried out a successive stability analysis of the air flow (Pr = 0.71)

by following the same approach as Nagata et al. [31] and Chait et al. [32], with the consideration

of the possible symmetries of the tertiary and quarternary flow. They identified a steady 3D

pattern, which consists of staggered vortices. It then bifurcated into a traveling wave of invariant

shape at higher Rayleigh numbers as shown in Figure 1.7. The corresponding motion of the

traveling wave was downward, which seems to be in agreement with the experimental results

of Wright et al. [30] and experimental and numerical results by Lartigue et al. [29]. However,
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the moving pattern obtained numerically by Clever and Busse [33] is 3D, while the descending

rolls are 2D in the observations of Wright et al. [30] and Lartigue et al. [29]. Moreover, this

invariant traveling pattern is different from the oscillatory, quarternary flow found by Nagata

and Busse [31] for the limiting case of Pr = 0. Additionally, Clever and Busse [33] measured

the Nusselt number at the wall and found that the 3D pattern flow is less efficient for the heat

transfer than the secondary co-rotating roll.

Figure 1.7: Three dimensional flow pattern. Isocontours of horizontal velocity u in planes x = 0.3
(left), x = 0 (middle), and x = −0.3 (right). Upper row: stable tertiary flow pattern; Botton row:
drifting quarternary flow pattern. (Note: the x direction in their paper is the vertical direction z in our
configuration.) Clever and Busse, Chaos Sol. Frac. 1995 [33]

1.2.7 Non-Boussinesq approach

A Ginzburg-Landau model was used by Suslov and Paolucci [34, 35] to describe the three-

dimensional flow between infinite plates in the case of non-Boussinesq convection for a variety

of Prandtl numbers. However, the approach remains limited to a region around the critical

Rayleigh number.
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1.2.8 Transition to chaos

Theoretically, several theoretical models of the transition to chaos were proposed for dissipative

dynamical systems [36]. Some of them have been observed in Rayleigh-Bénard convection ex-

periments. Quasi-periodicity and a sequence of period-doubling bifurcations were observed by

Maurer and Libchaber [37] and by Giglio, Musazzi and Perini [38]. Pomeau and Manneville [39]

proposed the intermittency scenario as a possible route to chaos. They classified the intermit-

tency into three types, by the way in which the Floquet multiplier crosses the unit circle. In the

Rayleigh-Bénard convection experiment carried out by Bergé et al. [40], Pomeau-Manneville

type-I intermittency was observed.

The route to chaos and chaotic behavior of the flow in laterally and differentially heated

cavities with adiabatic horizontal walls has attracted some attention as well [6, 7, 8, 41, 42].

These studies were carried out at very large Rayleigh number (Ra > 108) and were usually

limited to 2D. Paolucci and Chenoweth [6] found that the route to chaos in the cavity with

small aspect ratios (about 1/2 to 3) is through a Hopf bifurcation, then quasi-periodicity. This

is also reported by Le Quéré [7] as a general behavior for the case of the cavities with different

aspect ratios. Xin and Le Quéré [8] focused on chaotic flow in the differentially heated cavity

of aspect ratio 4. They showed that the temporal behavior of the flow at Ra up to 1010 was

chaotic, and the flow structure was anisotropic, but laminar regimes were still visible. Ishida et

al. [42] computed the first and second largest Lyapunov exponents for air convection in a rectan-

gular cavity, which they used as a criterion to identify the periodic, quasi-periodic, and chaotic

regimes of the flow. The Feigenbaum scenario was reported to exist in the case of a vibrational

square cavity heated from the sides [43], where a Pomeau-Manneville type-I intermittency is

subsequently observed. Bratsun et al. [44] carried out extensive experimental and numerical

studies of the successive bifurcations of the flow at Pr = 26. At this high Prandtl number,

the primary instability consists of traveling waves. In their two dimensional simulations, they

successively observed periodicity, two-frequency quasi-periodicity (2D torus), three-frequency

quasi-periodicity (3D torus), and finally chaos (destruction of higher dimensional torus). In

their three dimensional simulation and experiments, they established the route to chaos as fol-
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lows: a Hopf bifurcation leading to a periodic flow, then a pitchfork bifurcation leading to a

3D periodic flow. Later on, a secondary Hopf bifurcation gives the birth of quasi-periodicity

(torus), and finally chaos occurs due to the corrugation of the torus. No equivalent study has

been performed for air as far as we know. We plan to determine this in the thesis.

1.2.9 Turbulent regime

At still higher Rayleigh numbers, the turbulent regime has been well documented. Phillips [45]

compared 3D direct numerical simulation results with the experiments of Elder [46] and showed

that most of the turbulence was generated by the shear layer at the center of the slot. Versteegh

and Niewstadt [47, 48] computed energy budgets to determine scaling laws and wall functions

with a direct application to turbulence modeling. Although the presence of spiral structures has

been noted by Wang et al., [49] for air at Ra = 5.4 × 105, a complete coherent-structure-based

description is still missing. As noted by Hall [50], “there has been apparently no attempt to

look for coherent structures embedded in the flows as has become routine in shear flows”. Few

models for the dynamics of such structures have yet been proposed [50].

Some DNS studies [47] suggest that a substantial part of the energy in the turbulent regime

is associated with patterns which are similar to the most linearly unstable mode. This situa-

tion presents some analogy with Rayleigh-Bénard convection, where the large-scale structures

identified in the turbulent regime share common features with the convection cells observed

at near-critical Rayleigh numbers [3, 51, 52]. In addition, determining key instability mecha-

nisms in a canonical configuration will be useful for studying more complex geometries and/or

including additional physics such as radiation or mixed convection.

1.3 Objectives and outline of thesis

The goal of the present study is to provide a description of the transition to chaos of natural

convection of air between two infinite plates, and to determine the role of transverse effects

in this transition. Our study is based on direct numerical simulations. Unlike the linear or

weakly linear stability analysis that are only valid in the neighbourhood of the critical Rayleigh
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number, DNS allows us to follow the branches of possible solutions and to determine the nature

of bifurcations at Rayleigh numbers far beyond Rac. Results from numerical simulations depend

on the periodic dimensions of the plates. If the periodic vertical (transverse) dimension is not

large enough, this may hamper the development of the vertical (transverse) instabilities in

this direction. Nevertheless we believe that they may constitute a necessary step towards a

better understanding of the dynamics of unsteady natural convection. Determing the basic

instability patterns at moderate Rayleigh numbers could help us understand the flow in the

fully turbulent regime [33, 47, 52, 49]. Our goal is to determine the influence of 3D effects in

various configurations of small and large extent.

The thesis is organized as follows. The numerical method is presented in Chapter 2. Chapter

3 is devoted to the 2D analysis and 2D simulations. We firstly recall standard theoretical results

based on linear and weakly nonlinear stability analysis of the flow between two differentially

heated vertical plates. We derive analytically a Ginzburg-Landau equation to represent the flow

around the first bifurcation. Then we briefly present results for 2D direct numerical simulation

for Rayleigh numbers Ra up to about 3Rac. We show that a chaotic regime can only be found

over a limited range of Rayleigh numbers. In Chapter 4, we present the results of 3D numerical

simulations for the configuration Ay = 1 and Az = 10, a confined domain in the transverse

direction. The sequence of the instabilities leading to chaos and corresponding physics are

described in detail. A specific 3D structure is identified. In Chapter 5, we study the dynamics

of one of these structures in a limited domain Ay = 1 and Az = 2.5, which constitutes a minimal

flow unit (MFU). In Chapter 6, we consider larger domains. The Arnoldi method is used to

investigate the stability of the 2D rolls from which we determine the most unstable transverse

wavenumbers. The predictions of linear stability analysis are confronted with 3D nonlinear

simulations. A general conclusion is given in Chapter 7.
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Chapter 2

Numerical methods

2.1 Introduction

In this chapter, we present the numerical methods used in the DNS codes. We firstly present the

2D code [23], which is a mixed Galerkin-collocation code and is based on the Uzawa algorithm.

Then we present the 3D code [53], which is a collocation code using a pressure correction

algorithm. The 3D code is implemented in a parallel architecture.

2.2 Numerical methods for 2D simulation

The 2D Navier-Stokes equation within the Boussinesq approximation reads as:

∂u

∂x
+
∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
+

Pr√
Ra

(
∂2u

∂x2
+
∂2u

∂z2
)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+

Pr√
Ra

(
∂2w

∂x2
+
∂2w

∂z2
) + Prθ (2.1)

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
=

1√
Ra

(
∂2θ

∂x2
+
∂2θ

∂z2
)

with Dirichlet boundary conditions at the plates

u(0, y, z, t) = u(1, y, z, t) = 0, w(0, y, z, t) = w(1, y, z, t) = 0, (2.2)

θ(0, y, z, t) = 0.5, θ(1, y, z, t) = −0.5 (2.3)

17
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and periodic conditions in z-direction. Here (u, w) are the horizontal and vertical velocities in

the 2D plane (x,z).

This code uses the spectral Galerkin-collocation method for the spatial discretization. A

second-order mixed explicit-implicit scheme is used for the temporal discretization. The com-

plete Navier-Stokes system is solved by inverting the Uzawa operator to ensure incompressibility.

The numerical algorithms are detailed as follows.

2.2.1 Spatial discretization

The code relies on a Chebyshev collocation discretization in the horizontal direction x and a

Fourier discretization in the vertical direction z. The differentiation in the horizontal direction

x is performed in the physical space by multiplying the variables with the differentiation matrix

Dx, while the differentiation in the vertical direction z is performed in the Fourier space, which

is simply a mulplication of the variables with ik, where k is the wavenumber of a given mode.

2.2.2 Temporal discretization

The dimensionless system of advection-diffusion equations can be written in a compact form as:

∂f

∂t
+ V∇f = ∇2f (2.4)

where f represents u, v, w, or θ. For the temporal discretization, the diffusive term is treated

implicitly, while the convective term is treated explicitly. A second order discretization is used

for the time-derivative, so we get

3fn+1 − 4fn + fn−1

2∆t
+ 2(V∇f)n − (V∇f)n−1 = ∇2fn+1 (2.5)

This scheme can be recast into the general form of a Helmholtz equation for the unknown fn+1

as:

∇2fn+1 − λfn+1 = Sf (2.6)
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where λ = 3
2∆t and Sf = −4fn+fn−1

2∆t + 2(V∇f)n − (V∇f)n−1. Applying this discretization

strategy to the Navier-Stokes equations system Eq (2.1), we obtain the numerical schemes as

following:

∂un+1

∂x
+
∂wn+1

∂z
= 0 (2.7)

Pr√
Ra

∇2un+1 − 3
2∆t

un+1 =
∂pn+1

∂x
− 4un − un−1

2∆t
+ 2(V∇u)n − (V∇u)n−1 (2.8)

Pr√
Ra

∇2wn+1 − 3
2∆t

wn+1 =
∂pn+1

∂z
− 4wn − wn−1

2∆t
+ 2(V∇w)n − (V∇w)n−1 + Prθn+1 (2.9)

1√
Ra

∇2θn+1 − 3
2∆t

θn+1 = −4θn − θn−1

2∆t
+ 2(V∇θ)n − (V∇θ)n−1 (2.10)

This is a Stokes problem, which consists of three general Helmholtz equations and an equation

of incompressibility for the fluid.

2.2.3 The Uzawa operator

The Uzawa algorithm [54] is based on elimination of the velocity in the time-dependent Stokes

problem. Let HU, HW, HΘ be the Helmholtz operators for u, w, θ respectively. Dropping

the time discretization index, we can write the Stokes problem as:

HUu =
∂p

∂x
− Su (2.11)

HWw =
∂p

∂z
− Sw + Prθ (2.12)

HΘθ = −Sθ (2.13)

∂u

∂x
+
∂w

∂z
= 0 (2.14)

along with some boundary conditions for u, w and θ. Formal inversion of (2.11) and (2.12)

yields

un+1 = HU−1 ∂p

∂x
− HU−1Su (2.15)

wn+1 = HW−1∂p

∂z
− HW−1Sw + HW−1Prθ (2.16)
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Enforcing the incompressibility leads to an equation for the pressure which can be written as

(

∂

∂x
HU−1 ∂

∂x
+

∂

∂z
HW−1 ∂

∂z

)

p =
∂

∂x
HU−1Su+

∂

∂z
HW−1Sw − ∂

∂z
HW−1Prθ (2.17)

By inverting the operator ( ∂
∂xHU−1 ∂

∂x + ∂
∂zHW−1 ∂

∂z ), we can obtain the pressure. Then

computing the pressure gradient and solving the two Helmholtz equations (2.11)- (2.13) leads

to the solution un+1 and wn+1.

2.3 Numerical methods for 3D simulation

The Navier-Stokes equations are rewritten as follows:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

Pr√
Ra

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

Pr√
Ra

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
) (2.18)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
= −∂p

∂z
+

Pr√
Ra

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
) + Prθ

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
=

1√
Ra

(
∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
)

with Dirichlet boundary conditions at the plates

u(0, y, z, t) = u(1, y, z, t) = 0, v(0, y, z, t) = v(1, y, z, t) = 0,

w(0, y, z, t) = w(1, y, z, t) = 0, (2.19)

θ̃(0, y, z, t) = 0.5, θ̃(1, y, z, t) = −0.5

and periodic conditions in y and z directions.

This code uses a spectral collocation method for the spatial discretization. The equations

are integrated in time with a second-order mixed explicit-implicit scheme. Incompressibility is

enforced by the projection-correction method. The domain decomposition is carried out by the
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Schur complement and implemented with the MPI library.

2.3.1 Temporal discretization

Applying the same scheme used in the 2D code to the 3D Navier-Stokes equation system (2.18),

we obtain the numerical scheme as follows:

∂un+1

∂x
+
∂vn+1

∂y
+
∂wn+1

∂z
= 0 (2.20)

Pr√
Ra

∇2un+1 − 3
2∆t

un+1 =
∂pn+1

∂x
− 4un − un−1

2∆t
+ 2(V∇u)n − (V∇u)n−1 (2.21)

Pr√
Ra

∇2vn+1 − 3
2∆t

vn+1 =
∂pn+1

∂y
− 4vn − vn−1

2∆t
+ 2(V∇v)n − (V∇v)n−1 (2.22)

Pr√
Ra

∇2wn+1 − 3
2∆t

wn+1 =
∂pn+1

∂z
− 4wn − wn−1

2∆t
+ 2(V∇w)n − (V∇w)n−1 + Prθn+1

(2.23)

1√
Ra

∇2θn+1 − 3
2∆t

θn+1 = −4θn − θn−1

2∆t
+ 2(V∇θ)n − (V∇θ)n−1 (2.24)

2.3.2 Spatial discretization

The spatial discretization is based on a spectral collocation method as shown in Figure 2.1. In

the horizontal direction x, Chebyshev modes are used, where the unkowns are defined on the

Gauss-Lobatto points x = cos iπN , 0 ≤ i ≤ N . In the transverse direction y, Fourier modes are

used, as the periodic condition is imposed as the boundary condition in this direction. Thus,

the mesh in this direction is homogeneous. In the vertical direction z, the simulation domain

is decomposed into 4 to 16 subdomains. Although a periodic boundary condition is imposed

in z for the full domain, Chebyshev modes are used for each subdomain in this direction. The

periodicity in this direction is ensured by the periodic communicator implemented with the MPI

library.

In practice, all the discrete variables are stored in a matrix. Matrices for the spatial dif-

ferentiation are constructed, named Dx, Dy, Dz, etc. Thus, the spatial differentiation can be

simply done by multiplying the original matrix of the variable by the differentiation matrix.

For the second differentiation, the multiplication is performed twice.
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Figure 2.1: (a) Decomposition of subdomains, (b) Mesh, Ay = 1, Az = 10.

2.3.3 Solution of the general Helmholtz problem

The general 3D Helmholtz problem reads as

(∇2 − λ)f = S (2.25)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and S represents the source term. The idea to solve this equation

in the discrete form is to invert the operator (∇2 − λ). In our code, the matrix-diagonalisation

method is employed [55, 56]. In fact, the second derivative, for example ∂2

∂x2 , in the discrete

form constitutes a regular matrix, which is diagonalisable and invertible, so we have D2
x =

PΛxP−1, D2
y = QΛyQ−1, D2

z = RΛzR−1, where Λx, Λy, Λz are diagonal matrices containing

the eigenvalues of D2
x, D2

y, D
2
z , respectively, and the matrices P , Q, R are formed by the

eigenvectors of D2
x, D2

y, D
2
z , respectively. In the discrete form, the 3D Helmholtz equation takes
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the following form:

(Iz ⊗ Iy ⊗D2
x + Iz ⊗D2

y ⊗ Ix +D2
z ⊗ Iy ⊗ Ix − Iz ⊗ Iy ⊗ Ixλ)F = S (2.26)

where ⊗ is the Kronecker product operator. Multiplying Eq (2.26) by (P−1 ⊗Q−1 ⊗R−1), we

can write this equation into the eigenspace in the following way. For the first term on the left

side of Eq (2.26), we have

(R−1 ⊗Q−1 ⊗ P−1)(Iz ⊗ Iy ⊗D2
x)

= (R−1 ⊗Q−1 ⊗ P−1)(Iz ⊗ Iy ⊗ PΛxP−1)

= (R−1 ⊗Q−1)(Iz ⊗ Iy) ⊗ (P−1PΛxP−1)

= (R−1 ⊗Q−1)(Iz ⊗ Iy) ⊗ (ΛxP−1)

= (Iz ⊗ Iy ⊗ Λx)(R−1 ⊗Q−1 ⊗ P−1)

by using twice the property (A⊗B)(C⊗D) = AC⊗BD. With similar treatment for the other

terms, we can obtain

(Iz ⊗ Iy ⊗ Λx + Iz ⊗ Λy ⊗ Ix + Λz ⊗ Iy ⊗ Ix − Iz ⊗ Iy ⊗ Ixλ)F̃ = S̃ (2.27)

or

AF̃ = S̃

where F̃ = (R−1 ⊗Q−1 ⊗ P−1)F , S̃ = (R−1 ⊗Q−1 ⊗ P−1)S and A = Iz ⊗ Iy ⊗ Λx + Iz ⊗ Λy ⊗

Ix + Λz ⊗ Iy ⊗ Ix − Iz ⊗ Iy ⊗ Ixλ. Therefore, to solve the 3D Helmholtz problem, we firstly

multiply the source term S by (R−1 ⊗ Q−1 ⊗ P−1), then invert the operator A to obtain F̃ .

Finally, multiplying F̃ by P ⊗Q⊗R, we get the solution F .

2.3.4 Prediction-correction method

Solution of the incompressible Navier-Stokes equations requires the solution of Helmholtz equa-

tion (2.25), together with an appropriate treatment of the pressure term, so that the condition
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of zero velocity divergence can be satisfied. Several methods exist for this treatment. The

projection-correction method is implemented in the 3D DNS code which we use in this thesis.

Prediction

In the code, the time-stepping starts with the resolution of the transport equation of temperature

(2.24). By using variables obtained at the time-steps n and n−1, the Helmholtz equation (2.24)

can be solved as described in the last subsection ( 2.3.3), so θn+1 is obtained. Then, we ignore

the equation of mass conservation (2.20), and suppose the pressure pn obtained at the previous

step as the pressure at the present step p∗, and inject it into the equations (2.21)- (2.23), so

we get three Helmholtz equations:

(∇2 − λ)u∗ = Su + a
∂p∗

∂x
(2.28)

(∇2 − λ)v∗ = Sv + a
∂p∗

∂y
(2.29)

(∇2 − λ)w∗ = Sw + a
∂p∗

∂z
+ Prθn+1 (2.30)

where Sf represents the source term Sf =
√
Ra
Pr (−4fn+fn−1

2∆t + 2(V∇f)n − (V∇f)n−1), a =
√
Ra
Pr ,

and λ = 3
√
Ra

2Pr∆t . By solving these three equations (2.28)- (2.30), we obtain the velocity field

u∗,v∗,w∗.

Correction

Incompressibility i.e. equation (2.20) is enforced by adjusting the pressure term. Equations

(2.21)- (2.23) and (2.28)- (2.30) lead to the following equations:

(∇2 − λ)(un+1 − u∗) = a
∂(pn+1 − p∗)

∂x
(2.31)

(∇2 − λ)(vn+1 − v∗) = a
∂(pn+1 − p∗)

∂y
(2.32)

(∇2 − λ)(wn+1 − w∗) = a
∂(pn+1 − p∗)

∂z
(2.33)



2.3. NUMERICAL METHODS FOR 3D SIMULATION 25

which can be recast into the form

(∇2 − λ)(Vn+1 − V∗) = a∇(pn+1 − p∗) (2.34)

Applying the divergence on both sides of (2.34), and using ∇ · Vn+1 = 0 leads to

−(∇2 − λ)∇V ∗ = a∇2(pn+1 − p∗) (2.35)

Suppose that there exists a potential φ satisfying

∇ · V∗ = ∇2φ (2.36)

we can obtain the scalar φ by solving the Poisson equation (2.36). Substituting (2.36) into

equation (2.35), we obtain

pn+1 = p∗ +
λ

a
φ− 1

a
∇2φ (2.37)

Since λ
a = 3

2∆t and a ∼
√
Ra, − 1

a∇2φ is negligible compared to the other terms in (2.37), thus

in practice the pressure is corrected as

pn+1 = p∗ +
λ

a
φ (2.38)

Introduction of (2.38) into (2.34) leads to

V n+1 = V ∗ − ∇φ+
1
λ

∇2(V n+1 − V ∗) (2.39)

where the last term on the right side is
√
Ra times smaller than the other terms, since λ ∼

√
Ra,

thus in practice the velocity can be simply updated as

V n+1 = V ∗ − ∇φ (2.40)
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2.3.5 Schur complement

As presented above, the Navier-Stokes equations can be recast into several Helmholtz problems.

The idea of domain decomposition is to divide the simulation domain into several subdomains.

The simulation of each subdomain is carried out on individual processors. Since these problems

are second-order problems, uniqueness of the solution over the whole domain is guaranteed

through imposing the continuity of the variables and their derivatives across the interfaces. The

jump condition at the interface [[∂f∂z ]] = 0 is enforced through an influence matrix technique

[53]. The Helmholtz problems are discretized and turned into a linear system Kf = S. The

matrix K associated with the spectral discretization is very large and dense and difficult to

invert. By means of domain decomposition, the dense matrix K can be turned into a matrix

with several dense blocks as in Eq (2.41).

Here we suppose the domain is divided into three subdomains, so the matrix K contains three

dense blocks Ann, (n is the system dimension) which can be solved on three different processors.

On each processor, we solve a Helmholtz problem with Dirichlet boundary conditions. However,

in order to ensure that the variables are continuous across the interface, we can set the elements

at the two interfaces in matrix K equal to 1. In this way, we obtain the matrix K in Eq (2.41),

but the derivative ∂f
∂z is not continuous across the interface.

The idea for the construction of a Schur complement is to find a linear relation between f

and ∂f
∂z at the interface. For the first interface, we set S̃ the unit vector to be S̃1 = (0, ..., 0, 1, 0, ...

, 0, 0, 0, ..., 0)T as in Eq (2.41), and solve the system Kf1 = S̃1 to obtain a solution f1. Then

we can calculate its derivative ∂f1

∂z and the corresponding jump at the interface, which con-

stitutes the first column of the Schur matrix M . For the second interface, we set S̃ to be

S̃2 = (0, ..., 0, 0, 0, ..., 0, 1, 0, ..., 0)T as in Eq (2.41), and solve Kf2 = S̃2 to obtain f2. Then we

calculate its derivative ∂f2

∂z and the corresponding jump at the interface, which corresponds to

the second column of the Schur matrix M . By repeating this procedure, we build the Schur
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matrix M .

