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Résumé. Le comportement chaotique d’un rouleau de convection dans une couche de fluide verticale, confinée,
et differentiellement chauffée est présenté. Le chaos temporel est atteint par une séquence de doublements de
périod. Au nombre de Rayleigh plus élevé, l’intermittence induite par la crise a été observée. Un modèle à trois
équations est proposé. Il peut répresenter correctement le dynamique du rouleau de convection.
Abstract. The chaotic behavior of a single convection roll in a highly confined, vertical, differentially heated
fluid layer is studied in the present work. The chaos occurs through a sequence of period-doubling bifurcation.
At higher Rayleigh number, a crisis-induced intermittency is observed. A three-equation model is proposed and
successfully captures the dynamics of the convection roll.

1 Introduction

Natural convection between two vertical differentially heated plates is considered as a classic prototype
for many industrial applications, for example, the doubled-panel window or the plate heat exchangers.
Depending on the aims of applications, the transition to turbulence is intented to be promoted or delayed.
In the present study, we consider the instabilities onset and chaotic behavior of the flow, when the Rayleigh
number Ra is increased. The flow is characterised by cat’s eye-like convection rolls when Ra is above the
critical Rayleigh number Rac = 5708. At higher Ra, these convection rolls are found to be connected
by oblique vorticity braids in the case of a transversely confined domain [1,2]. In this work we focus on
the dynamics of a single convection roll by considering a small periodic domain, using direct numerical
simulation (DNS) [3]. In the spirit of [9], we derive a low-order model to capture the main dynamics of
the flow.

2 Physical model and numerical methods

The flow of air between two infinite vertical plates maintained at different temperatures is considered as
in Figure 1 (a). The distance between the plates is D, and the periodic dimensions of the plates are Lz

and Ly respectively. The temperature difference between the two plates is ∆T . The direction x is normal
to the plates, the transverse direction is y, and the gravity g is opposite to the vertical direction z. The
fluid properties of air, such as kinetic viscosity ν, thermal diffusivity κ, thermal expansion coefficient β,
are constant. Four nondimensional parameters characterizing the flow are the Prandtl number Pr = ν

κ
,

the Rayleigh number based on the width of the gap between the two plates Ra = gβ∆TD3

νκ
, and the

transverse and vertical aspect ratio Ay = Ly/D and Az = Lz/D, respectively. Only the Rayleigh number
is varied in the present study. The Prandtl number of air is fixed to 0.71. The transverse aspect ratio is
set to be Ay = 1, the vertical aspect ratio is set to Az = 2.5, which corresponds to the critical wavelength
λzc = 2.513 obtained by the stability analysis [1].

2.1 Equations of motion

The flow is governed by the Navier-Stokes equations within the Boussinesq approximation. Here t denotes
time, −→u = (u, v, w) is the velocity vector, p is the pressure, θ is the temperature. The nondimensionalized
equations are:

∇ · −→u = 0 (1)
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∂−→u
∂t

+−→u · ∇−→u = −∇p+
Pr√
Ra

∆−→u + Prθ−→z (2)

=
1√
Ra

∆θ (3)

with Dirichlet boundary conditions at the plates

−→u (0, y, z, t) = −→u (1, y, z, t) = 0, θ(0, y, z, t) = 0.5, θ(1, y, z, t) = −0.5 (4)

and periodic conditions in the y and z directions.

(a) Study domain (b) t = 1 (c) t = 8 (d) t = 15 (e) t = 22 (f) t = 29

Figure 1. (a) Study domain; (b)-(f): Q-criterion visualization of flow structure at selected times spanning one
oscillation period at Ra = 11500, Q = 0.1 colored with vorticity Ωx.

2.2 Numerical methods

A spectral code [3] developped at LIMSI is used to carry out the simulations. The spatial domain is
discretized by the Chebyshev-Fourier collocation method. The projection-correction method is used to
enforce the incompressibility of the flow. The equations are integrated in time with a second-order mixed
explicit-implicit scheme. A Chebyshev discretization with 40 modes is applied in the direction x, while the
Fourier discretization is used in the transverse and vertical directions. 30 Fourier modes are used in the
transverse direction y for Ay = 1, while 60 Fourier modes are used in the vertical direction z for Az = 2.5.
Convergence of the spatial discretization has been established [1]. We run our simulations by following
a branch of stable solutions. An instantaneous flow realization in the periodic regime at Ra = 11300 is
taken as the initial condition for the first run. For each following run, the Rayleigh number is increased
by an small increment ∆Ra of 2. At each Ra, the data is sampled when the asymptotic regime has been
reached, i.e after long time numerical integrations (about 104 nondimensional time units). A solution in
this asymptotic regime is then used as the initial condition for the simulation at the next higher Ra.

3 DNS results

3.1 Periodic regime

As reported in [1], the flow becomes 2D steady then 3D steady through two supercritical pitchfork
bifurcations at Ra = 5708 and Ra = 9980. The flow structure consists of a primary roll deformed in its
transverse direction, with two counter-rotating braids of oblique vorticity originating from the roll [1].
Then via a Hopf bifurcation at Ra = 11270, the flow becomes time-dependent. The roll and braids grow
and shrink alternatively and periodically as shown in 1 (b)-(f), where the periodic exchanges of energy
and enstrophy between the primary roll and braids take place. The time period of the oscillation TDNS

osc

is about 28 convective units.
Spatial 2D Fourier analysis can provide a useful description of the flow. For example the vertical

velocity can be expressed as w(x, y, z, t) =
∑

lk

ŵlk(x, t)e
2iπ( ly

Ay
+ kz

Az
)
, where i =

√
−1. The first Fourier

modes ŵlk of the vertical velocity on the plane at x = 0.0381 are represented in Figure 2 for l, k equal
to 0 or 1. We checked that these results did not depend on the distance of the plane to the wall. It
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confirms that the energy is concentrated in the mean mode ŵ00, then in the first Fourier mode in each
direction ŵ01 and ŵ10. All other modes represent less than 8% energy of mode ŵ10. This suggests that
the dynamics is restricted to a limited number of degrees of freedom and could be approximated with a
low order model (see section 4).
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Figure 2. (a)-(b) Temporal evolutions of Fourier modes ŵlk obtained by the Fourier transform of the vertical
velocity w distribution on an arbitrarily chosen vertical plane at x = 0.0381, Ra = 11500. (c) Bifurcation diagram
obtained by using the local maxima θn of the temperature timeseries at the point (0.038 0.097 0.983).

3.2 Period-doubling cascade

As the Rayleigh number increases, a sequence of period-doubling bifurcations is observed, which leads the
flow to a temporally chaotic regime [1]. A bifurcation diagram of Figure 2 (c) is constructed from local
maxima θn of the temperature timeseries at the point (0.038 0.097 0.983). With a linear extrapolation, we
estimated the local critical Rayleigh numbers for each period-doubling bifurcation, from which we calcu-
lated the Feigenbaum constants (Table 3.2). Some agreement with the theoretical value δ = 4.66920161....
is observed [4]. Using the theoretical Feigenbaum number, the chaotic regime is estimated to be reached
around Ra ∼ 12320. For higher Rayleigh numbers, the chaos continues to develop as shown in the bifur-
cation diagram (Figure 2 (c)). Several periodic windows are also observed. For example, a large ’period-6
windows’ is observed at Ra = 12350 in Figure 2 (c). We used the computation technique proposed by
Benettin et al. [5] to calculate the largest Lyapunov exponent. As shown in Figure 3 (a), the largest
Lyapunov exponent is found to be positive for Ra ≥ 12360, which suggests that temporal chaos has been
reached. The flow still follows the basic oscillation displayed in the periodic regime, but the maximum
roll and braid amplitudes vary from one cycle to the other, as is evidenced in Figure 3 (b)-(d).