K =









































































0 0

Ann

...
...

0 0

0 · · · 0 1 0 · · · 0 0 0 · · · 0

0 0
... Ann

...

0 0

0 · · · 0 0 0 · · · 0 1 0 · · · 0

0 0
...

... Ann

0 0









































































; S̃1 =









































































0
...

0

1

0
...

0

0

0
...

0









































































S̃2 =









































































0
...

0

0

0
...

0

1

0
...

0









































































(2.41)

For the whole system Kf = S, we first give some arbitrary values Varbi1, Varbi2 to the

elements of S at the interfaces, as (Sbc1, ..., Varbi1, ..., Varbi2, ..., Sbc2), where Sbc1 and Sbc2 are the

boundary conditions of whole system. By solving the system Kf = S, we obtain a solution f̃ ,

and then calculate the jumps of its derivative ∂f̃
∂z at the interfaces. As the values at the interfaces

were given arbitrarily, we must a correction to S so that ∂f
∂z is continuous at the interfaces. By

using the Schur matrix M constructed above, this can be simply achieved via

Sinterface = Varbi −M−1 ∂f̃

∂z
(2.42)

where Sinterface is a vector containing the elements of S at the interfaces. With these new values

of S at the interfaces, we can solve the system Kf = S, where S = (Sbc1, · · · , Sinterface1, · · · ,

Sinterface2, · · · , Sbc2). We obtain f and its derivative ∂f
∂z , which are now continuous across the

interfaces.

This algorithm was implemented with the MPI library [53]. For the step of Schur matrix

construction, the derivatives ∂f1

∂z and ∂f2

∂z at the interfaces are independently calculated on each



28 CHAPTER 2. NUMERICAL METHODS

processor. Then a SENDRECV command is used on each processor to gether the derivative

values at the interfaces on the neighbour subdomains. Once these data exchanged, the jumps

of the derivatives are calculated on each processor, which constitutes the columns of the Schur

matrix. Solution of the Helmholtz equation at the interfaces are performed in the similar way.

The derivatives ∂f̃
∂z given by the arbitrary interfaces values are calculated independently on each

processor. Then a SENDRECV command is also used to gether the neighbourhood values,

so as to obtain the jumps values of the first derivatives at the interfaces. With the Schur

matrix M already obtained (the columns of which are dispatched on different processors), the

correction step is performed parallelly. Finally a SENDRECV command is called to redistribute

the correction values to each subdomain. Once f and ∂f
∂z are continueous across the interfaces,

the Helmholtz equation is solved independently for each subdomain.



Chapter 3

2D Channel

3.1 Introduction

In this chapter, we carry out our study in the two-dimensional (2D) framework. We first

apply linear stability analysis, and determine the critical Rayleigh number Rac and the critical

wavenumber kc for the onset of the first instability. Then the weakly nonlinear analysis is

used to derive the Ginzburg-Landau equation, which predicts the perturbation amplitude of

first instability in the neighbourhood of the critical Rayleigh number, and predicts the nature

(absolute or convective) of the first instability. We then shortly present results of the nonlinear

simulations in 2D.

3.2 Base flow

The equations of motion (1.1)- (1.4) admit an analytic steady solution (U , V , W , Θ), the pure

conduction state, which depends only on the x direction:

U = 0; V = 0;

W (x) =
1
6

√
Ra

[

(x− 1
2

)3 − 1
4

(

x− 1
2

)]

; Θ(x) = −
(

x− 1
2

)

(3.1)

The solution Eq. (3.1) is represented in Figure 3.1. The equations (1.1)- (1.4) admit an

O(2) × O(2) symmetry. One O(2) symmetry corresponds to the translations in the transverse

direction y and the reflection y → −y, while the other corresponds to the translations in the

vertical direction z and a reflection that combines centrosymmetry and Boussinesq symmetry:

(x, z, T ) → (1 − x,−z,−T ), where T represents the variable U , V , W , or Θ. The base flow

29



30 CHAPTER 3. 2D CHANNEL

possesses the same symmetry as the equations, since it is one-dimensional and antisymmetric

with respect to the mid-plane x = 0.5.

0 0.5 1
−0.5

0

0.5

X

Θ
(x

)

0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

X
 W

(x
)

(a) (c)

Figure 3.1: Base flow profiles for (a) temperature Θ(x) and (b) vertical velocity W (x).

3.3 Linear stability analysis

The base flow Eq. (3.1) is parallel and depends only on the x-direction. The hypotheses of

Squire’s theorem are verified in this case, so that the most unstable mode is expected to be

2D. Therefore, the 2D approach is adopted for the linear stability analysis as Bergholz [14].

The 2D Navier-Stokes equations read as Eq. (2.1) associated with boundary conditions Eq.

(2.2)- (2.3).

We decompose the velocity and temperature into the base flow (U,W,Θ) and perturbations

(u,w, θ) as

u = U + u′ w = W + w′ θ = Θ + θ′ (3.2)

Subtracting the equations of base flow, we obtain the equations of perturbations (dropping the
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’ symbol):

∂u

∂x
+
∂w

∂z
= 0 (3.3)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+W

∂u

∂z
= −∂p

∂x
+

Pr√
Ra

(
∂2u

∂2x
+
∂2u

∂2z
) (3.4)

∂w

∂t
+ u

∂w

∂x
+ u

∂W

∂x
+ w

∂w

∂z
+W

∂w

∂z
= −∂p

∂z
+

Pr√
Ra

(
∂2w

∂2x
+
∂2w

∂2z
) + Prθ (3.5)

∂θ

∂t
+ u

∂θ

∂x
+ u

∂Θ
∂x

+ w
∂θ

∂z
+W

∂θ

∂z
=

1√
Ra

(
∂2θ

∂2x
+
∂2θ

∂2z
) (3.6)

Let ψ be the stream function for the perturbations, where u = −∂ψ

∂z
, w =

∂ψ

∂x
. We first

multiply the operator ∂
∂z to Eq. (3.4) and ∂

∂z to Eq. (3.5), respectively, and substracted

them from each other by using ∇ × ∇p = 0 to eliminate the pressure terms, we then obtain the

perturbation equations as a function of (ψ,θ):

(

∂

∂t
− ∂ψ

∂z

∂

∂x
+
∂ψ

∂x

∂

∂z

)

∇2ψ =

(

Pr√
Ra

∇4 −W
∂

∂z
∇2 +

∂2W

∂x2

∂

∂z

)

ψ + Pr
∂θ

∂x
(3.7)

(

∂

∂t
− ∂ψ

∂z

∂

∂x
+
∂ψ

∂x

∂

∂z

)

θ =
∂Θ
∂x

∂ψ

∂z
+
(

1√
Ra

∇2 −W
∂

∂z

)

θ (3.8)

This can be rewritten as

M
∂φ

∂t
= Lφ+ b(φ, φ) (3.9)

with

φ =







ψ

θ






; b =







bψ

bθ






; M =







∇2 0

0 1






;

L =









Pr√
Ra

∇4 −W
∂

∂z
∇2 +

∂2W

∂x2

∂

∂z
Pr

∂

∂x
∂Θ
∂x

∂

∂z

1√
Ra

∇2 −W
∂

∂z









(3.10)
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where the nonlinear terms bψ and bθ are bilinear forms and defined as

bψ(φα, φβ) =
(

∂ψα
∂z

∂

∂x
− ∂ψα

∂x

∂

∂z

)

∇2ψβ bθ(φα, φβ) =
(

∂ψα
∂z

∂

∂x
− ∂ψα

∂x

∂

∂z

)

θβ (3.11)

The indices α and β will be used to designate the different orders of the solutions obtained in

the multiscale analysis in the following subsection 3.4.

The associated boundary conditions are

ψ(x = 0) = ψ(x = 1) = 0 (3.12)

ψ′(x = 0) = ψ′(x = 1) = 0 (3.13)

θ(x = 0) = θ(x = 1) = 0 (3.14)

where ′ denotes differentiation with respect to x.

The linearized system is written as

M
∂φ

∂t
= Lφ (3.15)

Seeking a normal-mode solution of the form φ = φ̂(x)est+ikz, we obtain a generalized eigenvalue

problem L̃φ̂ = sM̃φ̂. Solving the eigenvalue problem leads to a critical Rayleigh number

Rac = 5708 and a critical wavenumber kc = 2.81, which agrees with the results of Bergholz [14]

and Ruth [57]. The critical eigenvalue is purely real, and the modulus of the most unstable

mode |φ̂(x)| at the critical wavenumber kc and Rayleigh number Rac is maximum in the core

region, as shown in Figure 3.2.

3.4 Weakly nonlinear analysis

We use a multiscale analysis to derive a Ginzburg-Landau equation for the flow around the first

bifurcation.
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Figure 3.2: Norm of the most unstable mode |φ̂(x)| (|ψ̂(x)|,|θ̂(x)|) at kc and Rac

We introduce the asymptotic expansion of the perturbation to the base flow as

φ = ǫφ1 + ǫ2φ2 + ǫ3φ3 +O(ǫ4) (3.16)

and choose three time scales t0 = t, t1 = ǫt, t2 = ǫ2t and two spatial scales in z: z0 = z, z1 = ǫz.

The differential derivation with respect to time is considered as a composed derivation function:

∂

∂t
=

∂

∂t0
+ ǫ

∂

∂t1
+ ǫ2

∂

∂t2
+O(ǫ3) (3.17)

Similarly, the spatial derivation with respect to z reads as:

∂

∂z
=

∂

∂z0
+ ǫ

∂

∂z1
+O(ǫ2) (3.18)

The asymptotic analysis is carried out around the threshold of the critical Rayleigh number

Rac. Thus the Rayleigh number should also be developped as a function of ǫ. By using the

Taylor expansion, we obtain two relations which will be used in the development of matrix L

with respect to Ra.

Ra−0.5 = Ra−0.5
c − 1

2
ǫ2Ra−1.5

c +
3
8
ǫ4Ra−2.5

c +O(ǫ6) (3.19)
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Ra0.5 = Ra0.5
c +

1
2
ǫ2Ra−0.5

c − 1
4
ǫ4Ra−1.5

c +O(ǫ6) (3.20)

All the operators in system (3.9) are developped with respect to the new variables

M = M0 + ǫM1 + ǫ2M2 + · · · , (3.21)

L = L0 + ǫL1 + ǫ2L2 + · · · , (3.22)

b = b0 + ǫb1 + ǫ2b2 + · · · , (3.23)

where M0, M1, M2, L0, L1, L2, b0, b1 are detailed in the appendix.

The first-order perturbation ǫφ1 can be expressed as







ψ

θ






= A(t1, t2, z1)







ψ̂(x)

θ̂(x)






est+ikcz + C.C. (3.24)

where ψ̂, θ̂ are the most unstable modes at the wavenumber kc given by the linear stability

analysis, A is the amplitude of the solution, and C.C. stands for complex conjugate.

Substituting these expansions (3.21)-(3.23) into the original system Eq. (3.9), and collecting

the terms at different orders of ǫ, we find the equations:

ǫ : (M0
∂

∂t0
− L0)φ1 = 0 (3.25)

ǫ2 : (M0
∂

∂t0
− L0)φ2 = b0(φ1, φ1) + L1φ1 −M1

∂φ1

∂t0
−M0

∂φ1

∂t1
(3.26)

ǫ3 : (M0
∂

∂t0
− L0)φ3 = −M0

∂φ1

∂t2
−M1

∂φ1

∂t1
−M2

∂φ1

∂t0
−M0

∂φ2

∂t1
−M1

∂φ2

∂t0

+ L1φ2 + L2φ1 + b0(φ1, φ2) + b0(φ2, φ1) + b1(φ1, φ1) (3.27)

3.4.1 Equation at order ǫ

The problem at order ǫ simply coincides with the linear stability analysis Eq. (3.15), and

provides the linear eigenmodes.
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We define the adjoint problem as

M+∂φ
+

∂t
= Lφ+ (3.28)

where the adjoint operators are defined by the following relations:

〈

M
∂φ

∂t
, φ+

〉

=

〈

φ,M+ ∂φ
+

∂t

〉

(3.29)

〈

Lφ, φ+
〉

=
〈

Lφ+, φ
〉

(3.30)

M is self-adjoint, so that M+ = M . Integrating by parts, we find

L+ =









Pr√
Ra

∇4 +
∂

∂z
∇2(W ·) − ∂2W

∂x2

∂

∂z
−∂Θ
∂x

∂

∂z

−Pr ∂
∂x

1√
Ra

∇2 +W
∂

∂z









(3.31)

The associated boundary conditions are found to be the same homogeneous conditions (3.12)-

(3.14) as for the linear stability problem. The adjoint mode φ+ is the solution of Eq. (3.28),

and it will be used to impose the solvability condition at higher order expansions in ǫ of the

problem.

3.4.2 Equation at order ǫ2

The problem at order ǫ2 is inhomogeneous.

(M0
∂

∂t0
− L0)φ2 = f2 (3.32)

where

f2 = b0(φ1, φ1) + L1φ1 −M1
∂φ1

∂t0
−M0

∂φ1

∂t1
(3.33)

We need to calculate f2 explicitly. Once f2 obtained we solve the inhomogeneous equation

(M0
∂

∂t0
−L0)φ2 = f2. The solution of this equation is the sum of the solution of the associated

homogeneous equation φ
(H)
2 and a particular solution φ(P )

2 of the inhomogeneous equation. For
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φ
(H)
2 , the associated homogeneous equation is the same as the linear problem ( 3.15) at order

ǫ1. φ
(H)
2 will be proportional to φ1, i.e. φ

(H)
2 = B(t1, t2, z1)φ̂1(x)eikcz + C.C.. At the end of

the resolution procedure, by collecting the solutions at different orders, there will be a term of

the type ǫ(A+ ǫB)φ̂1(x)eikcz +C.C.. Then, we are looking for the particular solution (P) φ(P )
2 ,

by solving the equation (M0
∂

∂t0
− L0)φ(P )

2 = f2. For the resonant forcing (R), a compatibility

condition should be imposed, so that we compute the solution φ
(PR)
2 . Finally, we will obtain a

particular solution φ
(P )
2 = φ

(PNR)
2 + φ

(PR)
2 .

In Eq. (3.33), b0(φ1, φ1) corresponds to nonresonant forcing (NR) f (NR)
2 and L1φ1 −M0

∂φ1

∂t1
corresponds to resonant forcing f (R)

2 . Details of the calculations are presented as follows:

Calculation of f2

The solution φ1 = A(t1, t2, z1)φ̂1(x)eikcz + C.C. is calculated in the problem at order ǫ, i.e.

ψ1 = A(t1, t2, z1)ψ̂1(x)eikcz+C.C. for the stream function and θ1 = A(t1, t2, z1)θ̂1(x)eikcz+C.C.

for temperature.

For the first term (Eq. 3.33), we find

b0,ψ(φ1, φ1) =
(

∂ψ1

∂z

∂

∂x
− ∂ψ1

∂x

∂

∂z

)

∇2ψ1

= b(ψ,A2)A
2e2ikcz + b(ψ,AA∗)AA

∗ + b(ψ,A∗2)A
∗2e−2ikcz (3.34)

b0,θ(φ1, φ1) =
(

∂ψ1

∂z

∂

∂x
− ∂ψ1

∂x

∂

∂z

)

θ1

= b(θ,A2)A
2e2ikcz + b(θ,AA∗)AA

∗ + b(θ,A∗2)A
∗2e−2ikcz (3.35)
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with

b(ψ,A2) = ik(ψ1ψ
(3)
1 − ψ′

1ψ
′′
1 ) (3.36)

b(ψ,AA∗) = ik(ψ1ψ
∗(3)
1 − ψ∗

1ψ
(3)
1 + ψ′

1ψ
′′∗
1 − ψ′∗

1 ψ
′′
1 ) (3.37)

b(ψ,A∗2) = −ik(ψ∗
1ψ

∗(3)
1 − ψ′∗

1 ψ
′′∗
1 ) (3.38)

b(θ,A2) = ik(ψ1θ
′
1 − ψ′

1θ1) (3.39)

b(θ,AA∗) = ik(ψ1θ
′∗
1 − ψ∗

1θ
′
1 + ψ′

1θ
∗
1 − ψ′∗

1 θ1) (3.40)

b(θ,A∗2) = ik(ψ∗
1θ

′∗
1 − ψ′∗

1 θ
∗
1) (3.41)

where A∗ represents the complex conjugate of A, and ′, ′′, (3) denotes the first, second, and

third derivatives with respect to x, respectively. These terms are nonresonant, so we note it as

f
(NR)
2 = bA2A2e2ikcz + bAA∗AA∗ + bA∗2A∗2e−2ikcz (3.42)

with

bA2 =







b(ψ,A2)

b(θ,A2)






; bAA∗ =







b(ψ,AA∗)

b(θ,AA∗)






; bA∗2 =







b(ψ,A∗2)

b(θ,A∗2)






(3.43)

Solution of φ
(PNR)
2

We are solving the inhomogeneous problem to look for φ(PNR)
2 with the same form of nonresonant

forcing φ(PNR)
2 = φ21+φ22+φ23 = φ̂21A

2e2ikcz+φ̂22AA
∗+φ̂23A

∗2e−2ikcz. We have three discrete

linear systems to solve

L̃2φ̂21 = bA2 ; L̃0φ̂22 = bAA∗ ; L̃−2φ̂23 = bA∗2 (3.44)

where

L̃j = −









Pr√
Ra

(

∂2

∂x2 − (jkc)2
)2

−Wijkc
(

∂2

∂x2 − (jkc)2
)

+
∂2W

∂x2
ijkc Pr

∂

∂x
∂Θ
∂x

ijkc
1√
Ra

∇2 −Wijkc









(3.45)
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Calculation of f
(R)
2

L1φ1 = L1







ψ̂1

θ̂1






A(t1, t2, z1)eikcz + C.C

=







d1

d2







∂A(t2, t1, z1)
∂z1

eikcz + C.C. (3.46)

where

d1 =

(

−4ik3
c

Pr√
Ra

+ 3Wk2
c +

∂2W

∂x2

)

ψ̂1 +
(

4Pr√
Ra

ikc −W

)

ψ̂′′
1 (3.47)

d2 =
∂Θ
∂x

ψ̂1 +
(

2√
Ra

ikc −W

)

θ̂1 (3.48)

−M1
∂φ1

∂t0
= 0 (3.49)

since it is evaluated at the linear stability threshold (sc = 0).

The last term is −M0
∂φ1

∂t1
. We have:

−M0
∂φ1

∂t1
= −







d3

d4







∂A(t2, t1, z1)
∂t1

eikcz + C.C. (3.50)

where

d3 = ψ̂′′
1 − k2

c ψ̂1 (3.51)

d4 = θ̂1 (3.52)

Therefore, we have

f
(R)
2 =







d1

d2







∂A(t2, t1, z1)
∂z1

eikcz −







d3

d4







∂A(t2, t1, z1)
∂t1

eikcz +C.C. (3.53)
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Compatibility equation for f
(R)
2

We look for a particular solution with the same kind of forcing f (R)
2 , noted as φ(PR)

2 = φ̃
(PR)
2 (x)

eikcz+C.C.. Substituting into the system L0φ
(PR)
2 = f

(R)
2 we obtain the system L̃0φ̃

(PR)
2 = f̃

(R)
2 .

We then need to solve the inhomogeneous linear algebriac system in the case that the associated

homogeneous algebriac system has non-trivial solutions. Note that we have det(L̃0) = 0 where

L̃0 was already solved in the direct problem (3.15). The Fredholm theorem ensures that a

solution for this system exists if and only if the forcing term is orthogonal to the solution φ+
1 of

the associated homogeneous adjoint system L̃+
0 φ̃

+
1 = 0 i.e. if

〈

φ̃+
1 , f̃

(R)
2

〉

= 0 (3.54)

The adjoint operator L̃+
0 is given as the complex conjugate matrix in the sense of Hermitian

L̃0.

Here, we have two resonant terms, on which we should impose a compatibility condition,

i.e.

〈L1φ1 −M0
∂φ1

∂t1
, φ+〉 = 0 (3.55)

where 〈, 〉 denotes the inner product, and φ+ the adjoint vector given by the adjoint problem

(3.28). This compatibility condition yields an expression for the group velocity Cg, defined as
∂A

∂t1
= Cg

∂A

∂z1
. Numerical evaluation of Cg =

〈d1, ψ
+〉 + 〈d2, θ

+〉
〈d3, ψ+〉 + 〈d4, θ+〉 yields a value of about 10−5,

which is close to the expected value of zero corresponding to stationary rolls. The discrepancy

is likely to be due to the discretization error.

Finally, in matrix form, we have the resonant forcing which will be used to calculate the

particular solution φ
(R)
2

f
(R)
2 =







d1 − Cgd3

d2 − Cgd4







∂A(t1, t2, z1)
∂z1

eikcz + C.C

= b(R) ∂A(t1, t2, z1)
∂z1

eikcz + C.C. (3.56)
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Solution of φ
(PR)
2

In order to find the particular solution φ
(PR)
2 associated with the resonant term f

(R)
2 , we need

to solve the linear discret system

L̃0φ
(PR)
2 = b(R) ∂A(t1, t2, z1)

∂z1
(3.57)

In conclusion, we obtain the particular solution at order ǫ2: φ(P )
2 = φ

(PNR)
2 + φ

(PR)
2 , where

φ
(PNR)
2 = φ̂21A

2e2ikcz + φ̂22AA
∗ + φ̂23A

∗2e−2ikcz (3.58)

φ
(PR)
2 = φ̂24

∂A

∂z1
eikcz + C.C. (3.59)

φ̂2n defined as the n-th component of the 2nd order solution. This particular solution φ(P )
2 will

be used to calculate f3 at order ǫ3.

3.4.3 Equation at order ǫ3

The problem at order ǫ3 is also inhomogeneous :

(M0
∂

∂t0
− L0)φ3 = f3 (3.60)

where

f3 = −M0
∂φ1

∂t2
−M1

∂φ1

∂t1
−M2

∂φ1

∂t0
−M0

∂φ2

∂t1
−M1

∂φ2

∂t0

+L1φ2 + L2φ1 + b0(φ1, φ2) + b0(φ2, φ1) + b1(φ1, φ1) (3.61)

As at order ǫ2, we should firstly calculate f3 explicitly. Once f3 obtained, we can solve the

inhomogeneous system (M0
∂

∂t0
− L0)φ3 = f3. The solution of this equation will be given as

a sum of the solution of associated homogeneous equation φ
(H)
3 and the particular solution

φ
(P )
3 of the inhomogeneous equation. We will see that the particular solution φ

(P )
3 is composed

with the nonresonant solution φ
(PNR)
3 and the resonant solution φ

(PR)
3 . As we have seen at
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order ǫ2, if we want to calculate φ
(PR)
3 , we have to impose a compatibility condition on the

resonant forcing term f
(R)
3 . This compatibility equation gives us a relation for the perturbation

amplitude A(t1, t2, z1) and allows us to calculate the weakly nonlinear solution of our problem

(Ginzburg-Landau Model). Therefore, here, we will only need to look for the resonant forcing

term f
(R)
3 .

Calculation of f
(R)
3

The solution at order ǫ1 is already obtained as: φ1 = A(t1, t2, z1)φ̂1(x)eikcz + C.C. At the

order ǫ2 as well: φ2 = φ̂21A
2e2ikcz + φ̂22AA

∗ + φ̂23A
∗2e−2ikcz + φ̂24

∂A

∂z1
eikcz + φ̂∗

24

∂A∗

∂z1
e−ikcz,

i.e. ψ2 = ψ̂21A
2e2ikcz + ψ̂22AA

∗ + ψ̂23A
∗2e−2ikcz + ψ̂24

∂A

∂z1
eikcz + ψ̂∗

24

∂A∗

∂z1
e−ikcz for the stream

function and θ2 = θ̂21A
2e2ikcz + θ̂22AA

∗ + θ̂23A
∗2e−2ikcz + θ̂24

∂A

∂z1
eikcz + θ̂∗

24

∂A∗

∂z1
e−ikcz for the

temperature. Note that we omit the homogeneous solution at order ǫ2 since it takes the form

as φ1.

We have

f3 = −M0
∂φ1

∂t2
−M1

∂φ1

∂t1
−M2

∂φ1

∂t0
−M0

∂φ2

∂t1
−M1

∂φ2

∂t0

+L1φ2 + L2φ1 + b0(φ1, φ2) + b0(φ2, φ1) + b1(φ1, φ1) (3.62)

where

−M0
∂φ1

∂t2
= −







ψ̂′′
1 − k2

c ψ̂1

θ̂1







∂A

∂t2
eikcz (3.63)

−M1
∂φ1

∂t1
= −2Cg







ikcψ̂1

0







∂2A

∂z2
1

eikcz (3.64)

−M1
∂φ2

∂t0
= 0 (3.65)

−M2
∂φ1

∂t0
= 0 (3.66)
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As it is evaluated at the linear stability threshold (sc = 0), then

−M0
∂φ2

∂t1
= −Cg







ψ̂′′
24 − k2

c ψ̂24

θ̂24







∂2A

∂z2
1

eikcz +NRT (3.67)

where NRT is short for "Non Resonant Terms".

Applying the operator L2 (see appendix Eq (A.4)) to φ1, we obtain

L2φ1 =
∂2A

∂z2
1









2Pr√
Rac

(ψ̂′′
1 − 3k2

c ψ̂1) − 3Wikcψ̂1

1√
Rac

θ̂1









eikcz

− 1
2
Ra−1.5

c







Pr(ψ̂(4)
1 − 2k2

c ψ̂
′′
1 + k4

c ψ̂1)

θ̂′′
1 − k2

c θ̂1






Aeikcz

− 1
2Rac







W (ikcψ̂′′
1 − ik3

c ψ̂1) − ∂2W

∂x2
ikcψ̂1

Wikcθ̂1






Aeikcz +C.C. (3.68)

which contains resonant terms. These resonant terms can be separated into two parts, one is

about the secondary spatial derivation of the amplitude and the other is linear to the amplitude.

For L1φ2, L1 is a linear operator, and φ21, φ22, φ23 only contain constant terms about

e2ikcz or e−2ikcz, so L1φ21, L1φ22, L1φ23 do not contain resonant terms. However, φ24 has a

contribution to the resonant term, as

L1φ24 =











(

−4ik3
c

Pr√
Ra

+ 3Wk2
c +

∂2W

∂x2

)

ψ̂24 +
(

4Pr√
Ra

ikc −W

)

ψ̂′′
24

∂Θ
∂x

ψ̂24 +
(

2√
Ra

ikc −W

)

θ̂24











∂A2

∂z2
1

eikcz + C.C.

(3.69)
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For quadratic terms, we have

b0,φ(π1, φ2) =
(

∂ψ1

∂z

∂

∂x
− ∂ψ1

∂x

∂

∂z

)

∇2ψ2

= (ikψ̂1ψ̂
(3)
22 + 4ik3ψ̂∗

1ψ̂
′
21 − ikψ̂∗

1ψ̂
(3)
21 − 2ikψ̂′∗

1 ψ̂
′′
21 + 8ik3ψ̂′∗

1 ψ̂21)A2A∗eikcz

+ (ikψ̂1ψ̂
(3)
23 − 4ik3ψ̂1ψ̂

′
23 + 2ikψ̂′

1ψ̂
′′
23 − ikψ̂∗

1ψ̂
(3)
22 − 8ik3ψ̂′

1ψ̂23)AA∗2e−ikcz

+NRT

b0,θ(φ1, φ2) =
(

∂ψ1

∂z

∂

∂x
− ∂ψ1

∂x

∂

∂z

)

θ2

= (ikψ̂1θ̂
′
22 − ikψ̂∗

1 θ̂
′
21 − 2ikψ̂′∗

1 θ̂21)A2A∗eikcz

+ (ikψ̂1θ̂
′
23 − ikψ̂∗

1 θ̂
′
22 + 2ikψ̂′

1θ̂23)AA∗2e−ikcz

+NRT

(3.70)

b0,ψ(φ2, φ1) =
(

∂ψ2

∂z

∂

∂x
− ∂ψ2

∂x

∂

∂z

)

∇2ψ1

= (2ikψ̂∗(3)
1 ψ̂21 − 2ik3ψ̂′∗

1 ψ̂21 + ikψ̂′′∗
1 ψ̂′

21 − ik3ψ̂∗
1ψ̂

′
21 − ikψ̂′′

1 ψ̂
′
22 + ik3ψ̂′

22ψ̂1)A2A∗eikcz

+ (−2ikψ̂(3)
1 ψ̂23 + 2ik3ψ̂′

1ψ̂23 + ikψ̂′′∗
1 ψ̂′

22 − ik3ψ̂∗
1ψ̂

′
22 − ikψ̂′′

1 ψ̂
′
23 + ik3ψ̂′

23ψ̂1)AA∗2e−ikcz

+NRT

b0,θ(φ2, φ1) =
(

∂ψ2

∂z

∂

∂x
− ∂ψ2

∂x

∂

∂z

)

θ1

= (2ikψ̂21θ̂
′∗
1 − ikψ̂′

22θ̂1 + ikψ̂′
21θ̂

∗
1)A2A∗eikcz

+ (−2ikψ̂23θ̂
′
1 − ikψ̂′

23θ̂1 + ikψ̂′
22θ̂

∗
1)AA∗2e−ikcz

+NRT

(3.71)

The nonlinear term b1(φ1, φ1) does not contain any resonant term.
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Collecting all the resonant terms, we obtain

f
(R)
3 =

(

c1
∂A

∂t2
+ c2A+ c3A

2A∗ + c4
∂2A

∂z2
1

)

eikcz + C.C. (3.72)

where c1, c2, c3, c4 are x-dependent functions defined in the Appendix.

Solvability condition for f
(R)
3

Once f3 is calculated, we should be able to solve the inhomogeneous equation (M0
∂

∂t0
−L0)φ3 =

f3. The solution of this equation will be given as the sum of the solution of associated homo-

geneous equation φ
(H)
3 and the particular solution φ

(P )
3 given by the inhomogeneous equation.

The particular solution φ
(P )
3 is composed of the nonresonant solution φ

(PNR)
3 and the resonant

solution φ
(PR)
3 . As we have seen at order ǫ2, if we want to calculate φ(PR)

3 , we need to impose

a solvability condition on the resonant forcing f (R)
3 .

The enforcement of the solvability condition 〈fR3 , φ+〉 = 0 leads to a Ginzburg-Landau

equation [58] for the amplitude A:

∂A

∂t
= σA+ γ

∂2A

∂z2
− lA2A∗ (3.73)

As the amplitude around the threshold is proportional to ǫA, we redefine the new amplitude

A = ǫA, which is independent of the scale ǫ. Then the Ginzburg-Landau equation in the

primitive variables reads as:

∂A

∂t
= σ(Ra−Rac)A+ γ

∂2A

∂z2
− lA

2
A

∗
(3.74)

where

σ = −〈c2, φ
+〉

〈c1, φ+〉 γ = −〈c4, φ
+〉

〈c1, φ+〉 l = −〈c3, φ
+〉

〈c1, φ+〉 (3.75)

Numerical evaluation of the coefficients σ, γ, l for the critical wavenumber kc = 2.81 gives

σ = 7.67×10−5 , γ = 0.112, l = 20.45. The sign of l indicates that the bifurcation is supercritical.
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The amplitude of perturbations predicted by this Ginzburg-Landau equation will be compared

with the DNS results discussed in the next section 3.5.1.

3.4.4 Absolute instability

The analysis of absolute/convective instability can be applied to the Ginzburg-Landau equation

in our system. First of all, we introduce the notion of absolute/convective instability by following

Huerre [59], and then apply the standard analysis procedure to our Ginzburg-Landau equation.

Convective/absolute instability

We consider a partial differential equation solely involving the streamwise variable x and time

t. Let G(x, t) be the Green function or impulse response defined by

D[−i ∂
∂x
, i
∂

∂t
;R]G(x, t) = δ(x)δ(t) (3.76)

where i =
√

−1, δ denotes the Dirac delta function, and D is the dispersion relation, R is

the control parameter. The fundamental solution G contains all the information regarding the

spatio-temporal dynamics of the perturbation field. Several types of impulse response behavior

are possible depending on the value of R, as sketched in Figure 3.3. One may first distinguish

between stable and unstable flows:

(a) (b) (c) (d)

Figure 3.3: Linear impulse response G(x, t). (a) Linear stable flow; (b) linearly convective unstable
flow; (c) marginally convectively/absolutely unstable flow; (d) absolutely unstable flow. From P. Huerre,
Perspectives in fluid dynamics, 2000 [59].
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A flow is linearly stable if

lim
t→∞

G(x, t) = 0 along all rays
x

t
= const.

The impulse response then consists of a decaying wavepacket (Figure 3.3 (a)).

Otherwise, the flow is linearly unstable if

lim
t→∞

G(x, t) = ∞ along at least one ray
x

t
= const.

The impulse response typically consists of an unstable wavepacket confined within a wedge

or several wedges in the (x,t)-plane (Figure 3.3 (b)-(d)). In the later case, we can further

distinguish between absolute instability and the convective instability.

An unstable flow is said to be linearly convectively unstable if

lim
t→∞

G(x, t) = 0 along the ray
x

t
= 0

The impulse response is advected away to leave the source ultimately undisturbed (Figure 3.3

(b)).

An unstable flow is said to be linearly absolutely unstable if

lim
t→∞

G(x, t) = ∞ along the ray
x

t
= 0

In this case, the unstable wavepacket is amplified at the source and gradually contaminates the

entire medium (Figure 3.3 (d)).

Application to our system

The standard procedure of absolute/convective instability is applied to our system in the fol-

lowing way. The linearized Ginzburg-Landau equation takes the form

∂A

∂t
= σ(Ra−Rac)A+ γ

∂2A

∂z2
(3.77)
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The introduction of a particular solution in the form of normal modes A = Âei(βz−ωt) into

Eq.( 3.77) results in the dispersion relation:

D(ω, β,Ra) = σ(Ra−Rac) + iω − γβ2 = 0 (3.78)

It can be written in the form of a single temporal mode ω(β, σ,Ra) = i[σ(Ra − Rac) − γβ2],

which has an equilibrium (β0, ω0), satisfying the conditions ω0 = ω(β0) and ∂ω
∂β (β0) = 0. The

latter condition yields ∂ω
∂β (β0) = −2iγβ0 = 0. So, β0 = 0 and ω0 = iσ(Ra − Rac). As the

amplication rate ω0,i = σ(Ra−Rac) > 0, the disturbance grows with time at any fixed station

in the laboratory frame, which corresponds to the absolute instability, in agreement with Tao

and Zhuang [15]’s results.

3.5 2D DNS simulations Az = 10

We use a 2D simulation to study the development of instabilities in the flow between two vertical

plates maintained at different temperatures. 40 Chebyshev modes are used for the spatial

discretization in x-direction, while 160 Fourier modes are used for the z-direction. Convergence

for the spatial discretization was established [23]. Results are summarized in Table 3.1.

3.5.1 First bifurcation

As predicted by the linear stability analysis, the base flow bifurcates to 4 steady corotating

rolls at Rac ∼ 5708. Although vertical invariance is broken, the solution still displays the

symmetryD4, consisting of translation by the height Az/4 of each of the rolls and the Boussinesq

centrosymmetry. Invariance of the equations under z-translations ensures that there exists a

whole circle of solutions, corresponding to an arbitrary vertical translation of the rolls: the

bifurcation is a circle pitchfork bifurcation.

The time evolution of the temperature measured at the point (x = 0.0381, z = 5), located in

the hot boundary layer, is plotted in Figure 3.4 (a). An enlargement of the same signal for the

times 1400 < t < 2000 is represented in logarithmic scale in Figure 3.4 (b). The temperature
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disturbance grows exponentially for 1400 < t < 1750, which corresponds to the linear growth of

the most unstable eigenmode, then increases at a slower rate for t > 1750 before the amplitude

of the solution saturates. As was pointed out by Henderson and Barkley [60], this evolution

shows that the coefficient of the cubic term in the normal form of the circle pitchfork bifurcation

is negative, and therefore the bifurcation is supercritical in agreement with the prediction of

the Ginzburg-Landau model (GLM).

0 1000 2000 3000
0

0.5

1

1.5

2x 10
−3

time

∆
θ

1400 1600 1800 2000
10

−6

10
−5

10
−4

10
−3

10
−2

time

∆
θ

(a) (b)

Figure 3.4: (a): Time series of temperature perturbation ∆θ with respect to the base flow at point
(0.0381, 5) in the boundary layer near the hot wall at Ra = 6000. (b): An enlargement of (a) for
1400 < t < 2000 on a logarithmic scale, Az = 10.

Comparaison of perturbation amplitude between DNS and GLM

The steady amplitude A computed from the Ginzburg-Landau equation is compared with the

amplitude of the velocity and temperature perturbations observed in the DNS, for a domain

which is as close as possible to the critical wavelength λc = 2.236. The periodic height of the

DNS was adjusted to Az = 9, so that it featured a wavelength of λ = 2.25 close to λc. Figures

3.5 (a) and (b) show that the agreement between the Ginzburg-Landau model and the DNS is

very good for both the temperature and velocity up to Ra ∼ 6300 (about 10% larger than Rac).

Beyond that, the Ginzburg-Landau model is no longer valid to represent the flow at higher

Rayleigh numbers.
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Figure 3.5: Comparison of the maximum amplitudes of perturbation with respect to the base flow
observed in the DNS at x = 0.0381 with the Ginzburg-Landau equation prediction: (a) temperature, (b)
vertical velocity, Az = 9.

3.5.2 Subsequent bifurcations

Figure 3.6 shows how the spatial organization of the flow varies with increasing Ra. Just above

the critical Rayleigh number, the flow is characterized by four steady structures, as shown in

Figure 3.6 (a) at Ra = 6000. As Ra is increased past the value of Ra = 13500, the four steady

rolls merge into three rolls which oscillate in time, as shown in Figure 3.6 (b) and (c). At still

higher Rayleigh numbers Ra ≥ 18000, only two rolls of unequal size are observed, as is shown

in Figure 3.6 (d).

The temporal spectrum of the vertical velocity at the point (x = 0.0381, z = 0.683) is shown

in Figure 3.7 (a) for Ra = 15000, and is characterized by a main frequency (with harmonics)

of f1 = 0.032. When 15000 ≤ Ra ≤ 16000, the flow still consists of 3 oscillatory rolls, but the

temporal evolution of the flow becomes more complex. When Ra is increased to Ra = 15500, the

flow becomes quasi-periodic with the appearance of a second, much lower frequency f2 = 0.0031

(Figure 3.7 (b)). When Ra = 16000, the peaks around the main frequency f1 and f2 broaden,

(see Figure 3.7 (c)), corresponding to a seemingly chaotic behavior. The chaotic behavior

subsides beyond Ra = 18000, as the flow spatial pattern is modified: there seems to be a

competition between the onset of purely temporal chaos in a specific flow pattern and the

development of spatial instabilities at shorter wavenumbers. Up to Ra = 21000, which was the
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highest Rayleigh number considered, the flow remains steady with a robust 2-roll pattern.
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Figure 3.6: 2D flow streamlines at different Ra. (a) four steady corotating rolls; (b) (c) three oscillating
rolls; (d) two steady rolls, Az = 10.

0 0.05 0.1
0

0.01

0.02

0.03

f
0 0.05 0.1

0

0.01

0.02

0.03

0.04

0.05

f
0 0.05 0.1

0

0.002

0.004

0.006

0.008

0.01

f

(a) Ra = 15 000 (b) Ra = 15 500 (c) Ra = 16 000

Figure 3.7: Temporal Fourier spectrum of the vertical velocity at the point (0.0381, 0.683) in the
boundary layer near the hot wall in 2D simulations for different Rayleigh numbers, Az = 10.

3.6 Conclusion

Due to the Squire’s theorem, the linear stability needs to be carried out in the 2D configuration,

which predicts the first instability at Rac = 5708 with the wavenumber of the most unstable

mode kc = 2.81. A weakly nonlinear analysis results in the derivation of a Ginzburg-Landau
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Table 3.1: Summary of bifurcations and associated flow structures and symmetries for the 2D simula-
tions, Az = 10.

Ra Nature of Spatial Features Spatial Symmetry
Bifurcation Number of Structures Temporal Symmetry

Ra < Rac = 5708 1D base flow O(2)
steady

Rac ≤ Ra ≤ 13000 supercritical corotating rolls D4

circle pitchfork n = 4 steady
13500 ≤ Ra ≤ 15300 supercritical corotating rolls no symmetry

Hopf n = 3 periodic
15400 ≤ Ra ≤ 15600 corotating rolls no symmetry

unknown n = 3 quasi-periodic
15700 ≤ Ra ≤ 17000 corotating rolls no symmetry

unknown n = 3 "chaotic"
18000 ≤ Ra ≤ 21000 corotating rolls no symmetry

unknown n = 2 steady

equation which is able to predict correctly the amplitude of the 2D rolls for Rayleigh numbers

within a limited range (10%) of Rac.

In 2D simulations, the first instability occurs at Rac = 5708, through which the parallel

base flow turns into steady co-rotating rolls. A second bifurcation occurs at Ra = 13500. The

flow becomes oscillatory, and the steady four-roll pattern turns into a periodic three-roll one

with a characteristic frequency f = 0.032. When Ra is increased, the temporal evolution of the

three unsteady rolls becomes quasiperiodic, then apparently chaotic, while the characteristic

frequency f remains dominant. As Ra is further increased to Ra = 18000, the flow becomes

steady again, and the three oscillatory rolls give way to two steady rolls. This suggests that

the occurrence of pure temporal chaos is limited by the development of a vertical instability,

which leads to a long-wavelength modulation of the spatial pattern. The two steady rolls remain

stable over a range of Rayleigh numbers, as no chaotic behavior is observed up to Ra = 21000.

All the results are summarized in Table 3.1.
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Chapter 4

3D Channel of small transverse

extent Az = 10 & Ay = 1

4.1 Introduction

As we have seen in the previous chapter about asymptotic analysis, the approach of Ginzburg-

Landau equation is only valid for a limited range of Rayleigh number to represent the flow

around the threshold of the first instability. In the 2D DNS simulations, the temporally chaotic

regime occurs within a limited range of Rayleigh number, after a few bifurcations. To determine

whether these results hold in three dimensional configuration, we examine a 3D channel of small

transverse direction Ay = 1. The vertical extent remains the same as in the 2D configuration

Az = 10. The simulation is divided into 4 subdomains along the z-direction. 40 Chebyshev

modes are used for the spatial discretization of x-direction, 30 Fourier modes are used for the

transverse direction y, and 40 Chebyshev modes are used in the z-direction for each subdomain.

4.2 First bifurcation

We first check that the base flow remains stable with respect to any perturbation when Ra <

Rac. As expected, the first bifurcation observed in the DNS occurs at Rac around 5800, and

is characterized by the appearance of four 2D steady corotating rolls which are represented in

Figure 4.1. As mentioned in section (3.5.1), the vertical translation invariance is replaced with

a D4 symmetry, and the centro-Boussinesq symmetry is conserved.

53
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(a) (b) (c)

Figure 4.1: Flow structure atRa = 6000: (a) isocontours of the temperature on the two selected vertical
plates x = 0.0245 and y = 0.9677 ; (b) isosurface of transverse vorticity Ωy = 3.1; (c) enlargement of the
upper half of the domain in (b)

4.3 Second bifurcation : 3D steady structures

When Ra > Rac2, the four-roll solution becomes unstable in the transverse direction, and a

steady 3D pattern, shown in Figure 4.2, appears through a second bifurcation, as was also

found by Nagata and Busse [31] and Clever and Busse [33]. Although the transition breaks

the y-translation invariance, the invariance of the Navier-Stokes equations (Eq. 1.1-1.4) under

y-translations ensures that there exists a whole circle of solutions, corresponding to an arbitrary

y-translation of the pattern. Thus, this bifurcation is also a circle pitchfork bifurcation. The

time evolution of the temperature measured at the point (x = 0.0381, y = 0.097, z = 5),

located in the hot boundary layer, is plotted in Figure 4.3 (a). An enlargement of the same

signal for the times 1000 < t < 1200 is represented in logarithmic scale in Figure 4.3 (b). The

temperature disturbance grows exponentially for 1000 < t < 1070, which corresponds to the

linear growth rate of the most unstable eigenmode, then increases at a lower rate for t > 1070

before the amplitude of perturbation satures. By using the same argument [60] as that used in

the previous chapter, this evolution shows that the coefficient of the cubic term in the normal

form of the circle pitchfork bifurcation is negative, therefore this bifurcation is supercritical.
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Figure 4.2: Flow structure at Ra = 11000: (a)-(f): temperature isocontours on the two planes x =
0.0245 (next to the hot wall) and y = 0.9677 (perpendicular to side-walls) at times as indicated.
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Figure 4.3: (a): Time series of temperature perturbation ∆θ with respect to the base flow at the point
(0.0381, 0.097, 5) in the boundary layer near the hot wall at Ra = 11000; (b): An enlargement of (a) for
1000 < t < 2000 on logarithmic scale.
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The threshold Rac2 can be obtained by linearizing the equations of motion around the 2D

steady solution and integrating a small perturbation in time for different values of Ra. The

growth rate of these perturbations, which is equal to the most unstable eigenvalue, is plotted in

Figure 4.4 and is found to increase quasi-linearly with Ra. The critical Rayleigh number Rac2

obtained by linear extrapolation of the plot is around 9980.
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Figure 4.4: Perturbation growth rate as a function ofRa. By linear extrapolation, the Rac2 is estimated
around 9980.

The steady 3D solution retains some of the symmetries of the 2D solutions, namely the

reflection in y and translation by Az/4 in z, but the translation symmetry in y and the centro-

Boussinesq symmetry are replaced with the single discrete symmetry

(x, y, z, T ) → (1 − x, y + 0.5, Az − z,−T ) (4.1)

The 2D solution, which was O(2)×D4 symmetric, has bifurcated to a 3D solution with D1 ×D4

symmetry.

This can be seen in Figure 4.5, which shows temperature contours and streamlines on three

planes parallel to the plates. The field obeys the symmetry (Eq. 4.1), as can be seen by

comparing Figure 4.5 (a) with (c) or else Figure 4.5 (d) with (f). The upwind motion on

the plane x = 0.0381 along the hot wall (Figure 4.5 (d)) and the downwind motion on the

plane x = 0.9619 along the cold wall (Figure 4.5 (f)) are symmetrical. On the mid-plane, the

streamline plot of Figure 4.5 (e) shows two large and two small secondary counter-rotating
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vortices.
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Figure 4.5: (a-c) Temperature isocontours on the vertical mid-plane x = 0.5 and on other two planes
which are symmetric with respect to the plane (x = 0.5); (c) Streamlines on the same three vertical
planes at Ra = 11000.