Bifurcations Local critical Estimated Feigenbaum constant

2i → 2i+1 Ra2i→2i+1 δ̃
0-1 11270
1-2 12068.09
2-4 12258.42 4.193
4-8 12305.76 4.020
8-16 12316.72 4.321

3.3 Crisis-induced intermittency

The bifurcation diagram for the range Ra ∈ [12400, 12600] is represented in Figure 3 (e). At Ra = 12546,
a new set of local maxima abruptly appears on the top-right corner. This is the sign of another type of
crisis [6]. Figure 4 (a) shows that the phase of the first Fourier mode ŵ01 for Ra = 12600 intermittently
experiences a shift of π. The time between phase switches appears to be random, but decreases with the
Rayleigh number. A description of the flow structure is given by streamlines plots in Figure 4 (b) (c): the
roll randomly switches between two vertical positions separated by a distance equal to half the wavelength
of the coherent structure. The switch of flow structures suggests the existence of a heteroclinic connection
between two chaotic attractors, which are located on the O(2)×O(2) invariant torus of chaotic solutions.
Structurally stable heteroclinic connections between fixed points or periodic solutions have been shown
to exist in the systems with O(2) symmetry [7,8]. Such connections are typically associated with a 1 : 2
or 0 : 1 : 2 resonance. It is not clear if such resonances are present here. Moreover, we are not aware of
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Figure 3. (a) The largest Lyapunov exponent λ1 at different Rayleigh numbers; (b)-(d) Flow streamlines at three
instants separated by a basic oscillation period TDNS

osc = 28 at Ra = 12380 on the vertical planes y = 0.5; (e)
Bifurcation diagram obtained by using the local peaks θn of the timeseries at the point (0.038 0.097 0.983). Note:
the vertical line in the figure corresponds the largest Rayleigh number in Figure 2 (c).

theoretical results for heteroclinic connections between two strange attractors. At Ra = [13000, 13100]
and [14200, 14500], two periodic ”windows” regimes are observed. The periodic orbits correspond to both
a modulation and a shift of the roll and braids. The time scale τ characterizing the average time length
during which the convection roll remains at a fixed location obeys the power law τ ∼ (Ra−Raci)

−γ with
a value of γ ∼ 0.78 (see Figure 4 (d)). As pointed out in [6], for one-dimensional maps with quadratic
maxima, the critical crisis exponent γ is strictly equal to 1

2 , while for higher-dimensional maps, γ is larger
than 1

2 . It suggests that our system has a fractal dimension larger than 1. The largest Lyapunov exponent
λ1 in the intermittency regime (Figure 3 (a)) shows an increase by a factor of 10 between the chaotic and
intermittent regimes, which corresponds to the modification of the flow associated with the roll shift.
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Figure 4. (a) Phase of the temporal evolution of the Fourier mode ŵ01 calculated on the vertical plane x = 0.0381,
Ra = 12600; (b)-(c) Flow streamlines at different instants on the plane y = 0.5; (d) log
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The slope of the straight line gives γ ≈ 0.78.

4 Lower-order model

4.1 Model for the periodic regime

In the periodic regime (section 3.1), the plot of Fourier modes in Figure 2 (a) shows that the intensities
of the braids and the roll fluctuate in quasi-phase opposition. The phase of the roll mode (Figure 2 (b))
is not exactly constant, which shows that the rolls lightly oscillates around a fixed position. Timeseries
of the different physical variables show that all the components assoicated with a given Fourier mode
oscillate in phase. Based on these observation and in the spirit of [9], we propose a three equation model
to represent the flow behaviors, which reads as

ȧ01 = B1(< a00 > −a00)a01 (5)

ȧ10 = B2(< a00 > −a00)a10 (6)

ȧ00 = 2B1(|a01|2− < |a01|2 >) + 2B2(|a10|2− < |a10|2 >) (7)
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where < a00 >, < |a01|2 >, < |a10|2 > are constants extracted from the DNS. The details of model
derivation can be found in [10]. At Ra = 11500, using the coefficients in Table 1, the model yields a
characteristics period of T about 28 convective units, in agreement with DNS. Figure shows the time
series from the DNS and the model integrated from the same initial condition. The agreement between
the model and the simulation is quite good for the modes ŵ00 and ŵ01. The less energetic mode ŵ10 is
not quite as well reproduced, which is likely to be an effect of truncation.