Since the flow is invariant under translation by Az/4, we restrict our analysis to the upper

half of the domain in the rest of this section.

Figure 4.6 shows isosurfaces of the vorticity components Ωy, Ωx, Ωz along with the Q-

criterion [61]. The Q-criterion is defined as

Q =
1
2

(ΩiΩi − EijEij)

where Eij is the rate of strain tensor 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
). Therefore it provides a measure of the

vortices. Comparison of Figures 4.6 (a) and (d) shows that most of the vorticity is transverse

and is organized into the corotating convection rolls corresponding to the most linearly unstable

mode.

Examination of the horizontal vorticity (Ωx) plots in Figure 4.6 (b) confirms that the flow

is characterized by two counter-rotating vortices, which are inclined 45 degrees with respect

to both the horizontal and the vertical planes. As shown in Figure 4.6 (d), these secondary
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Figure 4.6: Vorticity isosurfaces at Ra = 11000.

circulations link the primary rolls and are to some extent reminiscent of the three-dimensional

braids connecting the primary vortices observed in shear layers before vortex pairings [62].

In addition, Figure 4.6 (c) shows the presence of additional counter-rotating vortices within

the primary convection rolls. These vortices are about half the height of the larger secondary

vortices, and their orientation is opposite to that of the larger secondary vortices. They are

predominantly aligned with the vertical direction z.

In summary, the flow structure for the 3D pattern consists of: (1) primary transverse corotat-

ing rolls predominantly aligned in the direction y, (2) large secondary counter-rotating vortices

or braids linking up the primary rolls, which are inclined about 45 degrees with respect to both

the horizontal and the vertical planes, (3) two vertical, short counter-rotating vortices located

within each primary rolls.

4.4 Third Bifurcation: 3D Time-Periodic Flow

The 3D pattern remains stable up to a value of Ra < Rac3 = 11270. For Rac3 < Ra < 12000,

the 3D pattern becomes time-dependent.
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4.4.1 Local analysis

The time series of the temperature at a point located in the hot boundary layer is plotted

in Figure 4.7 (a). Figure 4.7 (b) shows that it corresponds to a periodic signal of frequency

f1 = 0.036, very close to the basic frequency f2D
1 = 0.032 found in the 2D simulations at a

slightly higher Rayleigh number.
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Figure 4.7: (a): Time series of temperature at the point (0.0381, 0.097, 5) in the boundary layer near
the hot wall, Ra = 11500 (b): Temporal Fourier spectrum of the periodic portion t ∈ [1200, 2000] of the
signal (a).

During this periodic regime, we observe that the oscillation frequency f1 is nearly constant

as the Rayleigh number increases above its bifurcation value, while the square of the oscillation

amplitude increases linearly with Ra as shown in Figure 4.8. This is consistent with a Hopf

bifurcation. The critical Rayleigh number Rac3 evaluated by the linear extrapolation of the

oscillation amplitude as a function of Ra is around Rac3 = 11270.

4.4.2 Global enstrophy budgets

Some insight into the dynamics of the flow can be given by enstrophy, which gives a measure

of rotational effects in the flow. The total contribution to the enstrophy of each vorticity

component [
∫

V Ω2
jdV ]1/2 was computed, where j = x, y, z and Ωj is the j-th component of the

vorticity vector. As we can see from Figure 4.9, most of the enstrophy is contained in the

transverse contribution [
∫

V Ω2
ydV ]

1

2 . Both the horizontal and vertical contributions oscillate
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Figure 4.8: Square of temperature oscillation amplitude at the point (0.0381, 0.097, 5) in the boundary
layer near the hot wall as a function of Ra. By linear extrapolation, Ra3c is estimated as around 11270.

essentially in phase opposition with the transverse contribution.
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Figure 4.9: Temporal evolution of horizontal vorticity intensity [
∫

V
Ω2

xdV ]
1

2 , transverse vorticity inten-
sity [

∫

V
Ω2

ydV ]
1

2 , and vertical vorticity intensity [
∫

V
Ω2

zdV ]
1

2 at Ra = 11500.

A physical interpretation of this plot is given in Figure 4.10. The flow structures are similar

to the steady ones observed in the previous regime, (and therefore retain the same spatial sym-

metry), but they now pulse periodically. When the primary rolls are strongest, the secondary

vortices disappear. At this moment, the flow is mostly two-dimensional (Figure 4.10 (c)). In

contrast, when the secondary vortices reach their maximum intensities, the primary rolls bend

in the transverse direction: the strongly 3D flow can be seen in Figure 4.10 (a) and (e).

We note that the frequency f of the oscillation is very close to the natural frequency of
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the mixing layer fn ∼ 0.032 [62], when it is nondimensionalized with the distance between the

plates and the maximum velocity difference observed in the base flow.

(a) t = 2001 (b) t = 2008 (c) t = 2015 (d) t = 2022 (e) t = 2029

Figure 4.10: Q-criterion isosurface Q = 0.12 at selected times (corresponding vertical lines in Figure
4.9) spanning one temporal oscillation, Ra = 11500. Isosurfaces are colored by Ωz .

To better understand the origin of the oscillations, we consider the vorticity equation:

∂Ωi

∂t
+ uj

∂Ωi

∂xj
− Ωj

∂ui
∂xj

=
Pr√
Ra

∂2Ωi

∂xj∂xj
− Prεijk

∂θδj3
∂xk

(4.2)

If we multiply equation (4.2) by 2Ωi, we obtain

∂Ω2
i

∂t
+ uj

∂Ω2
i

∂xj
= 2ΩiΩj

∂ui
∂xj

+ 2
Pr√
Ra

Ωi
∂2Ωi

∂xj∂xj
− 2ΩiPrεijk

∂θδj3
∂xk

. (4.3)

(We sum over j and k, but not over i, ε is the permutation symbol and δ is the Kronecker

symbol ). The terms on the right-hand side of the equations correspond to the production

- or destruction - of Ω2
i through three different mechanisms: (i) vortex stretching, which is

tilting and stretching of vorticity components by the velocity field (ii) friction, i.e the action

of viscosity (which we will also refer to as diffusion) and (iii) buoyancy. Summing over i (i.e

using the tensor notation for i) yields the enstrophy equation. We choose instead to integrate

the equation corresponding to each component over the whole domain. One can check that
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the transport term (second term on the left-hand side) disappears, so that we are left with the

following equations for each vorticity component:
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∫

V (2Ωx(
−→
Ω · ∇u) + 2

Pr√
Ra

Ωx∇2Ωx + 2PrΩx
∂θ

∂y
)dV

∫

V (2Ωy(
−→
Ω · ∇v) + 2

Pr√
Ra

Ωy∇2Ωy − 2PrΩy
∂θ

∂x
)dV

∫

V (2Ωz(
−→
Ω · ∇w) + 2

Pr√
Ra

Ωz∇2Ωz)dV

















(4.4)

Figures 4.11 to 4.16 present the global evolution and spatial distribution of the three terms on

the right-hand side of equation (39) for each vorticity component. The balance in the horizontal

direction x can be seen in Figure 4.11. The vortex stretching term and the buoyancy term are

both source terms and oscillate with a small phase shift, while the friction term is negative

and oscillates in phase opposition with the other two contributions. As the intensity of the

friction is not quite compensated by the effect of vortex stretching and buoyancy, this results in

limited oscillations of the horizontal vorticity r.m.s [
∫

V Ω2
xdV ]

1

2 . The spatial distribution of the

contributions due to vortex stretching, viscous effects, and buoyancy is represented in Figure

4.12 (a)-(c) on a plane orthogonal to the plates. The plane was chosen in order to provide a

relevant cross-section of one of the vorticity braids, i.e. the secondary counter-rotating vortices.

The vortex stretching and buoyancy terms are both positive everywhere (Figure 4.12 (a) and

(c)), while the friction term is negative (Figure 4.12 (b)). All terms reach their maximum over

the portion of space occupied by the counter-rotating vortices.

Figure 4.13 represents the different contributions to equation (4.4) for the transverse com-

ponent. All three terms oscillate essentially in phase (with phase shifts of about 1/8 and 1/12

of the time period), which is responsible for the strong oscillation observed in the principal

rolls. The vortex stretching term is always positive, as can be expected. Perhaps a more sur-

prising result is that friction is now a source term for the transverse vorticity, while buoyancy

constitutes a sink for it. Since the temperature gradient is always negative and the principal

rolls are associated with positive transverse vorticity Ωy, one would expect a positive value

for −2PrΩy
∂θ

∂x
. To understand this discrepancy, we examined the spatial distribution of the

different contributions, which can be seen in Figure 4.14 (a)-(c) for the symmetry plane y = 0.5.
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Figure 4.11: Temporal evolution of the different terms in equation (4.4) for x-component: time-

derivative of the horizontal vorticity
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Figure 4.12: Spatial distribution of (a) the vortex stretching contribution 2Ωx(
−→
Ω ·∇u), (b) the friction

contribution P r
√

Ra
Ωx∇2Ωx, and (c) the buoyancy contribution 2PrΩx

∂θ
∂y

on the vertical plane y = 0.2903
at t = 2000, Ra = 11500.
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The effect of vortex stretching was essentially positive, as could be expected (Figure 4.14 (a)).

Over the portion of space covered by the principal vortices, the contribution of the buoyancy

was also found to be positive (Figure 4.14 (c)), but strongly negative values were observed very

close to the wall in the boundary layer, which is where the temperature gradient is significant.

The situation was reversed for friction effects: strongly positive values were found very close

to the walls. This reflects the fact that transverse vorticity is indeed generated at the walls

through friction, while buoyancy works against the velocity gradient in the wall layer.
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Figure 4.13: Temporal evolution of the different terms in equation (4.4) for y-component: time-

derivative of the transverse vorticity
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Figure 4.15 represents the relative contributions of vortex stretching and friction to the

oscillations of the vertical component of the enstrophy. These oscillations are limited, since the

positive effect of vortex stretching is almost exactly compensated by frictional effects (buoyancy

does not appear in the equations). As can be seen in Figure 4.16 (a) and (b), both friction and

vortex stretching contributions are maximal at the location of the counter-rotating vortices.

4.5 3D Subsequent bifurcations

4.5.1 Period-doubling bifurcations

When 12100 ≤ Ra ≤ 12200, the temporal evolution of the 3D pattern becomes more complex.

At Ra = 12200, the time series of the temperature at a point located in the boundary layer
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Figure 4.14: Spatial distribution of (a) the vortex stretching contribution 2Ωy(
−→
Ω · ∇v), (b) the friction

effects P r
√

Ra
Ωy∇2Ωy, and (c) the buoyancy contribution −2PrΩy

∂θ
∂x

on the vertical plane y = 0.5 at
t = 2000, Ra = 11500.
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Figure 4.15: Temporal evolution of the different terms in equation (4.4) for z-component: time-

derivative of the vertical vorticity
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Figure 4.16: Spatial distributions of (a) the vortex stretching contribution 2Ωz(
−→
Ω · ∇w), (b) the

friction contribution P r
√

Ra
Ωz∇2Ωz, at the vertical plane y = 0.2903 (same as in Figure 4.12) at t = 2000,

Ra = 11500.

presents subharmonic oscillations for t ∈ [800, 2200] before becoming quite irregular, as shown in

Figure 4.17(a). The Fourier spectrum of the temperature (Figure 4.17(b)) shows that the largest

amplitude is located at the frequency f1 = 0.035, which is close to the frequency identified in

the previous periodic regime at a slightly lower Rayleigh number (see section 4.4.1), while the

second largest amplitude corresponds to the frequency f1/2 = 0.0175 = f1/2.

The topology of the flow consists of four 3D structures which are similar to those found in

the monoperiodic regime at Ra = 11500 (section 4.4.1). The intensities of the transverse rolls

and that of the braids oscillate out of phase, with a temporal modulation equal to twice the

basic period.

As Ra increases, we observe for Az = 10 a succession of period-doubling bifurcations il-

lustrated by phase portraits in Figure 4.18. At Ra = 11500, the singly periodic regime is

characterized by one cycle in the phase portrait (Figure 4.18(a)). For Ra ∈ [12100, 12200], a

period-2 cycle is observed (Figure 4.18(b)). At Ra = 12300, we observe a 4-cycle in the phase

portraits and then at Ra = 12310 an 8-cycle, at Ra = 12315 a 16-cycle (Figures 4.18(c,d,e)),
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Figure 4.17: (a): Time series of temperature at the point (0.0381, 0.097, 5) in the boundary layer near
the hot wall, Ra = 12200, Az = 10 . (b): Temporal Fourier spectrum of the subharmonic portion in the
time interval t ∈ [1200, 2000].

etc. Similar sequences of period-doubling bifurcations have been observed in the experimental

transition to chaos in Rayleigh-Bénard convection. Maurer and Libchaber [37] observed the

appearance of a first frequency f ′
1, followed by a second frequency f ′

2. For higher values of

the Rayleigh number, phase locking between the frequencies was observed. The transition to

turbulence was then triggered by the generation of the frequencies f ′
2/2, f ′

2/4, and so forth.

A similar scenario was found in the experiments of Giglio, Musazzi and Perini [38], where a

reproducible sequence of period-doubling bifurcations up to f ′
1/16 was observed.

4.5.2 Development of a spatial instability

For Ra ≥ 12200, we observed irregular oscillations in Figure 4.17 for large times t > 2200. This

corresponds to a drastic change in the spatial organization of the flow, as shown in Figure 4.19.

One of the structures is weakened, then disappears so that at large times t > 2200, the pattern

observed typically consists of three structures, as can be seen in Figures 4.19(b,c,f). However

four structures can still be found intermittently (Figures 4.19(a,d,e)).

θ̂(ix, iz) represents the 2D Fourier spectrum of the temperature distribution on the vertical

plane y = 0.5. The spatial organization of the flow can be described by the mode T̂ (0, iz), where

0 represents the mode 0 (mean value) in the x-direction. The temporal evolution of the spectral

coefficients |θ̂(0, iz)|2 for the modes iz = 3, 4 is shown in Figure 4.20 (a,b). The mode iz = 4
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Figure 4.18: Phase portraits at different Ra, Az = 10. Abscissa: temperature measured at the point
(0.038, 0.097, 6.98); ordinate: temperature measured at the point (0.038, 0.903, 6.54).
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Figure 4.19: Flow streamlines on the plane y = 0 at Ra = 12200 for different times: (a) t = 2905; (b)
t = 2920; (c) t = 5900; (d) t = 5910; (e) t = 5960; (f) t = 5970.
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dominates when 700 < t < 2000, then for t ∈ [4000, 6000] the mode iz = 3 dominates for most

of the time, except around the times t ∼ 5040 and t ∼ 5950, where the mode iz = 4 becomes

dominant again. Due to the long integration times, we were not able to determine whether the

spatial intermittency was a transient or a persistent feature of the flow.

A simulation was performed at Ra = 12000 from an initial condition consisting of an in-

stantaneous field at Ra = 12200 characterized by a three-structure pattern. The flow settled

down to a periodic pulsation of three structures. The presence of hysteresis confirms that the

spatial wavenumber modulation instability is subcritical, and supports the conjecture that the

wavenumber competition between the mode 4 and mode 3 is similar to a subcritical Eckhaus

instability.

Beyond Ra = 13000, for Az = 10, it is no longer possible to identify a discrete set of

frequencies, and the flow rapidly becomes temporally chaotic. When Ra is increased to Ra =

15000, the whole domain is still dominated by three structures, but patterns of two or four

structures can also be observed, as evidenced in Figure 4.20 (c,d) by the evolution of the

temperature spectral density |θ̂(0, iz)|2 for different wavenumbers.

4.6 Influence of flow structures on global heat transfer

A measure of the global heat transfer is given by the Nusselt number, which is defined as the

ratio between the total and diffusive heat transfer. In our simulations, the Nusselt number

is calculated as Nu =
∫∫ −∂ ˜〈θ〉

∂x
dydz|wall, since the velocity of the flow at the walls is zero,

where 〈·〉 denotes the time-averaging of a variable. Its dependence with respect to the Rayleigh

number Ra is plotted in Figure 4.21.

In the 2D steady regime, we find that Nu ∼ 0.0867Ra0.25 which is consistent with the

convective (boundary layer) regime. This estimate actually holds slightly beyond the second

supercritical pitchfork bifurcation, where the 2D rolls become more intense and distorted in the

transversal direction (this stage is labeled as “quasi-2D structures” in Figure 4.21). However,

at Ra = 10500, the flow becomes three-dimensional through the creation of secondary vortices,

and the Nusselt number experiences a small decrease, which is in agreement with the results of
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Figure 4.20: Temporal evolution of the spectral coefficients |θ̂(0, iz)|2 on the mid-plane y = 0.5 for
selected modes k: (a) (b) Ra = 12300, modes iz = 3, 4 (a) t ∈ [0, 3000] (b) t ∈ [4000, 6000]. (c) (d)
Ra = 15000, modes iz = 2, 3, 4 (c) t ∈ [0, 500] (d) t ∈ [4000, 5000].
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Figure 4.21: The Nusselt number Nu (averaged over vertical planes and time) as a function of Ra for
Az = 10

Clever and Busse [33]. It then remains approximately constant over the 3D steady regime from

Ra = 10500 and Ra = 10600. At the onset of the oscillatory regimes, the Nusselt number begins

to increase and continues doing so over the sequence of period-doubling bifurcations. After a

sharp decrease observed at the onset of the Eckhaus-like instability, the Nusselt number starts

increasing again. The maximum heat transfer increases over the range of Rayleigh numbers

Ra < 15000 is about 20%, which agrees with Wright et al. [30]’s results.

4.7 Comparaison with high aspect ratio cavities

We note that the spatial characteristics of Wright et al.’s [30] “secondary cells” match those of

what we call primary rolls. Furthermore, their general description of the route to turbulence

seems to agree loosely with ours, as their flow becomes three-dimensional and then chaotic at a

Rayleigh number of 13600, which is close to our observations. However, two discrepancies are

observed: (i) unlike our stationary rolls, their cells appear to drift in the vertical direction from

the onset of the first instability, which could be due to (horizontal) end effects of the cavity; (ii)

as the Rayleigh number increases, the motion of the cells is intensified, and merging between
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the cells occurred, whereas no vortex pairing was observed in our simulation. This difference

could be the consequence of the relatively small dimensions of our numerical domain.

3D DNS were also carried in our group [63], in the configuration of high aspect ratio cavity

with small transverse dimension Ay = 1 and Az = 20. Adiabatic condition is imposed for

the horizontal walls at the top and the bottom of the cavity, and periodic condition is kept

in the transverse direction y. The base flow first bifurcates to steady 2D rolls and then to a

steady 3D state, where the 3D structures identified as the primary rolls connected with counter-

rotating vortices/braids are still present, but only in the center of high aspect ratio cavity. The

flow becomes time-dependent at Ra = 15000 and eventually enters the temporally chaotic

regime, when Ra is further increased. However, no period-doubling bifurcation was observed.

The number of localized 3D structures decreases as Ra increases. Instead of staying at the

same location, the oscillatory 3D structures drift vertically and invade occasionally the top and

bottom of the cavity at Ra = 25000.

4.8 Conclusion

In 3D simulations, the first instability is a supercritical pitchfork bifurcation at Rac = 5708,

through which the co-rotating rolls are formed. The second bifurcation is observed at a Rayleigh

number of Rac2 ∼ 9980. The 2D rolls become unstable through another supercritical pitch-

fork bifurcation to a steady 3D pattern, characterized by secondary counter-rotating vortices

connecting the principal convection rolls. When the Rayleigh number is further increased to

Rac3 ∼ 11270, the steady 3D pattern becomes oscillatory through a Hopf bifurcation, as the

intensities of the transverse rolls and the counter-rotating vortices oscillate in phase opposition.

A sequence of period-doubling bifurcations is then observed at higher Rayleigh numbers. In

the case Az = 10, the sequence of period-doubling bifurcations is only a transient feature. The

multiply-periodic flow gives way to complex spatio-temporal dynamics when Ra ≥ 12100 and a

competition between different vertical wavelengths is rapidly apparent in the flow pattern. The

global behavior of heat transfer is established up to Ra = 15000, where Nu generally increases

with Ra by 25% at most, with discontinuities as the flow goes through various bifurcations.
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Table 4.1: Summary of bifurcations and associated flow structures and symmetries for 3D simulations,
Ay = 1, Az = 10, T = 1/f1.

Ra Nature of Flow Structures Spatial Symmetry
Bifurcation Number of Structures Temporal Symmetry

Ra < Rac = 5708 1D base flow O(2) ×O(2)
steady

Rac < Ra < 9980 supercritical 2D corotating rolls O(2) ×D4

circle pitchfork n = 4 steady
9980 < Ra < 11270 supercritical 3D structures D1 ×D4

circle pitchfork n = 4 steady
11270 < Ra ≤ 12000 supercritical 3D structures D1 ×D4

Hopf n = 4 T-periodic
Ra ≥ 12100 period-doubling 3D structures D1 ×D4

n = 4 2nT-periodic
subcritical Eckhaus- 3D structures no

-like instability n = 3 symmetry

The results about the sequence of bifurcations and associated symmetries are summarized in

Table 4.1.

Comparison of 2D and 3D results confirms that transverse effects are essential for the devel-

opment of instabilities and the onset of chaos. This result is of interest, as in many situations

involving thermal convection, the first step towards making a problem tractable is to reduce it

to a two-dimensional geometry. An important point is that the competition between vertical

and transverse pattern modulations is expected to be altered as the dimensions of the plate

vary.

In the next chapter, we study a domain limited to one vertical wavelength, where the

competition between vertical patterns is suppressed and chaos arises through the sequence of

period-doubling bifurcations.



Chapter 5

3D Minimal Flow Unit Az = 2.5 &

Ay = 1

5.1 Introduction

In this chapter, we study the transition to chaos of the flow in the configuration of Minimal

Flow Unit (MFU). The concept of the Minimal Flow Unit was first introduced in turbulence

[64] and recently used to study the transition to chaos of plane Couette flow [65]. The MFU

configuration contains only one roll in the vertical direction and its transverse dimension is

constrained as well.

In the previous chapter, it has been observed that through the first instability, the flow be-

comes 2D and consists of 2D transverse steady rolls. Then the flow becomes 3D through a sec-

ond supercritical pitchfork bifurcation. The flow structures observed consist of (i) primary rolls

which are deformed in the transverse direction, (ii) counter-rotating vortices or "braids" linking

the primary rolls and (iii) small counter-rotating vortices inside the primary rolls. Through a

supercritical Hopf bifurcation, the 3D flow becomes oscillatory. The oscillation corresponds to

an exchange of vorticity between rolls and braids which in turn inflate and deflate, but does

not correspond to a vertical or a lateral motion of the structures. As Ra is further increased, a

sequence of period-doubling bifurcations is observed for a limited range of time, but is rapidly

superseded by a spatial modulation instability in the vertical direction. In this chapter we con-

sider a restricted simulation domain which accomodates only one roll in the vertical direction.

Then we can determine whether the multiply periodic regime becomes a persistent feature. In

the present simulation domain, the vertical dimension is equal to Az = 2.5, which is close to

75
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the critical wavelength λzc = 2.513, and the transverse dimension is set to Ay = 1 as in the

previous chapter. We first review the essential concepts of chaos theory. In particular, we focus

on the largest Lyapunov exponent, which is an indicator of chaos. We then present nonlinear

simulation results in this minimal flow unit.