Ra 11500 12500 12800

TDNS
osc 28 28 28

(< |ŵ01| >, |ŵ01|
min, |ŵ01|

max) (88,55,127) (88,1.7,204) (88,0,210)

(< |ŵ11| >, |ŵ10|
min, |ŵ10|

max) (48,34,61) (48,0.93,92) (48,0,100)

(< |ŵ00| >, |ŵ00|
min, |ŵ00|

max) (818,757,882) (837,680,1033) (845,665,1050)

(B1, B2) (1.2e-03, -0.9e-03) (1.3e-03, -1.1e-03) (1.2e-03,-1.1e-03)

Table 1. Statistics of the vertical velocity w in the simulation and values of the model coefficients at different
Rayleigh numbers
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Figure 5. (a) Comparison between the model and the simulation at Ra = 11500: from top to bottom, |ŵ00|,
|ŵ01|, |ŵ10| ; (b)-(c)Velocity Fourier modes on the plane x = 0.5 at Ra = 12500: (b) DNS, (c) model with β = 0.5,
T ′ = 25

4.2 Modelling the chaotic regime

In the chaotic regime, nonlinear interaction involving modes excluded from the truncation are expected
to influence the dynamics of the low-order model. The dominant mode outside the truncation is found to
be pure vertical mode ŵ02 We therefore simply model the influence of higher-order modes by introducing
a periodic perturbation of amplitude β in the evolution equation of the vertical mode ŵ01. Owing to the
strong transverse confinement, we did not perturb the transverse mode ŵ10, so that only equation (5)
was modified as follows:

ȧ01 = (µ1 −B1a00)a01 + βsin(2πt/T ′). (8)

The frequency of the perturbation 1/T ′ was chosen to be close to that of the oscillation (T ′ = 25). For
the typical value β = 0.5, a modulation of the amplitudes was observed, as is evidenced by the phase
portraits in Figure 5 (b) (c).

4.3 Modelling intermittency

As Ra increases, the nonlinear interaction is supposed to involve more modes excluded from trunction,
which will result as a complex external forcing for the reduced model. We model it by adding random
noise (in the form of a Gaussian perturbation) to the system. The perturbation is solely applied to the
vertical mode ŵ01, with an amplitude larger than 5% of the mean roll amplitude, then the intermittency
can appear in the system as shown in Figure 6.
5 Conclusion

The chaotic behavior of a single convection roll in highly confined, vertical, differentially heated fluid layer
is studied. The flow becomes temporally chaotic through a sequence of period-doubling bifurcations.



6 Gao & Podvin & Sergent & Xin

0 500 1000
−500

0

500

1000

1500

time
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Figure 6. Real part of the Fourier modes ŵ01, ŵ10, ŵ00 at Ra = 12800: (a) DNS , (b) model with Gaussian noise
of 5% amplitude

A bifurcation diagram is constructed from the temperature timeseries of a point in the flow, which
represents some similitude to the one-dimensional map, for example, periodic windows, interior crises.
The largest Lyapunov exponent is found to be positive. At higher Ra, a crisis-induced intermittency is
observed, whereby the structure makes random excursions between two vertical positions separated by
half a wavelength. The mean intermittency period between the excursions scales as (Ra−Rac)

0.78 over a
range of Ra. Two periodic windows corresponding to stable orbits were identified within the intermittent
regime. The temporal behavior of the roll can be captured by a three equation model, which are based
on the three principal Fourier modes. The model predicts the limit cycles which are close to the ones
observed in DNS. By adding a periodic perturbation account for higher-order modes, the model can
miminic the chaotic behavior of the roll. Alternatively, intermittency can be obtained by introducing a
relatively high amplitude random perturbation to the system. The model displays excursions in phase
space corresponding to the roll shift as in DNS. Although the present study was carried out in a domain
of small dimensions, we believe that the mechanisms identified here could help us understand the complex
dynamics of convection rolls observed in laterally heated cavities.
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