5.2 Introduction to chaos

Although the exact definition of chaos is not yet well determined, chaotic behavior has been

studied since the 1980s [66, 67]. It is widely accepted that chaotic behavior is characterized by

the sensibility of nonlinear dynamical systems to the initial conditions: two trajectories whose

initial conditions are quite close will eventually diverge after some finite time (Figure 5.1). The

largest Lyapunov exponent, which measures the mean rate of divergence between the initially

nearby trajectories, is considered as one of the most widely used measures of chaos. A positive

value of the largest Lyapunov exponent is taken to be an indicator of chaos. A few scenarios

have been proposed [36, 68] to describe the transition to chaos. These include period-doubling,

quasi-periodicity, crisis, and intermittency. In this section, we will focus on the period-doubling

scenario and the attractor merging crisis, which are actually observed in our simulations. We

will then give the definition of the leading Lyapunov exponent and describe the numerical

method to calculate it.

−20 −10 0 10 20
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20

30

40

50

z(
t)

x(t)

Figure 5.1: Two trajectories with nearby initial conditions diverge as time evolves in the Lorenz model.



5.2. INTRODUCTION TO CHAOS 77

5.2.1 Period-doubling scenario

The period-doubling scenario constitutes a feature of many nonlinear dynamical systems with

one parameter. These range from one-dimensional maps, such as the logistic map [69], to

ordinary differential equations representing dynamical systems of finite dimension, such as the

Lorenz model [70], and partial differential systems, such as the Navier-Stokes equations, which

is an infinite-dimensional dissipative nonlinear dynamical system [36]. Here, we consider two

examples:

Example 1: Logistic map

The simplest system that exhibits period-doubling behavior is the logistic map:

xn+1 = rxn(1 − xn) (5.1)

For 0 < r < 4, if xn ∈ [0, 1], then xn+1 ∈ [0, 1] as well, and the orbit remains in [0, 1] for all

subsequent times. For r 6= 0, the system has two fixed points x = 0 and x = 1− 1
r . For 0 < r < 1,

the fixed point x = 0 is stable, and x = 1− 1
r is unstable. For 1 < r < 3, x = 0 becomes unstable

and x = 1 − 1
r is stable. For 3 < r < r∞, a cascade of period-doubling bifurcations is observed:

r1 = 3 period-2 ; r2 = 3.449... period-4 ; r3 = 3.54409... period-8 ; ...; r∞ = 3.569946... period-∞,

where ri denotes the local critical parameter at which the i-th bifurcation occurs. It can be

shown that the ratio

δ = lim
n→∞

rn − rn−1

rn+1 − rn
(5.2)

converges towards to a universal constant δ = 4.66920161..., which is called the Feigenbaum

number. It characterizes the route of successive period-doublings to chaos [69]. For r∞ < r < 4,

a mixture of chaos and order is observed. As can be seen in the bifurcation diagram (Figure 5.2),

several periodic windows exist in this range of r. One example is the largest window beginning

near r = 3.83, which contains a period-3 cycle.
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Figure 5.2: (a) Bifurcation diagram of logistic map; (b) zoom of (a) for 2.6 < r < 4

Example 2: Lorenz equations

The Lorenz system was derived by Ed Lorenz [70] in the 1960s, when he was studying convec-

tion rolls in the atmosphere. He expanded the solution of the Navier-Stokes equations in the

Boussinesq approximation using Fourier series. A drastic truncation of the solution leads to the

following model consisting of only three ordinary differential equations:

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz (5.3)

dz

dt
= xy − bz

He discovered that for certain values of the parameters, this deterministic system (5.3) could

have erratic dynamics, which would today be labelled as chaotic. When σ = 10, r = 8/3, b = 28,

the trajectories oscillate irregularly, although they always remain in a bounded region of phase

space. The trajectories of the solutions plotted in three dimensions settle onto a complicated

set, called a strange attractor, which is shown in Figure 5.1. Unlike fixed points and limit cycles,

the strange attractor is not a point or a curve or a surface - it is fractal (i.e its dimension is

not an integer). The fractal dimension of the Lorenz attractor is between 2 and 3. The chaotic

system still exhibits some ’regularity’: one example is the Lorenz map (Figure 5.3), which shows

that all the local maxima of the chaotic time series z(t) fall neatly on a single curve.
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Figure 5.3: Lorenz map: zn+1 vs zn

The Lorenz system has been studied extensively for several decades [67, 66, 71]. For the

parameter σ = 10 and b =
8
3

, different dynamical behaviors are observed for different ranges of

r. For example, for r = 10, solutions converge to a stable fixed point. For r = 22, a limit cycle

is observed. For the interval 145 < r < 166, the system exhibits a cascade of period-doubling

bifurcations, and r = 166.3 it shows some intermittent chaos.

5.2.2 Attractor merging crisis and crisis-induced intermittency

Sudden changes of the chaotic attractors when control parameters are varied are called ’crises’,

and were first extensively studied by Grebogi et al. [72, 73, 68]. These crises are caused by

the collision of the chaotic attractor with an unstable periodic orbit, or, equivalently, its stable

manifold, or other chaotic attractors. The crises can be classified into three types [68, 67]:

• boundary crisis, which is characterized by the sudden destruction of a chaotic attactor,

when the attractor collides the boundary of its basin or a periodic orbit.

• interior crisis, which is caused by the collision of the attractors with the periodic orbit in

the interior of its basin. A sudden enlargement of the attractor can be observed for this

kind of crisis.

• attractor merging crisis, when two or more attractors collide simultaneously with a peri-

odic orbit or orbits on the basin boundary which separated them.
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Suppose an attractor merging crisis of two attractors occurs when the control parameter p

is varied through the critical parameter pc. Before the crisis occuring (p < pc), each of these

two attractors exists, having its own basin with a basin boundary separating them. At p = pc,

the two attractors both simultaneously collide with this boundary. For p slightly above pc, a

trajectory typically spends a long time wandering chaotically in the region of one of the original

attractors, then abruptly switches to the region of the other attractor. The times between these

random switches from one region to another have a long-time exponential distribution with

average < τ > which approaches infinity when p approaches pc from above.

This crisis-induced intermittency and the Pomeau-Manneville intermittency can be schemat-

ically contrasted in the following way [68]:

• Pomeau-Manneville intermittency:

(chaos) → (approximately periodic) → (chaos) → (approximately periodic) → ...

• Crisis-induced intermittency:

(chaos)1 → (chaos)2 → (chaos)1 → (chaos)2 → ...

For a large class of dynamical systems which exhibit crises, a power law can be found between

the scaling of the characteristic transient time < τ > and the departure of the control parameter

from the critical parameter p− pc:

< τ >= (p− pc)−γ (5.4)

The quantity γ is called the critical exponent of the crises. γ = 1
2 is a general result for crisis

of one-dimensional maps with quadratic extrema, and γ > 1
2 for higher-dimensional systems.

A quantitative theory for determining the critical exponent γ of two-dimensional maps was

proposed by Grebogi et al. [68]. The crisis is due to a tangency of the stable manifold of a

periodic orbit on the basin boundary with the unstable manifold on the attractor. These types

of crises appear to be very common in dissipative systems. Examples include the forced damped

pendulum, the Henon map, and forced Duffing equation, etc. For such systems, the crisis occurs

in one of the following two ways: heteroclinic tangency crisis or homoclinic tangency crisis.
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Figure 5.4: (a) Schematic illustration of heteroclinic tangencies of the stable manifold of the unstable
periodic orbit B and the unstable manifold of the unstable periodic orbit A. (For simplicity the periods
of A and B are taken to be 1.) (b) Schematic illustration of homoclinic tangencies of the stable and
unstable manifold of the unstable periodic orbit B. Grebogi et al. Phys. Rev. A. 1987 [68].

In the case of a heteroclinic crisis of two-dimensional maps, we have

γ =
1
2

+
ln|α1|
|ln|α2|| (5.5)

where α1 and α2 are the expanding and contracting eigenvalues of the periodic orbit.

In the case of a homoclinic crisis, we have

γ =
ln|β2|

ln|β1β2|2 (5.6)

where β1 and β2 are the expanding and contracting eigenvalues of the periodic orbit.

In the limit of strong contraction, α2 → 0 and β2 → 0, so that γ → 1
2 , which is the result

for a map with a quadratic maximum.

5.2.3 Lyapunov exponent

Definition

The divergence rate of nearby trajectories is a good measure of the complexity of the attractor,

or its chaotic nature. This leads to the definition of the largest Lyapunov exponent. Considering

a mapping X → F(X), where X is a vector of dimension d. After one iteration, the distance be-
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tween two nearby trajectories initially separated by δX0 becomes δX1 = J0(X0)δX0, where J0

denotes the Jacobian of F evaluated at X0. With k iterations, the two trajectories diverge to a

distance δXk =
∏k−1
i=0 JiδX0. As the Jacobian contains the contribution of relative rotation be-

tween the trajectories, the norm is instead more suitable for correctly measuring the divergence

rate of two nearby trajectories. Since |δXn|2 = δXt
n · δXn = δXt

0Jt0 · · · Jtn−1Jn−1 · · · J0δX0, the

divergence rate η defined by |δXn|2 = η2n|δX0|2 can be calculated as

η = lim
n→∞

(

δXt
0Jt0 · · · Jtn−1Jn−1 · · · J0δX0

δXt
0 · δX0

)
1

2n

(5.7)

λ1 = log(η) is defined to be the largest Lyapunov exponent.

Figure 5.5: Evolution of two initially close trajectories, where δX0 and Ji are used for the calculation
of the largest Lyapunov exponent in Eq. (5.7).

Numerical computation of largest Lyapunov exponent

A positive largest Lyapunov exponent is a widely accepted criterion of chaos. The numerical

method proposed by Benettin et al. [74] consists in computing the expanding rate of the direc-

tion of maximum expansion and taking its logarithmic average over the orbit. The procedure

is independent of the numerical method used to solve the Navier-Stokes equations. We define

X(t) = [u, θ] as the (4 × N)-dimensional array describing the state of N fluid elements as a

function of time and δX(t) = [δu, δθ] is the perturbation. We evaluate the expansion rate of
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the two nearby trajectories X(t) and X(t)+δX(t), by tracking the evolution of the perturbation

δX(t) = f(δX(0)). The leading Lyapunov exponent λ1 is defined as

λ1 =
d

dt
lim
t→∞

ln
( ‖ δX(t) ‖

‖ δX(0) ‖

)

(5.8)

where the norm is choosen as δX(t) =
√

∫

V [δu(t)2 + δθ(t)2]dV . Note that the result for λ1 is

independent of the choice of the norm since (5.8) is a ratio of lengths at different times [75].

Figure 5.6: Procedure of renormalisation for the numerical calculation of largest Lyapunov exponent
in Eq (5.7)

In practice, the initial perturbation δX(0) is chosen to be proportional to the full flow field,

so that the incompressibility of the flow is automatically verified. The norm of the perturbation

is chosen to be 1000 times smaller than that of the full flow field. We integrated the Navier-

Stokes equation for two different initial conditions X(0) and X(0) + δX(0) in time. The time of

integration should be long enough so that trajectories could diverge, yet remain small enough so

that the linearization concept still applies. A good compromise was found to be 50 nondimen-

sional time units (5000 time-steps). After integrating over this length of time, a renormalisation

of the perturbation is applied as δX(t)new = ‖δX(0)‖
‖δX(t)‖ δX(t). The two new initial conditions for

the following 5000 time-steps integration become X(t) and X(t) + δX(t)new. This crucial step

aims at keeping the orbits close while allowing the difference between the two solutions to re-

lax towards the most unstable eigenvector of the linearized operator. Iterating this procedure
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and measuring successive expansion rates ‖δX(t)‖
‖δX(0)‖ provides us with an asymptotic estimate for

leading Lyapunov exponent λ1 defined in Eq (5.8). This technique was tested with the Lorenz

model (Eq. (5.3) with σ = 28, r = 8/3, b = 28), where we found the largest Lyapunov exponent

is λ1 = 0.892446..., which is consistent with the value λ∗
1 = 0.91 ± 0.01 given in the book of

Sprott [66]. The method was then implented in our DNS code, using the nonlinear equations

instead of the linearized equations [76] to advance the system in time.

5.3 Results Az = 2.5 & Ay = 1

5.3.1 Period-doubling cascade

Local analysis

As reported in Chapter 4, after having experienced two supercritical pitchfork bifurcations

at Ra = 5708 and Ra = 9980 through which the flow becomes 2D steady then 3D steady, a

supercritical Hopf bifurcation occurs at Ra = 11270, as the flow enters a temporally mono-

periodic oscillation regime. As the Rayleigh number increases, a sequence of period-doubling

bifurcations is observed, which leads the flow to a temporally chaotic regime [77]. An illustration

of this period-doubling cascade is given by phase portraits obtained from the temperature

timeseries at two points in the flow as in Figure 5.7 (a)-(e).

A bifurcation diagram of Figure 5.8 is constructed from local maxima θn of the temperature

timeseries at the point (0.038 0.097 0.983), which is located in the boundary layer near the hot

wall.

Since each of the period-doubling bifurcations corresponds to a pitchfork bifurcation in the

Poincaré section [36], the square of the difference between the variables of the two bifurcated

branches increases quasi-linearly with the Rayleigh number in the neighbourhood of the local

critical Rayleigh numbers Ra2i→2i+1 (i = 0, 1, 2, 3, ...) after each bifurcation. Therefore, linear

extrapolation can be used to estimate the local critical Rayleigh number Ra2i→2i+1 of each

period-doubling bifurcation. An example for the bifurcation from 4 periods to 8 periods is

represented in Figure 5.9, where Ra4→8 is found to be 12305.76 by linear extrapolation.



5.3. RESULTS AZ = 2.5 & AY = 1 85

n = 1 n = 2 n = 4

0.43 0.44 0.45 0.46
0.445

0.45

0.455

0.46

0.465

0.47

θb

θ
a

0.42 0.43 0.44 0.45 0.46
0.43

0.44

0.45

0.46

0.47

θb

θ
a

0.42 0.43 0.44 0.45 0.46
0.43

0.44

0.45

0.46

0.47

θb

θ
a

(a) Ra=12000 (b) Ra=12200 (c) Ra=12300

n = 8 n = 16

0.42 0.43 0.44 0.45 0.46
0.43

0.44

0.45

0.46

0.47

θb

θ
a

0.42 0.43 0.44 0.45 0.46
0.43

0.44

0.45

0.46

0.47

θb

θ
a

0.42 0.43 0.44 0.45 0.46
0.43

0.44

0.45

0.46

0.47

θb

θ
a

(d) Ra=12310 (e) Ra=12320 (f) Ra=12330

n = ∞ n = 6 n = ∞

0.42 0.43 0.44 0.45 0.46
0.43

0.44

0.45

0.46

0.47

θb

θ
a

0.42 0.43 0.44 0.45 0.46
0.43

0.44

0.45

0.46

0.47

θb

θ
a

0.42 0.43 0.44 0.45 0.46
0.43

0.44

0.45

0.46

0.47

θb

θ
a

(e) Ra=12338 (f) Ra=12350 (g) Ra=12380

Figure 5.7: Phase portraits at different Ra, Az = 2.5. Abscissa: Temperature measured at the point
(0.038, 0.097, 0.983); ordinate: Temperature measured at the point (0.038, 0.903, 0.983).
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Figure 5.8: Bifurcation diagram obtained by using the local maxima θn of the temperature timeseries
at the point (0.038 0.097 0.983). Vertical lines in the figure correspond to the different Rayleigh numbers,
at which the phase portraits are drawn in Figure 5.7.
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linearly as a function of Ra. By linear extrapolation, the local critical Rayleigh numbers Ra4−8 is
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Table 5.1: Summary of period-doubling bifurcations

Bifurcations Local critical Estimated Feigenbaum constant
2i → 2i+1 Ra2i→2i+1 δ̃

0-1 11270
1-2 12068.09
2-4 12258.42 4.193
4-8 12305.76 4.020
8-16 12316.72 4.321

Table 5.2: Windows observed in the bifurcation diagram

Rayleigh number number of periods
12335 12
12340 10
12350 6
12390 5
12420 5

From these estimates, approximations for the Feigenbaum constant are calculated and listed

in Table 5.1. Some agreement with the theoretical value δ = 4.66920161.... is observed [69].

The discrepancy is likely due to two effects: (i) the Feigenbaum number is an asymptotic

constant while our estimates are based on the first few bifurcations, (ii) linear extrapolation

cannot be accurate when local critical Rayleigh numbers become very close to each other. Using

the theoretical Feigenbaum number, the chaotic regime is estimated to be reached around

Ra ∼ 12320. For higher Rayleigh numbers, the chaos continues to develop as shown in the

bifurcation diagram (Figure 5.8). Several periodic windows are observed, and their numbers of

cycles are listed in Table 5.2. For example, a large ’period-6 windows’ (2 period-3 windows

in each band) is observed at Ra = 12350 in the bifurcation diagram. It corresponds to two

3-cycles orbit (totally 6 periods) in the phase portrait 5.7 (f). It then undergoes a period

doubling cascade in which orbits of period 3 × 2m are successively produced. This cascade

once again leads to chaotic behavior. For still higher Rayleigh numbers, the attractor abruptly

widens into two large bands similar in size to these observed at Ra < 12350. The two large

bands merge at around Ra = 12380 and form a single large chaotic band.
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Spatio-temporal organization of the flow

As opposed to Chapter 4, the simulation domain (MFU) accommodates only one flow structure,

so that Az is set to 2.5. Consistent with the previous results in Chapter 4, the flow structure

in the chaotic regime is 3D, and consists of a primary roll which is deformed in its transverse

direction, with two counter-rotating braids of oblique vorticity originating from the rolls [77]

as shown in Figure 5.10.

Figure 5.10: Q-criterion visualization of flow structure at Ra = 12380, Q = 0.25

The chaotic oscillation of the structures can be visualized by streamline plots on two selected

vertical planes in Figure 5.11. The primary roll is severely squeezed (Figure 5.11 (a) top) by the

secondary counter-rotating vortices, whose size is quite large (Figure 5.11 (a) middle). Then

at t = 7010, the size of the primary roll increases. Inside this roll smaller counter-rotating

vortices become visible (Figure 5.11 (b) middle), while the connecting vorticity braids shrink

(Figure 5.11 (b) middle). At t = 7020, the size of the primary roll starts to decrease (Figure 5.11

(c) top), while both braids and small vortices inside the primary roll reach a relative large size

(Figure 5.11 (c) middle).

Fourier analysis can provide a useful description of the flow. The Fourier modes ŵ(iy, iz)

(iy, iz = 0, 1) of the vertical velocity on a vertical plane at x = 0.381 are represented in Fig-

ure 5.12. The mode (0, 0) experiences strong fluctuations. The mode (0, 1) corresponds to the

primary roll, and carries most of the energy of the fluctuations. Its phase oscillates around
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Figure 5.11: Flow streamlines and temperature isocontours at three instants at Ra = 12380 on two
vertical planes (y = 0.5 and x = 0.5)
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a mean value, meaning that the position of flow structures oscillates vertically around a fixed

location. Modes (1, 0) and (1, 1) also contain substantial energy. The phase of mode (1, 0)

is constant, which reflects that the motion of the flow is highly constrained in the transverse

direction y.
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|ŵ(1, 1)|
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Figure 5.12: Temporal evolutions of Fourier modes ŵ(iy, iz) (iy, iz = 0, 1) obtained by the Fourier
transform of the vertical velocity w distribution on an arbitrarily chosen vertical plane at x = 0.381,
Ra = 12380: (a) modulus, (b) phase.

From the analysis above, we see that the Fourier mode (0, 1) can be considered as a good

indicator of the global flow behavior. For simplicity, we focus on the Fourier mode θ̂(iy = 0, iz =

1) of the vertical velocity distribution on a vertical plane x = 0.381. The first return map based

on the timeseries of Fourier mode θ̂(iy = 0, iz = 1) is represented in Figure 5.13. As can be

seen, all the points neatly fell on one single curve, which is similar to the case of the Lorenz map

[70]. The curve is found to be quite similar to that of quadratic one-dimensional maps [69]. It

can be shown that 1-D maps with a quadratic maximum are expected to follow a Feigenbaum

scenario [36]. The right part of the curve consists of two branches, which are very close to each

other and almost indistinguishable. As Ra increases, the curve becomes thicker, and several

folds can be seen in Figure 5.13 (b). The folds of the right branch can be seen as the projected

image of the higher dimensional attractor on the 2D maps, since we can unfold this first return

map in a 3D plot, in which all the points fall neatly on a curve. This shows that the fractal

dimension of our system is higher than 1.
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ŵ
n
+
1
(0
,1
)

100 120 140 160 180
100

120

140

160

180
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Figure 5.13: First return maps ploting ŵn(iy = 0, iz = 1) vs ŵn+1(iy = 0, iz = 1). ŵn(iy = 0, iz = 1)
is the local maxima of Fourier timeseries ŵ(iy = 0, iz = 1) calculated from the vertical velocity w
distribution on the vertical plane x = 0.0381.

5.3.2 Crisis-induced intermittency

Local analysis

The bifurcation diagram for the range Ra ∈ [12400, 12600] is represented in Figure 5.14. At

Ra ∼ 12490, Ra ∼ 12510, Ra ∼ 12540, several abrupt enlargements of the band are observed,

which correspond to interior crises. During these crises the basin of the chaotic attractor

is extended, which means that the oscillation of the flow structures around a fixed location

increases in amplitude. At Ra = 12546, a new set of local maxima abruptly appears on the

top-right corner of the Figure 5.14, which is the sign of another type of crisis [68]. The spatio-

temporal behavior of the flow is then significantly modified.

Above the Rayleigh number Ra = 12546, intermittent behavior is observed, as is indicated in

Figure 5.15, which represents the temporal evolution of the first Fourier mode ŵ(iy = 0, iz = 1)

for Ra = 12600. This evolution is characterized by random switches between positive and

negative states.
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Figure 5.14: Bifurcation diagram obtained by using the local peaks θn of the timeseries at the point
(0.038 0.097 0.983).
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Figure 5.15: Real part of the temporal evolution of the Fourier mode ŵ(iy = 0, iz = 1) calculated on
the vertical plane x = 0.0381, Ra = 12600.
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Spatio-temporal organization of the flow

A description of the flow structure is given by streamline plots and temperature isocontours in

Figure 5.16. As can be seen, the primary roll is located in the center of the domain (Figure 5.16

(a) top), and the braids and small secondary vortices inside the primary roll are also visible

(Figure 5.16 (a) middle row). The temperature isocontour on the plane x = 0.5 is strongly 3D

(Figure 5.16 (a) bottom). Then at t ∼ 8525, the primary roll is completely squeezed (Figure 5.16

(b) top), and the flow becomes quasi-invariant in the vertical direction z (Figure 5.16 (b)

middle and bottom). At t ∼ 8530 a new primary roll identical in shape to the previous one

forms at a different location, which is separated from the original location by half a wavelength

∆z = Az

2 = 1.25 (Figure 5.16 (c) top). Later on, at t ∼ 8540 the secondary structures disappear

(Figure 5.16 (d) middle and bottom), and the flow is almost invariant in the transverse direction

y. At t = 8575 (Figure 5.16 (e)), the 3D flow structure is recovered, and presents identical

features to that of Figure 5.16 (a) within a translation.

Dynamics of the corresponding chaotic system

The switch of flow structures between two locations of separated by half of the wavelength

Az = 2.5 suggests the existence of a heteroclinic connection between two chaotic attractors,

which are located on the O(2) × O(2) invariant torus of chaotic solutions. This symmetry

can be clearly identified by comparing the phase portraits of the cases before and after the

crisis. The phase portraits use the temporal evolutions of the Fourier modes ŵ(iy = 0, iz = 1),

ŵ(iy = 1, iz = 0) as in Figure 5.17 (a) and (b). Structurally stable heteroclinic connections

between fixed points or periodic solutions have been shown to exist in the systems with O(2)

symmetry [78, 79]. However, we are not aware of equivalent theoretical results for heteroclinic

connections between two strange attractors. Similar observations in a simplified dynamical

model displaying random reversal of the magnetic field have been reported, which are due to

a crisis-induced intermittency caused by the collision of two identical strange attractors [80].

Other similar reversals are also reported for the large scale field generated over a turbulent

background [81, 52].
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Figure 5.16: Temporal evolution of flow structures at Ra = 12600. Upper row: flow streamlines at
different instants on the plane y = 0.5; Middle row: flow streamlines at different instants on the plane
x = 0.5; Bottom row: temperature isocontours on the plane x = 0.5
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Re(ŵ(1, 0))

R
e
(ŵ
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Figure 5.17: Phase portraits. Abscissa: real part of the temporal evolution of the Fourier mode
ŵ(iy = 0, iz = 1) calculated on vertical plane x = 0.0381; ordinate: real part of the temporal evolution
of the Fourier mode ŵ(iy = 1, iz = 0). (a) Ra = 12500 (b) Ra = 12600

The largest Lyapunov exponent gives a measure of the complexity of the system and is shown

in Figure 5.18. Tests carried out for two different integration lengths in the chaotic regime led

to similar results. A large gap can be observed between the chaotic and intermittent regimes,

where the contribution is mainly due to the trajectory divergence caused by the shift of the

flow structures by half a wavelength Az/2. We are aware that the temporal integration of our

simulation may be not long enough, which leads to the discrepancy of results in the intermittent

regimes.
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Figure 5.18: The largest Lyapunov exponent at different Rayleigh numbers

As Ra is further increased beyond about Ra = 13000, a new periodic regime is observed.

The Fourier mode ŵ(iy = 0, iz = 1) evolution and the phase portraits of the Fourier modes
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(ŵ(iy = 0, iz = 1) and ŵ(iy = 1, iz = 0)) are presented in Figure 5.19. The symmetry of the

attractor is the same as before.
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Figure 5.19: (a) Real part of the temporal evolution of the Fourier mode ŵ(iy = 0, iz = 1) calculated
on the vertical plane x = 0.0381 ; (b) phase portraits. Abscissa: real part of the temporal evolution of
the Fourier mode ŵ(iy = 0, iz = 1); ordinate: real part of the temporal evolution of the Fourier mode
ŵ(iy = 1, iz = 0). Ra = 13000

The periodic behavior observed at Ra = 13000 corresponds to a “periodic windows” regime

extended between Ra = 13000 and Ra = 13100 in the bifurcation diagram. When Ra is

increased to Ra = 13200, the temporal behavior of the flow becomes chaotic again. As shown

by the temporal evolution of Fourier mode ŵ(iy = 0, iz = 1) in Figure 5.20 (a), it recovers a

new intermittent regime which is characterized by the random switches between two physical

positions of the transverse rolls. The characteristic time of the oscillations around one of the

equilibrium positions decreases as Ra increases. At Ra = 14000, the system remains around

each position for a relatively short time (about 1 or 2 basic pulsation periods), compared to the

case at Ra = 13200 with about 4 to 5 basic pulsation periods. The Fourier spectrum calculated

from the temperature timeseries at one point is represented in in Figure 5.20 (b) and shows

an almost continuous spectrum, which indicates that the flow is temporally chaotic. At higher

Rayleigh numbers Ra = 14200 and Ra = 14500, a new periodic regime are observed. The

characteristics time is smalle than that of the periodic regime observed at Ra = 13000. This

new periodic regime also corresponds to the “periodic windows” regime.

The time scale τ characterizing the switches between the two chaotic states obeys the log-

arithmic law τ ∼ (Ra − Raci)−γ with a value of γ ∼ 0.784 (see Figure 5.21). As pointed out
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Figure 5.20: (a) Real part of the temporal evolution of the Fourier mode ŵ(iy = 0, iz = 1) calculated
on the vertical plane x = 0.0381. (b) Fourier spectrum of the temperature timeseries at the point (0.038
0.097 0.98) Ra = 14000

[68, 82], for one-dimensional maps with generic quadratic maxima, the critical exponent of crisis

γ is strictly equal to 1
2 , while for higher-dimensional maps, γ is larger than 1

2 . Our result is

therefore consistent with the analysis of Figure 5.13 that our system has a fractal dimension

larger than 1. From Figure 5.21 shows that the characteristic time of switches follow the same

power law outside periodic windows at Ra ∈ [13000, 13100] and Ra ∈ [14200, 14500]. The char-

acteristic time associated with periodic windows also appear to follow a similar scaling law, but

are slightly shorter then their chaotic counterparts, which can be expected as the system does

no longer hover from one unstable orbit to another.
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Figure 5.21: log10〈τ〉 vs log10(Ra − Rac). The slope of the straight line gives γ ≈ 0.784.
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5.4 Conclusion

The dynamics of the natural convection between two vertical plates maintained at different

temperatures have been studied in a domain of small periodic dimensions. Temporal chaos oc-

curs through a sequence of period-doubling bifurcations. In physical space, it corresponds to the

modulated pulsation of a three-dimensional spatially localized structure, which consists of a dis-

torted transverse roll connected by secondary vortices or braids. Estimates of the Feigenbaum

constant from the first few bifurcations are reasonably close to the expected theoretical value.

A bifurcation diagram as Ra is increased was constructed from the temperature evolution of a

point in the flow. Several features common to the characteristics of one-dimensional maps were

identified, such as periodic windows and interior crises leading to successive period-doubling

bifurcations. When Ra was further increased, a crisis-induced intermittency was observed, as

the flow structures were shifted back and forth vertically by half a wavelength. A periodic

window occurs for higher Rayleigh numbers, which then gives way to intermittent, chaotic be-

havior again. The intermittent behavior observed suggests that heteroclinic connections could

be occuring between strange attractors, which is a fairly generic feature of systems with O(2)

symmetry. To the best of our knowledge, the crisis-induced intermittency has not been reported

for natural convection in the absence of other mechanisms (vibrations, radiation). Our anal-

ysis shows that crisis-induced intermittency can also be a possible route to chaos for natural

convection in addition to the classic Pomeau-Manneville type intermittency scenario.



Chapter 6

3D Channel of large extent

6.1 Introduction

As mentioned in Chapter 1, several studies have investigated the sequence of instabilities of

the flow between two differentially heated walls in the 3D configuration. We will focus on the

results of three studies [31, 32, 33].

Nagata and Busse [31]

A significant study was that of Nagata and Busse [31]. They investigated the sequence of

instabilities in a shear layer between two differentially heated side-walls in the limit of Pr = 0.

The primary instability consisted of 2D transverse rolls and the stability of these rolls was ex-

amined. Three secondary instability mechanisms were identified: the Eckhaus instability in the

vertical direction, a monotone instability, and an oscillatory instability. The monotone instabil-

ity (denoted A for consistency with Chait and Korpela’s notation) occurs at around Gr = 8200

(Ra = 5822 for Pr = 0.71), and transformed the 2D flow into a steady 3D pattern correspond-

ing to "a vortex-pairing instability with alternating pairing in the spanwise direction" [31] or

pinched rolls as shown in Figure 6.1 (a). This 3D pattern becomes unstable when Gr > 11060

(Ra > 7852) and gives way to an oscillatory 3D pattern, which corresponds to structures shifted

back and forth periodically in time in the transverse direction. The spanwise wavelength of the

structures is twice that of the steady pattern associated with the monotone instability A .

Chait and Korpela [32]

Chait and Korpela [32] also studied the stability of 2D rolls for air (Pr = 0.71) convection

between two vertical differentially heated plates. The stability map they obtained for the 2D

rolls is shown in Figure 6.2. Besides the three instabilities found by Nagata and Busse [31], they

99
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(a) (b)

Figure 6.1: Flow patterns corresponding to monotone instability A (a) and monotone instability B (b).

Figure 6.2: DNS results superimposed on stability diagram of the multicellular flow for air (Pr = 0.71)
found by Chait and Korpela [32]. The shaded aera represents the domain of stable secondary rolls. Our
DNS runs: red circle, Ra = 6050; blue circle, Ra = 6100; black circle, Ra = 6150; green cirle, Ra = 6250;
orange circle, Ra = 6300. Note that wavenumber α in this figure corresponds to kz in our notation.
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identified a second monotone instability, which is denoted B in their article. Since Pr is not zero,

the stability map is somewhat different from Nagata and Busse’s [31]: (i) the curve of Eckhaus

instability is no longer symmetric with respect to the vertical line kz = kc; (ii) the threshold of

the primary instability and the monotone instability A are slightly increased. The stability limit

for the A mechanism constrains the domain of stable rolls from above and the critical Rayleigh

number for it occurs at around Gr = 8400 (Ra = 5964). The stability limit associated with

the B mechanism originates in the vicinity of the critical point. To the left of it, i.e. for lower

wavenumbers, the primary rolls are always unstable. The pattern associated with instability

B consists of periodic thickening and thinning secondary rolls in the transverse direction y as

shown in Figure 6.1 (b), which resembles the skewed varicose instability in Rayleigh-Bénard

convection.

Clever and Busse [33]

Clever and Busse [33] computed equilibria and traveling wave solutions for air convection

between two vertical differentially heated plates. They obtained a flow pattern as shown in

Figure 1.7 (a) in Chapter 1, which is associated with the monotone instability A at Gr = 9859

(Ra = 7000) and is in agreement with Nagata and Busse [31], as well as Chait and Korpela [32].

Using symmetry considerations, they charted other possible solutions at Gr = 9859, Gr =

12676, Gr = 16901 (Ra = 7000, Ra = 9000, Ra = 12000). This flow consists of a traveling

wave of 3D invariant shape moving downward, which is different from the oscillatory flow pattern

found by Nagata and Busse [31]. Both the instability A flow pattern and the traveling wave

flow were found to exist at Gr = 9859 (Ra = 7000). This is not completely in agreement with

Wright et al.’s experiment [30], who observed apparently 2D rolls at Ra = 6800 moving slowly

downwards. 2D rolls moving slowly downwards were also identified in the experimental results

and the 2-D numerical simulation of Lartigue et al. [29].

Although common 3D instability mechanisms were identified in the three studies, the se-

quence of bifurcations is not entirely clear. Moreover, it is not known which possible solutions

are actually found in the flow. Before using nonlinear simulations to answer these questions,

we need to determine if and how the onset of these instabilities depends on the dimensions of
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the plates.

6.2 Linear stability analysis of the secondary 2D flow

The stability map of 2D rolls at Pr = 0.71 has been already obtained by Chait and Korpela [32].

They showed that the secondary instability of the flow appears for an increase in Rayleigh

number less than 10% of the critical Rayleigh number Rac = 5708. However their paper does

not show how the critical spanwise wavenumber ky depends on the height of the plate. Our

first step is therefore to determine the critical spanwise wavenumber associated with a given

periodic height of the plate. We use for this an Arnoldi method, which will be detailed in the

next section.

6.2.1 Numerical Methods

We firstly use a 2D DNS code to obtain the base flow, which consists of steady co-rotating rolls.

A linearized version of the DNS code is used to study the stability of the base flow. The Arnoldi

method has been used in several studies to study hydrodynamic instability, as for instance for

natural convection in a rectangular cavity [83] or spherical Couette flow [84]. The details of the

DNS codes used here can be found in [83, 85]. Here we briefly present the numerical methods.

Base flow

In Chapter 4, the first instability is found to be 2D and steady. It corresponds to a supercritical

pitchfork bifurcation. The secondary flow consists of steady 2D co-rotating rolls when Ra is

above the critical Rayleigh number Rac = 5708. Therefore, we can use a 2D DNS code to

construct the base flow (U ,V = 0,W ,Θ) by solving the unsteady Navier-Stokes equations under

the Boussinesq approximation Eq. (2.1) with boundary conditions Eq. (2.2) - (2.3).

The code we used is a spectral DNS code [83, 85]. The Chebyshev-Fourier collocation method

is used for the spatial discretization. Incompressibility is enforced by the projection-correction

method. The equations are integrated in time with a second-order mixed explicit-implicit

scheme.
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Linearized unsteady Navier-Stokes equations

The stability of the base flow (U(x, z),V = 0,W (x, z),Θ(x, z)) with respect to a 3D perturbation

(u(x, y, z),v(x, y, z),w(x, y, z),θ(x, y, z)) can be tested by integrating the linearized 3D unsteady

Navier-Stokes equations, which take the following form:

∂u
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+
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+
∂w

∂z
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∂u

∂t
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In our configuration, the periodic condition is imposed in the direction y. Thus, we can

suppose that the 3D perturbation takes a periodic form as [u(x, z, t)cos(kyy), v(x, z, t)sin(kyy),

w(x, z, t)cos(kyy), θ(x, z, t)cos(kyy)], where ky is the wavenumber in y direction. With this

assumption of periodicity for the perturbations, the Eq (6.1) becomes
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Boundary conditions for Eq. (6.1) (6.2) are of Dirichlet type and homogeneous.

Suppose now (U ,0,W ) and (u,v,w) verifying the incompressibility condition, with the fol-

lowing notations: X = (U, 0,W,Θ), x = (u, v, w, θ), L represents the 2D Laplace operator, N
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represents the advection terms and the linear buoyancy term, and Nx is the Fréchet derivative

of N on X. We can recast Eq (6.2) into the following compact form:

∂x

∂t
=
[

C√
Ra

(L− k2I) +Nx

]

x = Jxx (6.3)

where Jx is the Jacobian and constant C is equal to 1 for θ and equal to Pr for velocities.

Arnoldi method

To detemine whether the perturbation x in Eq. (6.3) grows or decreases with respect to time

t, we need to compute the eigenvalues of the Jacobian JX. However, the dimension of the

discretized Navier-Stokes equation system is so large that we cannot compute these eigenvalues

exactly, due to the available computing ressources. Therefore, we used the Arnoldi method,

which provides approximates for them. The Arnoldi iteration relies on the orthogonalization

of a Krylov subspace to provide a series of Hessenberg matrices which approximate JX. The

eigenvalues of these Hessenberg matrices constitute the Ritz eigenvalues. In most circumstances

the eigenvalues converge to some of the eigenvalues of JX (typically the leading ones). The rate

of convergence of the procedure is not fully understood yet in the general case.

After applying a mixed implicit-explicit scheme to Eq. (6.3) and some algebric calculations

[83, 85, 84], we can show that if the time step ∆t is sufficiently small, then

xn+1 ≈ exp(∆tJX)xn (6.4)

Therefore, we can compute the iterative action of JX on a given vector (an initial flow state)

to form the Krylov subspace by successive time-stepping of the linearized Navier-Stokes system

(6.2).

If ∆t stays small enough, we can extend Eq (6.4) to xn+K = exp(∆tJx)xn+K−1 = ... =

exp(K∆tJX)xn. Therefore, the series xn+K ,xn+2K , ...,xn+lK is an approximation of a series

exp(K∆tJX)xn, exp(2K∆tJX)xn,..., exp((l − 1)K∆tJX)xn, which forms a Krylov subspace.
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We can obtain a general relation as following:

(xn+K ,xn+2K , ...,xn+lK) ≈ exp(K∆tJX)(xn,xn+K ,xn+2K , ...,xn+(l−1)K) (6.5)

This relation shows that (xn+K ,xn+2K , ...,xn+lK) can be considered as a multiplication of

operator exp(K∆tJX) on the Krylov subspace (xn, xn+K , xn+2K , ..., xn+(l−1)K).

Suppose that q0,q1,q2,...,ql−1 and ql is the orthonormal basis of the Krylov subspace spanned

by xn, xn+K , xn+2K , ..., xn+(l−1)K and xn+lK , the Gram-Schmidt orthonormalisation procedure

can give us not only a orthonormal basis q0, q1, q2, ..., ql−1 and ql, but also QR factorization of

the Krylov subspace spanned by xn, xn+K , xn+2K , ..., xn+(l−1)K and xn+lK . Therefore, we

have

(xn,xn+K ,xn+2K , ...,xn+(l−1)K ,xn+lK) = (q0, q1, q2, ..., ql−1, ql)R = QR (6.6)

and

(xn,xn+K ,xn+2K , ...,xn+(l−1)K) = (q0, q1, q2, ..., ql−1)R̃ = Q̃R̃ (6.7)

where Q̃ contains the first l columns of Q and R̃ is a l-order submatrix of R. Compared to

(6.7), (6.6) has one more column and one more line. If we drop the first column of Eq (6.6)

and use the relation Eq. (6.5), we get

exp(K∆tJX)(xn,xn+K ,xn+2K , ...,xn+(l−1)K) = (q0, q1, q2, ..., ql−1, ql)R = QR (6.8)

R is the submatrix of R with its first column omitted, which has dimension (l + 1) × l. As

the last line of R has only one nonzero term, the diagonal one, denoted rl,l, we can recast the

relation (6.8) as following:

exp(K∆tJX)(xn,xn+K ,xn+2K , ...,xn+(l−1)K)

= (q0, q1, q2, ..., ql−1)H̃ + rl,lq
l = Q̃H̃ + cql (6.9)
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Here the Hessenberg matrix H̃ represents the first l lines of R. If c is small enough, we have

exp(K∆tJX)Q̃R̃ = Q̃H̃ (6.10)

which can be recast as exp(K∆tJX)Q̃ = Q̃H̃R̃−1. As R̃ and R̃−1 are upper triangular matrix,

H̃R̃−1 is still a Hessenberg matrix, which is noted as H. So we get the following relation

exp(K∆tJX)(q0, q1, q2, ..., ql−1) = (q0, q1, q2, ..., ql−1)H (6.11)

or simply exp(K∆tJX)Q̃ = Q̃H

If H is diagonalisable, then H = SΛS−1, where Λ is the diagonal matrix containing the spec-

trum of H and S is the matrix formed by the eigenvectors of H. So we have exp(K∆tJX)Q̃ =

Q̃SΛS−1, then

exp(K∆tJX)Q̃S = Q̃SΛ (6.12)

which shows that Λ, the spectrum of H, corresponds to the spectrum of the matrix exp(K∆tJX),

and Q̃S corresponds to the eigenvectors of exp(K∆tJX). Therefore, the leading eigenvalues of

H can give us those of exp(K∆tJX), which can be easily done by calling the library Lapack.

We use the Arnoldi iteration to compute approximate eigenvalues of the Jacobian matrix JX

using successive time-stepping of the linearized Navier-Stokes equations (6.2). In practice, the

linearized unsteady Navier-Stokes equations (6.2) are integrated for a few dozens of time-steps

in order to generate a Krylov subspace. Then the Gram-Schmidt orthonormalisation method

is applied to construct the Hessenberg matrix H. Once H obtained, its leading eigenvalues can

be calculated by calling the library Lapack. This procedure should be repeated in a time-loop

to determine the appropriate dimension of the Krylov subspace and the moment to stop the

time-integration. The monotonic decrease of the residual c, which appears as the last term in

Eq. (6.9), serves as a criterion to stop the time-integration.
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6.2.2 Results

By using the Arnoldi method, we look for the critical Rayleigh number Rac2 at which the

onset of secondary instability in the transverse direction y occurs. In order to allow sufficient

interaction between the structures, we choose a domain corresponding to four vertical rolls.

40 Chebyshev modes are used for the spatial discretization in the x-direction, and 160 Fourier

modes are used for the vertical direction z as for the 2D DNS in Chapter 3. Convergence test

was carried out with another mesh. No significant difference was observed.

The onset of the secondary instability leads the 2D flow to a 3D steady state as stated in

the literature [31, 32, 33]. We wish to determine the critical Rayleigh number Rac2 at which

the secondary instability occurs and the corresponding critical wavenumber kyc associated with

the steady 3D structure beyond Rac2. As mentioned before, once the base flow is obtained, the

Arnoldi method is applied to compute the stability of the base flow. At a given wavenumber kyi,

the code is run for different Raj. Each run yields several leading eigenvalues. The real part of

the first leading eigenvalue σij detemines the stability of the mode kyi at Raj. As σij increases

almost linearly with Raj, linear extrapolation can be used to find the critical Rayleigh number

Rac2i. Then the procedure is repeated for a range of kyi to calculate the corresponding Rac2i.

The neutral curve can be obtained by plotting Rac2i as a function of kyi as shown in Figures

6.3 and 6.4. Results are presented here for two configurations: Az = 9 and Az = 10.

Case Az = 9 (kz = 2.79)

For the case Az = 9, the wavenumber associated with the primary instability (2D rolls) is

kz = 2.79, which is very close to the critical wavenumber kzc = 2.81. Rac2 is found to be 6056,

and kyc = 1.6 (see figure 6.3), and σ is real so the most unstable mode is stationary. This agrees

well with previous results [31, 32]. The value of kyc appears to correspond to that associated

with monotone instability A.
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Figure 6.3: Neutral curve, σ(Rac2i) = 0 as a function of the wavenumber ky, Az = 9

Case Az = 10 (kz = 2.51)

For the case Az = 10, we have kz = 2.51. The neutral curve is shown in Figure 6.4. The critical

Rayleigh number is found to be Rac2 = 6033, and the critical spanwise wavenumber kyc is equal

to 0.78. This also corresponds to a stationary mode, and the value of the wavenumber is more

consistent with the monotone instability B of Chait and Korpela [32].
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Figure 6.4: Neutral curve, σ(Rac2i) = 0 as a function of the wavenumber ky, Az = 10

Comparison of the two figures shows the presence in both cases of two similar lobes with

two local minima around ky ∼ 1.6 and ky ∼ 0.8. Each minimum appears to correspond to a

different instability mechanism (A and B). The minimal Rayleigh values associated with each

lobe are close for Ay = 9 (kz = 2.8) but the absolute minimum (critical Rayleigh number) is
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associated with the higher wavenumber, while it corresponds to the lower wavenumber in the

case Ay = 10 (kz = 2.5).

The nature of the most unstable mechanism is therefore quite sensitive to the exact value

of the wavenumbers allowed in both the vertical and transverse directions. Moreover, since the

growth rate of each instability is relatively close, competition between the different mechanisms

is likely to take place. This will be examined in more detail using nonlinear simulations in the

next section.

6.3 Nonlinear simulations Ay = 8 & Ay = 9

6.3.1 Characteristics of the simulations

In this section, we use DNS to study the sequence of bifurcations and route to temporal chaos

of the flow. As in the previous chapters, the physical domain contains four vertical rolls i.e

Az ∼ 8 − 10. We now choose a large enough spanwise dimension for the plate to include

critical spanwise wavelengths, which requires Ay ∼ 8 − 10 as well. To simulate such domains,

we used 40 and 160 Chebyshev modes for the spatial discretizations in the directions x and z,

respectively, and 130 Fourier modes for the y-direction. The initial condition is taken as the

base flow Eq. (3.1) in all cases. The time required for the flow to converge is about 10000

convective time units, which represents about 200 hours on the super-cluster ADA in IDRIS-

CNRS with 8 processors. Due to the computing cost of such a configuration, the number of

test cases is limited. Only one configuration Ay = 8 and width Az = 9 is considered. For the

chosen wavenumber ky = 1.57, kz = 2.79, which is very close to the critical wavenumber, linear

stability results predict that mode A should be observed at Ra > Rac = 6056. Calculations

were therefore carried out at Ra = 6050, 6070, 6080, 6100, 6150, 6180, 6200, 6250 and 6300. We

only show results for the four cases Ra = 6050, 6100, 6150, 6250, 6300 (represented with circles

of different colours in Figure 6.2) which present original features.
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6.3.2 Rac = 5708 < Ra < Rac2 = 6056: 2D steady rolls

As seen earlier, the first bifurcation is a supercritical pitchfork bifurcation. For comparison

purposes with higher Rayleigh numbers, Figure 6.5 obtained for Ra = 6050 shows that the 2D

flow consists of four steady co-rotating rolls. As mentioned in Chapter 3 and 4, the vertical

translation invariance is replaced with a D4 symmetry, and the centro-symmetry due to the

Boussinesq approximation is conserved.

Figure 6.5: Isosurface of Q-criterion Q = 0.1 and streamlines, Ra = 6050.

6.3.3 Ra = 6100 > Rac2: Transient 3D steady pattern

The timeseries of the temperature measured at the point (0.0381, 0.122, 4.96), located in the

hot boundary layer, is plotted in Figure 6.6 (a). Three different states can be identified from

the original conduction state. A first plateau corresponding to 2D rolls is observed for some

time, then the flow becomes three-dimensional.

3D pattern associated with instability A: wavy rolls

An enlargement of the temperature signal for the times 4000 < t < 5500 is represented in loga-

rithmic scale in Figure 6.6 (b). The amplitude of temperature disturbance grows exponentially
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for 4000 < t < 4500, which corresponds to the linear growth rate of the most unstable eigen-

mode, then increases at a lower rate for t > 4700 before the perturbation amplitude satures.

By using the same argument [60] as was used in section 3.5.1, this evolution shows that the

coefficient of the cubic term in the normal form of the pitchfork bifurcation is negative, therefore

this bifurcation is supercritical. Again, it is also a circle bifurcation owing to the invariance of

the equations with respect to transverse translations.
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Figure 6.6: (a): Time series of temperature at point (0.0381, 0.122, 4.96) in the boundary layer near
the hot wall at Ra = 6100 ; (b): An enlargement of (a) for 4000 < t < 5500 on a logarithmic scale.

Figure 6.7: Isosurface of Q-criterion Q = 0.1 and streamlines, at t = 6000, Ra = 6100.
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Chait and Korpela’s stability analysis predicts that instability A consisting of steady, wavy

rolls with ky = 1.6 and kz = kzc/2 should be observed. This is supported by our results as we

found the most unstable spanwise mode to be ky = 1.6. Examination of the flow for the second

plateau confirms this conjecture. The flow structure of this 3D pattern consists of 4 steady

corotating rolls with a wavy distortion in the transverse direction, which represents a D2 ×D4

symmetry. As can be seen in Figure 6.7, at the location of a "pinch", the streamlines escape

from a roll to join the adjacent roll above it. This connection between the rolls is somewhat

similar to the vortex-pairing observed in the mixing layer [62], which is also a subharmonic

instability. Figure 6.8 represents the 2D streamline plots on four different vertical planes and

shows the distortion of the rolls in both the vertical and the transverse directions. Owing to

the wavy motion, the center of the rolls varies in the vertical direction, but the size of the rolls

remains more or less constant.
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Figure 6.8: Streamlines at different vertical planes, t = 6000, Ra = 6100.

The temperature contour on the vertical plane x = 0.0381 is represented in Figure 6.9
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(a). We checked that similar remarks to those described below could be made if we considered

any other vertical plane. The corresponding spatial spectrum θ̂(iy, iz) where j and k are the

indices of the spanwise y and vertical z wavenumbers is shown in Figure 6.9 (b). It can be seen

that θ̂(0, 4), θ̂(2, 2), which respectively represent the 2D rolls and the wavy distortion, are the

principal modes constituting the pattern.
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Figure 6.9: (a) The temperature contour on the vertical plane x = 0.0381, (b) the corresponding 2D
Fourier modes |θ̂(iy, iz)| (iy, iz = −5, 5) for the fluctuations, t = 6000, Ra = 6100.

Second steady 3D pattern

As can be seen in Figure 6.6 (a), the temperature perturbation with respect to the base flow

shifts from the second plateau, which corresponds to the pattern of monotone instability A, to

a third plateau at t ∼ 7000. The local oscillation of timeseries in Figure 6.6 (a) at t ∼ 7000

suggests the instability is subcritical. The final flow pattern is shown in Figure 6.10. Although

remains of pattern A are still present, the dominant feature of the flow consists of transverse

rolls with streamline excursions over a single, limited portion of its spanwise extent - which

we will call the defect. The defects form an oblique line in the (x, z) plane. The orientation

of the oblique line can be either from the top-right to the bottom-left or from the top-left to

the bottom right, because of the invariance of the system (1.1-1.4) under reflection symmetry

with respect to any plane y = cst. The spanwise extent of each defect is about one (inter-plate
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distance) and it typically involves three vertical structures.

Figure 6.10: Isosurface of Q-criterion Q = 0.1 and streamlines for the flow pattern B, at t = 9000,
Ra = 6100. Some streamlines associated with the lowest roll cannot be represented due to a limitation
of the graphics package.

The symmetry of the new solution is D1 × D4. Figure 6.11 represents the flow streamlines

on four selected vertical planes. The rolls remain aligned in the transverse direction y, but the

size of the rolls varies along the transverse direction y (compared this with Figure 6.8).

The temperature field on the vertical plane x = 0.0381 is represented in Figure 6.12 (a),

and its corresponding 2D Fourier spectrum at t = 8000 in Figure 6.12 (b), which confirms that

the principal modes associated with the pattern are θ̂(0, 4) and θ̂(1,−1). Since the equations

(1.1)-(1.4) are invariant by reflection with respect to any plane y = cst, the modes θ̂(1,−1) and

θ̂(1, 1) are equivalent solutions. For simplicity, we mention the modes only with the positive

indices in the text. The mode θ̂(1, 1) shows that this 3D pattern involves the smallest spanwise

wavenumber allowed by the domain and appears to correspond to the instability B described

by Chait and Korpela [32], as a skewed varicose instability, in which the rolls are thickening and

thinning in the transverse direction. Note that the coupling between the pure roll mode θ̂(0, 4)

and transverse instability mode θ̂(1,−1) is relatively strong, as the energy of mode θ̂(1, 3) is

substantial.
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Figure 6.11: Streamlines on different vertical planes, t = 8000, Ra = 6100.
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Figure 6.12: (a) The temperature contours in the vertical plane x = 0.0381, (b) the corresponding
spatial 2D Fourier mode |θ̂(iy, iz)| (iy, iz = −5, 5) for the fluctuations, t = 8000, Ra = 6100.
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Although the Rayleigh number of the configuration is very close to the critical Rayleigh

of instability A, it seems that mode A is already unstable to instability B. A simulation with

pattern A obtained at Ra = 6100 as the initial condition was performed, when Ra was decreased

to Ra = 6060 (quite close to Rac2 = 6056), the asymptotic state obtained was also pattern B.

This suggests us that the pattern A predicted by the linear stability analysis seems to be always

unstable to the pattern B through a subcritical instability. Since we were not able to carry out

simulations for intermediate Rayleigh numbers, we can also conjecture the existence of a small

Rayleigh domain over which modes A and modes B coexist. We therefore suspect the presence

of a cusp bifurcation involving three equilibria: the straight (2D) rolls, the wavy rolls (A) and

the defect rolls (B) as well.

6.3.4 6150 ≤ Ra ≤ 6200: 3D time-dependent flow

The 3D pattern becomes time-dependent when Ra is increased to 6150. The temperature

timeseries at the point (0.0381, 0.122, 4.96) in the boundary layer near the hot wall is plotted

in Figure 6.13 (a). Figure 6.13 (b) shows that it corresponds to a periodic signal of frequency

fLarge1 = 0.00536, which is much lower than f1 = 0.036 found in Chapter 4 for a constrained

configuration. Identification of a similar frequency at Ra = 6180 and Ra = 6200 leads us to

conjecture that this is a Hopf bifurcation.
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Figure 6.13: (a): Time series of temperature at the point (0.0381, 0.122, 4.96) in the boundary layer
near the hot wall, Ra = 6150 (b): Temporal Fourier spectrum of the periodic portion t ∈ [8000, 10000]
of the signal (a).
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Figure 6.14 represents the flow structures at two different instants. The flow structures

consist of 4 corotating rolls with a defect, as can be seen in Figure 6.14 (a). In Figure 6.14 (b), the

discontinuities of criterion-Q isosurface disappear, which indicates that the defect region shrinks.

The periodic oscillation is characterized by the growth and shrink of the defect associated with

streamline excursions.

(a) t = 8770 (b) t = 8850

Figure 6.14: Flow structures at two different instants: iso-surface of Q-criterion Q = 0.1 and stream-
lines, Ra = 6150.

The temperature contours on the vertical plane x = 0.0381 at different instants are repre-

sented in Figure 6.15 (left). The corresponding Fourier spectra are shown in Figure 6.15 (right).

Besides the spanwise invariant mode θ̂(0, 4) and a trace of the wavy mode A θ̂(2, 2) we can see

the presence of a new mode θ̂(1, 1) in the pattern, and its interaction with the mode θ̂(0, 4).

The temporal evolution of the principal modes θ̂(0, 4), θ̂(1, 1) are shown in Figure 6.16.

These two modes oscillate periodically. The mode θ̂(0, 4) corresponding to the primary rolls

has an almost constant amplitude, while the mode θ̂(1, 1) has a significant amplitude variation.

These two modes represent 84.17% of the total energy for the perturbations.

6.3.5 Ra = 6250: Period-doubling bifurcation

The temporal behavior of the flow is modified when Ra is further increased to Ra = 6250.

The timeseries of the temperature perturbation at the point (0.0381, 0.122, 4.96) is shown in
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Figure 6.15: Left column: the temperature contours on the vertical plane x = 0.0381, Right column:
corresponding spatial 2D Fourier modes |θ̂(iy, iz)| (iy, iz = −5, 5) for the fluctuations, Ra = 6150.
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Figure 6.16: Temporal evolution of the spectral coefficients |θ̂(iy, iz)| on the plane x = 0.0381 for two
principal modes: Ra = 6150



6.3. NONLINEAR SIMULATIONS AY = 8 & AY = 9 119

Figure 6.17 (a). The Fourier spectrum of the periodic portion t ∈ [5000, 8000] in Figure 6.17

(b) shows that the largest amplitude is located at the frequency fLarge1 = 0.00536, which is

identical to that found in the previous subsection 6.3.4 at Ra = 6150, while the second largest

amplitude corresponds to the frequency fLarge1/2 = 0.00286 ∼ fLarge1 /2.
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Figure 6.17: (a): Time series of temperature perturbation at the point (0.0381, 0.122, 4.96) in the
boundary layer near the hot wall, Ra = 6250. (b): Temporal Fourier spectrum of the periodic portion
t ∈ [5000, 8000] of the signal (a).

The topology of the flow again consists of 4 rolls which are distorted in the transverse

direction. The evolution of the flow structure during an oscillation period (which is twice as

large as the previous case Ra = 6150) is represented in Figure 6.18. Comparing Figures 6.18

(a) and (d), we can see that the positions of defects are shifted about half a wavelength Ay/2

in the y-direction for half of doubled-period. Then they return to their original positions after

another half doubled-period.

The temperature contours on the vertical plane x = 0.0381 and corresponding spatial Fourier

spectrum at the same instants of Figure 6.18 are represented in Figures 6.19 and 6.20. The

principal modes are θ̂(0, 4), θ̂(2, 2), θ̂(1, 1) are present as well as the mode θ̂(1, 3). The latter

results from the interaction between the modes θ̂(0, 4) and θ̂(1, 1). This behavior suggests

that the pattern dynamics is a superimposition or competition of the modes associated with

both monotone instabilities A and B. The three principal modes and the mode θ̂(1, 3) represent

respectively 84.87% and 7.37% of the energy of the perturbations, thus these four modes together

contribute 92.24% of the perturbation energy.
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(a) t = 7600 (b) t = 7660

(c) t = 7720 (d) t = 7780

(e) t = 7840 (f) t = 7900

Figure 6.18: Flow structures at different instants spanning one temporal oscillation: iso-surface of
Q-criterion Q = 0.1 and streamlines, Ra = 6250.
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(c) t = 7660 (d) t = 7660
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(e) t = 7720 (f) t = 7720

Figure 6.19: Left column: the temperature contours on the vertical plane x = 0.0381; Right column:
the corresponding spatial Fourier modes |θ̂(iy, iz)| (iy, iz = −5, 5) for the fluctuations, Ra = 6250. (to
be continued in Figure 6.20)
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(a) t = 7780 (b) t = 7780
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(c) t = 7840 (d) t = 7840
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(e) t = 7900 (f) t = 7900

Figure 6.20: Left column: the temperature contours on the vertical plane x = 0.0381; Right column:
the corresponding spatial Fourier mode |θ̂(iy, iz)| (iy, iz = −5, 5) for the fluctuations, Ra = 6250.
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The temporal evolution of the principal modes θ̂(0, 4), θ̂(2, 2), θ̂(1, 1) are shown in Figure

6.21. All three modes oscillate periodically. The mode θ̂(0, 4) corresponding to the primary

rolls has the largest amplitude. The mode θ̂(1, 1) corresponding to instability mechanism B has

the second largest amplitude. The mode θ̂(1, 3) representing the interaction of mode θ̂(0, 4) and

θ̂(1, 1) has almost the same amplitude as the mode θ̂(2, 2), which describes the wavy structures

of the rolls associated with mechanism A. The mode θ̂(0, 4) oscillates almost in phase opposition

with respect to the other modes. The mode θ̂(1, 3) and θ̂(1, 1) oscillate almost in phase, while

between θ̂(2, 2) and θ̂(1, 1), there is a small phase shift about 1/8 of the doubled time-period.
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Figure 6.21: Temporal evolution of the spectral coefficients |θ̂(iy, iz)| on the plane x = 0.0381 for four
modes: Ra = 6250

6.3.6 Ra ≥ 6300: Temporal chaos

When Ra is increased to Ra = 6300, the flow becomes temporally chaotic, as shown by the

temperature timeseries at the point (0.0381, 0.122, 4.96) in Figure 6.22 (a). The corresponding

Fourier transform of the signal t ∈ [5000, 8000] is quasi-continuous, as can be seen in Figure 6.22

(b).

The evolution of the flow structure becomes more complex, as shown in Figures 6.23 and

6.24. The four unsteady distorted rolls are still the principal structures. For intermittent periods

of time, the flow appears to be essentially 2D as can be seen in Figures 6.23 (a) (f) and 6.24

(d), but in general the flow structure is strongly 3D as can be seen in Figures 6.23 (d) (e) and
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Figure 6.22: (a): Timeseries of temperature perturbation at the point (0.0381, 0.122, 4.96) in the
boundary layer near the hot wall, Ra = 6300 (b): Temporal Fourier spectrum of the chaotic portion
t ∈ [5000, 8000] of the signal (a).

6.24 (c). Pattern A is seen to be dominant at times (Figures 6.23 (b) and 6.24 (b)).

The time-averaged 2D Fourier spectral coefficients |θ̂(iy , iz)| of the temperature distribution

on the vertical plane x = 0.0381 for t ∈ [7000, 8000] is represented in Figure 6.25 (a). It shows

that the principal modes are still θ̂(0, 4), θ̂(2, 2), θ̂(1, 1). The three principal modes represent

78.75% of the total energy of the perturbations. The mode θ̂(1, 3) representing the interaction

between the mode θ̂(0, 4), θ̂(1, 1) becomes significant. With θ̂(1, 3), these four modes contribute

87.81% of the total perturbation energy. This confirms that the spatial organization of the flow

is still very strong and limited to only a few wavenumbers corresponding to a combination of

instability mechanisms. The temporal evolution of these four principal modes is chaotic, as

shown in Figure 6.25 (b).

6.4 Conclusion

The goal of this chapter is to examine how temporal chaos develops in larger configurations.

Previous linear stability results have indicated that the 2D rolls characterized by a wavenumber

kz are unstable to two kinds of 3D steady disturbances: one corresponding to a vertical pairing

of the rolls with a transverse modulation (instability A, wavy modes) and one consisting of a

periodical thickening and thinning of the rolls (instability B, roll defect modes). We use an
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(a) t = 7200 (b) t = 7230

(c) t = 7250 (d) t = 7270

(e) t = 7290 (f) t = 7320

Figure 6.23: Flow structures at different instants: iso-surface of Q-criterion Q = 0.1 and streamlines,
Ra = 6300. (to be continued in Figure 6.24)
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(a) t = 7400 (b) t = 7500

(c) t = 7520 (d) t = 7600

Figure 6.24: Flow structures at different instants: iso-surface of Q-criterion Q = 0.1 and streamlines,
Ra = 6300.
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Figure 6.25: (a) The time-averaged 2D Fourier spectral coefficient |θ̂(iy, iz)| (iy, iz = −5, 5) of the
temperature fluctuations on the vertical plane x = 0.0381 for t ∈ [7000, 8000]; (b) Temporal evolution of
the spectral coefficients |θ̂(iy, iz)| on the plane x = 0.0381 for four modes: Ra = 6300

Arnoldi method to recompute some of these results. In particular we wish to examine how a

small change kz can affect the stability results. We find that the critical spanwise number and

the corresponding most unstable mode are sensitive to the value of kz, and that the critical

Rayleigh numbers associated with mechanisms A and B are close to each other. To determine

if and how a competition between the different patterns develops, we turn to direct numerical

simulations for a particular choice of the plate periodic dimensionsAz andAy, which corresponds

to a fixed value of kz and allows a range of suitable unstable wavenumbers ky. All the results

are summarized in Table 6.1. For the choice Az = 9, we expect that the flow becomes unstable

to the A mechanism around Rac2A = 6056. Owing to the cost of the simulations, a few Rayleigh

numbers are selected around Rac2A = 6056. For a Rayleigh number Ra = 6100, which is close

to the critical value, we observe the loss of stability of the 2D rolls, and also the appearance of

mode A, but only as a transient. The solution then converges to a steady state which appears

to be more consistent with instability B. This discrepancy with the linear stability predictions

highlights the role of nonlinear simulations. Further bifurcations were then observed. The 3D

steady flow associated with instability B becomes time-dependent at Ra = 6150, as the size of

the defect associated with streamline excursions grows and shrinks periodically. Finally, the flow

becomes temporally chaotic at Ra = 6300 but conserves a highly organized spatial structure,

which is described with three Fourier modes corresponding to a superposition of the different
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instability mechanisms brought to light by linear stability theory. This shows that although the

validity range of its predictions can be severely limited - in our case the flow reaches temporal

chaos for a Rayleigh number which is less than 10% higher than that associated with the primary

instability - linear stability analysis remains useful beyond that domain, as it can help us to

understand the physics of the flow as it becomes more complex and finally turbulent. This

highlights the complementary role of linear stability analysis and nonlinear simulations.



6
.4

.
C

O
N

C
L

U
S

IO
N

129

Table 6.1: Summary of bifurcations and associated flow structures and symmetries for 3D simulations, Ay = 8, Az = 9, T = 1/fLarge
1 .

Ra Nature of Flow structures Dominant wavenumbers Spatial symmetry
bifurcation Temporal symmetry

Ra < Rac = 5708 1D base flow O(2) ×O(2)
steady

Rac < Ra < Rac2 = 6056 supercritical 2D corotating rolls ky = ∞ kz = 2.79 O(2) ×D4

circle pitchfork steady
Rac2 < Ra ≤ 6100 supercritical 3D pinched rolls (A) ky = ∞, kz = 2.79 D2 ×D4

(Ra = 6100 at t = 5500) circle pitchfork ky = 1.57, kz = 1.396 steady
(Ra = 6100 at t > 7000) subcritical 3D broken rolls (B) ky = ∞, kz = 2.79 D1 ×D4

ky = 0.785, kz = 0.698 steady
6150 ≤ Ra ≤ 6200 supercritical 3D broken rolls ky = ∞, kz = 2.79 D1 ×D4

Hopf ky = 0.785, kz = 0.698 T-periodic
Ra = 6250 period-doubling 3D pinched ky = ∞, kz = 2.79 D1 ×D4

and broken rolls ky = 1.57, kz = 1.396 2T-periodic
ky = 0.785, kz = 0.698

Ra = 6300 3D pinched ky = ∞, kz = 2.79 no symmetry
and broken rolls ky = 1.57, kz = 1.396 chaotic

ky = 0.785, kz = 0.698
ky = 0.785, kz = 2.093
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Chapter 7

Conclusion

The focus of the present study is the sequence of instabilities leading to chaos for the air flow

between two infinite differentially heated vertical plates. Our goal has been to examine the

influence of three-dimensional effects for the transition to chaos. A mapping of that route has

been established in two and three dimensions as shown in Table 7.1.

Owing to Squires’ theorem, the nature of the first instability is two-dimensional. We con-

firmed that it occurs at a critical Rayleigh number Rac of 5708 with the critical vertical number

kzc = 2.81. By using multi-scale analysis, a Ginzburg-Landau equation was derived analytically,

which is able to predict correctly the amplitude of the 2D rolls for the Rayleigh number within a

limited range (10%) of Rac. It was also found that the nature of this first instability is absolute.

Then 2D DNS simulations were carried out to study the sequence of instabilities in the

configuration Az = 10. The base flow bifurcates to 2D steady rolls (secondary flow) through

a supercritical circle pitchfork bifurcation at Rac = 5708. Then, a second bifurcation occurs

at Ra = 13500. The flow becomes oscillatory, and the steady four-roll pattern turns into a

periodic three-roll one with a characteristic frequency f = 0.032, which is similar to the natural

frequency of the mixing layer when scaled with the inter-plate distance and reference velocity.

When Ra is further increased, the temporal evolution of the three unsteady rolls becomes

quasi-periodic, then apparently chaotic, while the characteristic frequency f remains dominant.

As Ra is further increased beyond Ra = 18000, the flow becomes steady again, and the three

oscillatory rolls give way to two steady rolls. This suggests that the occurrence of pure temporal

chaos is limited by the development of a vertical instability, which leads to a long-wavelength

modulation of the spatial pattern. The two steady rolls remain stable over a range of Rayleigh

number, as no chaotic behavior is observed up to Ra = 21000.

131
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A 3D DNS simulation was then carried out in a domain allowing some interaction between

the vertical rolls (Az = 10), but constrained in the transverse direction (Az = 1). The situa-

tion differs from the 2D case by the onset of the second bifurcation, which occurs at a lower

Rayleigh number Rac2 ∼ 9980. The 2D rolls become unstable and turn into a steady 3D pattern

through a supercritical circle pitchfork bifurcation. The flow structure is characterized by sec-

ondary counter-rotating vortices connecting the principal convection rolls (tertiary flow). When

the Rayleigh number is further increased past Rac3 ∼ 11270, the steady 3D pattern becomes

oscillatory through a Hopf bifurcation, as the intensities of the transverse rolls and the counter-

rotating vortices oscillate in quasi-phase opposition. A sequence of period-doubling bifurcations

is observed at higher Rayleigh numbers. However, in the configuration Az = 10, it is only a

transient feature. The multiply periodic flow gives way to complex spatiotemporal dynamics

when Ra ≥ 12100 and a competition between different wavelengths is rapidly apparent in the

flow pattern. The global behavior of heat transfer is established up to Ra = 15000, where

Nu generally increases with Ra by at most 25%, with discontinuities as the flow goes through

bifurcations.

The vertical dimension of the simulation domain was then reduced so as to allow for a

single primary roll Az = 2.5, hence constituting a minimal flow unit. In this case the sequence

of period-doubling bifurcations becomes a persistent feature, through which the flow evolves

towards temporal chaos. The flow is characterized by the modulated pulsation of a three-

dimensional spatially localized structure, similar to the tertiary flow, which consists of an array

of identical transverse rolls connected by secondary vortices or braids. The temporal behavior

of the flow shares a large amount of common features with one-dimensional maps. Estimates for

the Feigenbaum constant from the first few period-doubling bifurcations are reasonably close to

the theoretical value. When Ra is further increased, a crisis-induced intermittency is observed,

as the location of the flow structures randomly switches from one position to another, which

is separated from the first one by half a vertical roll wavelength. A periodic window occurs

for higher Rayleigh numbers, which then gives way to chaotic behavior at still higher Rayleigh

numbers. The intermittency observed is reminiscent of that created by heteroclinic connections
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and is likely to be the consequence of the O(2) symmetry of the problem.

We then consider larger domains in both the vertical and transverse dimensions. We first

determine the transverse size of the domain which will allow us to observe the development

of instabilities predicted by linear stability theory. Linear stability analysis of the secondary

flow using the Arnoldi method confirms the existence of two transverse instability mechanisms

- denoted A and B - associated with two different spanwise wavenumbers. The growth rate of

the two instabilities is very sensitive to the wavelength of the rolls (i.e the periodic height of the

plate): for a small variation in the size of the rolls around their critical value, the A mechanism

becomes more unstable than the B mechanism and vice-versa.

We choose to study the flow in the domain with Ay = 8 and Az = 9. Only a few Rayleigh

numbers were examined, owing to the computing cost of the simulations. Through a supercrit-

ical circle pitchfork bifurcation, the 2D rolls lead to a steady 3D pattern, consistent with that

associated with mechanism A, which is predicted by linear stability theory. This 3D pattern has

a D2×D4 symmetry. The flow consists of rolls with a wavy distortion in the transverse direction,

and local pairing of the rolls in the vertical direction. However this 3D pattern is itself unstable

to 3D disturbances. Through a subcritical instability, it turns into another steady 3D pattern,

consistent with the B mechanism. The size of the rolls periodically shrinks and grows over the

transverse direction. The location over which streamline excursions are observed is called the

defect. This new 3D pattern has a D1 ×D4 symmetry. When Ra is further increased to 6150,

the 3D pattern becomes oscillatory through a Hopf bifurcation. The defect region grows and

shrinks periodically in this regime. At higher Rayleigh numbers, the temporal behavior of the

flow becomes more complex. At Ra = 6250 a period-doubling bifurcation is observed, and both

wavenumbers associated with instability A and B are present at all times. At Ra = 6300, the

flow still contains only the few modes associated with the secondary instability mechanisms,

but the dynamics of these modes is now chaotic.

To summarize, we have confirmed that 3D effects are essential for the transition of the

flow to chaos in the periodic configuration. The influence of the domain dimensions on the

transition to chaos was examined in detail. As can be expected, the instability mechanisms and
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the sequence of bifurcations undergone by the flow crucially depend on the wavelengths allowed

in the domain. It would be interesting to determine whether domains of reduced size may help

us understand the physics of the flow in larger configurations and at higher Rayleigh numbers.

Due to limited computer resources, we have been unable to simulate the flow in the larger

domain at high Rayleigh numbers. It would be interesting to determine if the 3D structures

consisting of rolls linked by braids of vorticity, found in the confined configuration Ay = 1 can

also be found in the larger domain at Ra > 11000. In addition, although the predictions of linear

stability may be valid for only a very small range of Rayleigh numbers, we have found in the

large domain that linearly unstable modes play an important role in transition, and constitute

the spatial backbone of the flow in the temporally chaotic regime. Whether coherent structures

of the turbulent regime at very high Rayleigh numbers can also be described in terms of basic

instability modes remains an open question.
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Table 7.1: Summary of flow structures at different Rayleigh numbers in different configurations.

Ra 2D Az = 10 3D Ay = 1 Az = 2.5 3D Ay = 1 Az = 10 3D Ay = 8, Az = 9

Ra < Rac = 5708 1D base flow
Rac < Ra < Rac2 = 6056 2D steady corotating rolls
Rac2 = 6056 < Ra ≤ 6100 2D steady corotating rolls 3D steady flow
(Ra = 6100 at t = 5500) broken rolls (A)
(Ra = 6100 at t > 7000) broken rolls (B)

6150 ≤ Ra ≤ 6200 2D steady corotating rolls oscillating
3D broken rolls

Ra = 6250 2D steady corotating rolls period-doubling
3D pinched & broken rolls

6300 ≤ Ra ≤ 6500 2D steady corotating rolls temporally chaotic flow
3D pinched & broken rolls

6500 ≤ Ra ≤ 9980 2D steady corotating rolls
9980 ≤ Ra ≤ 11270 2D steady steady 3D pinched

corotating rolls rolls connected by vortices braids
11270 ≤ Ra ≤ 12000 2D steady oscillating 3D pinched

corotating rolls rolls connected by vortices braids
Ra ≥ 12100 2D steady period-doubling Eckhaus-like instability

corotating rolls temporal chaos temporal chaos
12546 ≤ Ra ≤ 13500 2D steady crisis-induced intermittency

corotating rolls temporal chaos
13500 ≤ Ra ≤ 15300 3 oscillating rolls
15400 ≤ Ra ≤ 15600 3 quasiperiodic

oscillating rolls
15700 ≤ Ra ≤ 17000 3 chaotic

oscillating rolls
18000 ≤ Ra ≤ 21000 2 steady rolls

with unequal size
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Appendix A

Operators expanded in the

multi-scale analysis

In the weakly nonlinear analysis section, the operators M , L and b in the system Eq. (3.9) are

expanded by the asymptotic expansions as Eq. (3.21)-Eq. (3.23). The operators developed at

different orders of ǫ read as

M0 =







∇2
0 0

0 1






; M1 =







2
∂

∂z0
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∂z1
0

0 0






; M2 =
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0 0









; (A.1)
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(A.3)
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b0,ψ(φα, φβ) =
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∂ψα
∂z0
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b0,θ(φα, φβ) =
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)
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where ∇0 = ∂2

∂x2 + ∂2

∂z2
0

, Rac is the critical Rayleigh number found in the linear stability analysis,

W is the vertical velocity of the base flow, and Θ is the temperature of the base flow.

The coefficients of Eq. (3.72) are presented as follows:

c1 =







c11

c12






, c2 =
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c42 =
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Rac
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∂Θ
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ψ̂24 +
(

2√
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ikc −W

)

θ̂24 − Cgθ̂24 (A.17)

where kc is the critical wavenumber found in the linear stability analysis and Cg is the group
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velocity calculated in the problem at order ǫ2. ψ̂∗ denotes the complex conjugate of ψ̂, and

ψ̂(n) denotes the n-th derivatives of ψ̂ with respect to x. ψ̂1 and θ̂1 are the stream function

and temperature components of the eigenvector ψ̂1 obtained in the linear stability analysis

(φ1 = [ψ, θ̂]T ).



140 APPENDIX A. OPERATORS



Bibliography

[1] H. Bénard. Les tourbillons cellulaires dans une nappe liquide. Rev. Gén. Sci pures et appl.,

11:1261–1271 & 1309–1328, 1900.

[2] Lord Rayleigh. On the convective currents in a horizontal layer of fluid when the higher

temperature is on the under side. Phil. Mag., 32:529–546, 1916.

[3] P. Manneville. Rayleigh-Bénard convection: Thirty years of experimental, theoretical, and

modeling work. In I. Mutabazi, J. Wesfreid, and E. Guyon, editors, Dynamics of Spatio-

Temporal Cellular Structures, volume 207 of Springer Tracts in Modern Physics, pages

41–65. Springer New York, 2006.

[4] G.K Batchelor. Heat transfer by free convection across a closed cavity between vertical

boundaries at different temperatures. Quart. Appl. Math, 12(3):209–233, 1954.

[5] A.E. Gill and A. Davey. Instability of a buoyancy-driven system. J. Fluid Mech., 35(4):775–

798, 1969.

[6] S. Paolucci and D.R. Chenoweth. Transition to chaos in a differentially heated vertical

cavity. J. Fluid Mech., 201:379–410, 1989.

[7] P. Le Quéré. Onset of unsteadiness, routes to chaos and simulations of chaotic flows in

cavities heated from the side: a review of present status. In 10th Intl. Heat Trans. Conf.,

volume 1 of I Chem E Symposium Series, pages 281–296, 1994.

[8] S. Xin and P. Le Quéré. Direct numerical simulation of two-dimensional chaotic natural

convection in a differentially heated cavity of aspect ratio 4. J. Fluid Mech., 304:87–118,

1995.

[9] E.R.G. Eckertf and W.O. Carlson. Natural convection in an air layer enclosed between

two vertical plates with different temperatures. International Journal of Heat and Mass

Transfer, 2:106–120, 1961.

141



142 BIBLIOGRAPHY

[10] J.W. Elder. Laminar free convection in a vertical slot. J. Fluid Mech., 23(1):77–98, 1965.

[11] C.M. Vest and V.S. Arpaci. Stability of natural convection in a vertical slot. J. Fluid

Mech., 36:1–15, 1969.

[12] Y. Oshima. Experimental studies of free convection in a rectangular cavity. J. Phys. Soc.

Japan, 30(3):872–882, 1971.

[13] S. A. Korpela. A study on the effect of Prandtl number on the stability of the conduction

regime of natural convection in an inclined slot. International Journal of Heat and Mass

Transfer, 17(2):215 – 222, 1974.

[14] R.F. Bergholz. Instability of steady natural convection in a vertical fluid layer. J. Fluid

Mech., 84(4):743–768, 1978.

[15] J. Tao and F. Zhuang. Absolute and convective instabilities of the natural convection in a

vertical heated slot. Phys. Rev. E, 62(6):7957–7960, 2000.

[16] P.G. Daniels and M. Weinstein. Nonlinear stability of convective flow between heated

vertical planes. J. Eng. Math., 24:179–188, 1989.

[17] J.M. Cornet and C.H. Lamarque. Nonlinear behavior of the instability of steady natural

convection in a vertical air layer. Mech. Res. Comm, 24:179–188, 1997.

[18] J. Mizushima and K. Gotoh. Nonlinear evolution of the disturbance in a natural convection

induced in a vertical fluid layer. J. Phys. Soc. Japan, 52:1206–1214, 1983.

[19] J. Mizushima and Y. Saito. Equilibrium characteristics of the secondary convection in a

vertical fluid layer between two flat plates. Fluid Dyn. Res., 2:183–191, 1987.

[20] J. Mizushima. Equilibrium solution of the secondary convection in a vertical fluid layer

between two flat plates. Fluid Dyn. Res., 5:289–299, 1990.

[21] J. Mizushima and H. Tanaka. Transition routes of natural convection in a vertical fluid

layer. Phys. Fluids, 14:21–24, 2002.



BIBLIOGRAPHY 143

[22] J. Mizushima and H. Tanaka. Transition routes of natural convection in a vertical fluid

layer. J. Phys. Soc. Jap., 71:2898–2906, 2002.

[23] S. Xin. Simulation Numérique de Convection Naturelle Turbulente. Ph.D. thesis, Université

Paris VI, 1993.

[24] D. R. Chenoweth and S. Paolucci. Gas flow in vertical slots with large horizontal temper-

ature differences. Phys. Fluids, 28:2375–2374, 1985.

[25] D. R. Chenoweth and S. Paolucci. Natural convection in an enclosed vertical air layer with

large horizontal temperature differences. J. Fluid Mech, 169:173–210, 1986.

[26] P. Le Quéré. A note on multiple and unsteady solutions in a tall cavity. ASME J. Heat

Transfer, 112:965, 1990.

[27] S. Wakitani. Flow patterns of natural convection in an air-filled vertical cavity. Phys.

Fluids., 10:1924, 1998.

[28] H. Gunes. Low-order dynamical models of thermal convection in high-aspect-ratio enclo-

sures. Fluid Dyn. Res., 30:1–30, 2002.

[29] B. Lartigue, S. Lorente, and B. Bourret. Multicellular natural convection in a high aspect

ratio cavity: experimental and numerical results. Int. J. Heat Mass Transfer, 43:3157–3170,

2000.

[30] J. L. Wright, H. Jin, K. G. T. Hollands, and D. Naylor. Flow visualization of natural

convection in a tall, air-filled vertical cavity. Int. J. Heat Mass Transfer, 49:889–904, 2006.

[31] M. Nagata and F.H. Busse. Three-dimensional tertiary motions in a plane shear layer. J.

Fluid Mech., 135:1–26, 1983.

[32] A. Chait and S.A. Korpela. The secondary flow and its stability for natural convection in

a tall vertical enclosure. J. Fluid Mech., 200:189–216, 1989.

[33] R.M. Clever and F.H. Busse. Tertiary and quarternary solutions for convection in a vertical

fluid layer heated from the side. Chaos, Solitons, Fractals, 5(10):1795–1803, 1995.



144 BIBLIOGRAPHY

[34] A. Suslov and S. Paolucci. Stability of non-boussinesq condition via the complex Ginzburg-

Landau model. Fluid Dyn. Res., 35:159–203, 2004.

[35] A. Suslov and S. Paolucci. Nonlinear analysis of convection flow in a tall vertical enclosure

under non-Boussinesq conditions. J. Fluid Mech., 344:1–41, 1997.

[36] J.-P. Eckmann. Roads to turbulence in dissipative dynamical systems. Reviews of Modern

Physics, 53(4):643–654, 1981.

[37] J. Maurer and A. Libchaber. Rayleigh-Bénard convection experiment in liquid helium;

frequency locking and onset of turbulence. Le Journal de Physique Lettres, 40:419–423,

1979.

[38] M. Giglio, S. Musazzi, and U. Perini. Transition to chaotic behavior via a reproducible

sequence of period-doubling bifurcations. Phys. Rev. Lett., 47(4):243–246, 1981.

[39] Y. Pomeau and P. Manneville. Intermittent transition to turbulence in dissipative dynam-

ical systems. Communication in Mathematical Physics, 74:189–97, 1980.

[40] P. Bergé, M. Dubois, P. Manneville, and Y. Pomeau. Intermittency in Rayleigh-Bénard

convection. Le Journal de Physique - Lettres, 41:149–153, 1980.

[41] R.J.A. Janssen and R.A.W.M. Henckes. Influence of Prandtl number on instability mech-

anisms and transition in a differentially heated square cavity. J. Fluid Mech., 290:319–344,

1995.

[42] H. Ishida, S. Kawase, and H. Kimoto. The second largest Lyapunov exponent and transition

to chaos of natural convection in a rectangular cavity. Int. J. Heat Mass Transfer, 49:5035–

5048, 2006.

[43] A. Lizee and J.I.D. Alexander. Chaotic thermovibrational flow in a laterally heated cavity.

Phys. Rev. E, 56(4):4152–4156, 1997.



BIBLIOGRAPHY 145

[44] D.A. Bratsun, A.V. Zyuzgin, and G.F. Putin. Non-linear dynamics and pattern formation

in a vertical fluid layer heated from the side. International Journal of Heat and Fluid Flow,

24(6):835 – 852, 2003.

[45] J. R. Phillips. Direct simulations of turbulent unstratified natural convection in a vertical

slot for Pr=0.71. Int. J. Heat Mass Transfer, 39(12):2485–2494, 1996.

[46] J.W. Elder. Turbulent free convection in a vertical slot. J. Fluid Mech., 23:99–111, 1965.

[47] T.A.M. Versteegh and F.T.M. Nieuwstadt. Turbulent budgets of natural convection in an

infinite, differentially heated, vertical channel. Int. J. Heat Fluid Flow, 19:135–149, 1998.

[48] T.A.M. Versteegh and F.T.M. Nieuwstadt. A direct numerical simulation of natural convec-

tion between two infinite vertical differentially heated walls scaling laws and wall functions.

Int. J. Heat Mass Transfer, 42:3673–3693, 1999.

[49] M. Wang, S. Fu, and G. Zhang. Large-scale spiral structures in turbulent thermal convec-

tion between two vertical plates. Phys. Rev. E, 66:066306, Dec 2002.

[50] P. Hall. Vortex-wave interactions: long-wavelength streaks and spatial localization in nat-

ural convection. J. Fluid Mech., 703:99–110, 2012.

[51] A. Sergent and P. Le Quéré. Long time evolution of large scale patterns in a rectangular

Rayleigh-Bénard cell. In K. Bajer, J. Kopec, M. Kursa, K. Kwiatkowski, and P. Podziem-

ski, editors, 13th European Turbulence Conference(ETC), 12-15 September 2011, Warsaw,

volume 318 of Journal of Physics Conference Series, 2011.

[52] B. Podvin and A. Sergent. Proper orthogonal decomposition investigation of turbulent

Rayleigh-Bénard convection in a rectangular cavity. Phys. Fluids, 23(10):105106, 2012.

[53] S. Xin, J. Chergui, and P. Le Quéré. 3D spectral parallel multi-domain computing for

natural convection flows. In D. Tromeur-Dervout, G. Brenner, D.R. Emerson, and J. Er-

hel, editors, Parallel Computational Fluid Dynamics 2008, volume 74 of Lecture Notes in

Computational Science and Engineering, pages 163–171. Springer Berlin Heidelberg, 2011.



146 BIBLIOGRAPHY

[54] P. Le Quéré. Numerical methods for incompressible flow. Lecture Notes, Université Pierre

et Marie Curie, Paris, France, 2010.

[55] G. Labrosse. Méthodes spectrales: méthodes locales, méthodes globales, problèmes

d’Helmholtz et de Stokes, équations de Navier-Stokes, chapter 12, pages 168–170. Techno-

sup. Ellipses, 2011.

[56] P. Haldenwang, G. Labrosse, S. Abboudi, and M. Deville. Chebyshev 3-D spectral and 2-D

pseudospectral solvers for the Helmholtz equation. J. Comput. Phys., 55:115–128, 1984.

[57] D.W. Ruth. On the transition to transverse rolls in an infinite vertical fluid layer - a power

series solution. Int. J. Heat Mass Transfer, 22:1199–1208, 1979.

[58] C. Cossu. Introduction to hydrodynamic instabilities. Lecture Notes, Ecole Polytechnique,

Palaiseau, France, 2009.

[59] P. Huerre. Open shear flow instabilities. In G.K.Batchelor, H.K. Moffatt, and M.G.

Worster, editors, Perspectives in fluid dynamics A collective introduction to current re-

search, pages 159–229. Cambridge University Press, 2000.

[60] R.D. Henderson and D. Barkley. Secondary instability in the wake of a circular cylinder.

Phys. Fluids, 8:1683–1685, 1996.

[61] J.C.R. Hunt, A.A. Wray, and P. Moin. Eddies, streams, and convergence zones in turbulent

flows, volume 1, pages 193–208. Center for Turbulence Research, Stanford University, 1988.

[62] C. Ho and P. Huerre. Perturbed free shear layers. Ann. Rev. Fluid Mech., 16:365–424,

1984.

[63] S. Randrianifahanana. Écoulement de convection naturelle en grande cavité. Internship

report, Master 1, Université Pierre et Marie Curie, 2013.

[64] J. Jiménez and P. Moin. The minimal flow unit in near-wall turbulence. Journal of Fluid

Mechanics, 225:213–240, 4 1991.



BIBLIOGRAPHY 147

[65] P. Manneville. Review course on instabilities in hydrodynamics. Lecture notes, Instabilities

in Hydrodynamics 2012 Summer School, 2012.

[66] J. C. Sprott. Chaos and Time-Series Analysis, chapter 5. Oxford University Press, 2003.

[67] E. Ott. Chaos in Dynamical Systems. Cambridge University Press, 2002.

[68] C. Grebogi, E. Ott, F. Romeiras, and J. Yorke. Critical exponent for crisis-induced inter-

mittency. Phys. Rev. A, 36:5365–5380, 1987.

[69] M.J.Feigenbaum. Universal behavior in nonlinear systems. Los Alamos Sciences, 1:4–27,

1980.

[70] E.N. Lorenz. Deterministic nonperiodic flow. J. ATM. SCI., 20:130–141, 1963.

[71] P. Manneville. Instabilities, chaos and turbulence. Imperial College Press, 2004.

[72] C. Grebogi, E. Ott, and J. Yorke. Chaotic attractor in crisis. Phys. Rev. Lett., 48:1507–

1510, 1982.

[73] C. Grebogi, E. Ott, and J. Yorke. Crisis, sudden changes in chaotic attractor and chaotic

transients. Physica D, 7:181–200, 1983.

[74] G. Benettin, L. Galgani, A. Giorgilli, and J. Strelcyn. Lyapunov characteristics exponent

for smooth dynamical system and for hamiltonian system: a method for computing all of

them. Meccanica, 15:9–30, 1980.

[75] J.D. Scheel. Rotating Rayleigh-Bénard Convection. Ph.D. thesis, California Institut of

Technology, 2007.

[76] J. D. Scheel and M. C. Cross. Lyapunov exponents for small aspect ratio Rayleigh-Bénard

convection. Phys. Rev. E, 74:066301, Dec 2006.

[77] Z. Gao, A. Sergent, B. Podvin, S. Xin, P. Le Quéré, and L.S. Tuckerman. On the transition

to chaos of natural convection between two infinite differentially heated vertical plates.

Phys. Rev. E, 88:023010, Aug 2013.



148 BIBLIOGRAPHY

[78] I. Melbourne, P. Chossat, and M. Golubitsky. Heteroclinic cycles involving periodic so-

lutions in mode interactions with O(2) symmetry. Proceedings of the Royal Society of

Edinburgh: Section A Mathematics, 113:315–345, 1989.

[79] D. Armbruster, J. Guckenheimer, and P. Holmes. Heteroclinic cycles and modulated trav-

elling waves in systems with O(2) symmetry. Physica D, 29:257–282, 1987.

[80] C. Gissinger. A new deterministic model for chaotic reversals. The European Physical

Journal B, 85(4):1–12, 2012.

[81] B. Gallet, J. Herault, C. Laroche, F. Pétrélis, and S. Fauve. Reversals of a large scale

field generated over a turbulent background. Geophysical & Astrophysical Fluid Dynamics,

106:468–492, 2012.

[82] J.C. Sommerer, W.L. Dittio, C. Grebogi, E. Ott, and M.L.Spano. Experimental confirma-

tion of the theory for critical exponent of crisis. Physics Letters A, 153:105–109, 1991.

[83] S. Xin and P. Le Quéré. Linear stability analysis of natural convection flows in a differen-

tially heated square cavity with conducting horizontal walls. Phys. Fluids, 13(9):2529–2542,

2001.

[84] C. K. Mamun and L. S. Tuckerman. Asymmetry and Hopf bifurcation in spherical couette

flow. Phys. Fluids, 7:80–91, 1995.

[85] S. Xin. Instabilité de convection naturelle en cavité et méthodes numériques adaptées. 11e

Ecole de printemps de Mécanique des Fluides Numériques, Oléron, France, June 7-13th,

2009.


