Changements d'échelle en modélisation de la qualité de l'air, et estimation des incertitudes associées

Soutenance de thèse – Doctorat de l'École Nationale des Ponts et Chaussées, Université Paris-Est

Irène Bourdin-Korsakissok

Co-direction Vivien Mallet et Bruno Sportisse

Modélisation de la qualité de l'air

- Impact sanitaire, écosystèmes,
- Accidentel : risque industriel et radiologique...

Grande variété d'échelles spatiales et temporelles des processus physiques

I. Bourdin-Korsakissok (CEREA)

Moyennes annuelles de dioxyde d'azote (NO2)

Variabilité spatiale des émissions

Variabilité spatiale des concentrations de NO₂ due à l'hétéorogénéité spatiale des émissions routières (Airparif) Sources ponctuelles et hétérogénéités du vent

Différentes échelles météorologiques

Échelle	Taille caractéristique	Phénomène atmosphérique
Micro-échelle	< 1 km	Météorologie locale, turbulence
Méso-échelle	1 km–1000 km	Mouvements convectifs
Échelle synoptique	10 ⁴ km	Mouvements synoptiques

Représentation de la couche limite atmosphérique (CLA), de hauteur $H \sim 100$ m–2 km, et du cisaillement de vent.

La CLA est la part de l'atmosphère directement influencée par le sol, dans un temps caractéristique d'une heure.

I. Bourdin-Korsakissok (CEREA)

Temps de résidence des espèces dans l'atmosphère

Déterminé par les processus de perte :

- Dépôt sec, lessivage,
- Décroissance radioactive,
- Réactions chimiques,
- Condensation/évaporation, coagulation...

Phénomène atmosphérique	Temps carac. (s)	Espèce chimique
Turbulence	10 ⁻¹ –1	OH, HO ₂
Mouvements convectifs	10 ² –10 ³	NO, NO ₂
Convection, orage	10 ³ –10 ⁴	CH ₂ O, Isoprène
Mouvements synoptiques	10 ⁵ –10 ⁶	H_2O, SO_2
Circulation générale	10 ⁷	O ₃ troposphérique, CO
Changement climatique	10 ⁸ –10 ⁹	CH ₄

Hiérarchie d'applications, hiérarchie de modèles

Méthodes de changements d'échelles

- Méthodes numériques
- Couplage de modèles
- Paramétrisations sous-maille
- Méthodes stochastiques
- Séduction d'échelle statistique

Méthodes de changements d'échelles

- Méthodes numériques
- Couplage de modèles
- Paramétrisations sous-maille
- Méthodes stochastiques
- Séduction d'échelle statistique

Maillages imbriqués (nesting)

Méthodes de changements d'échelles

- Méthodes numériques
- Couplage de modèles
- Paramétrisations sous-maille
- Méthodes stochastiques
- Séduction d'échelle statistique

Méthodes de changements d'échelles

- Méthodes numériques
- Couplage de modèles
- Paramétrisations sous-maille
- Méthodes stochastiques
- Séduction d'échelle statistique

Méthodes de changements d'échelles

- Méthodes numériques
- Couplage de modèles
- Paramétrisations sous-maille
- Méthodes stochastiques
- Séduction d'échelle statistique

$$\underbrace{\langle \Lambda\left(\boldsymbol{p}\right)\rangle}_{\textit{Moyenne}} = \int \underbrace{\mathcal{P}(\boldsymbol{p})}_{\textit{PDF}} \Lambda\left(\boldsymbol{p}\right) \mathrm{d}\boldsymbol{p},$$

p paramètre physique (gouttes de pluie...)

Méthodes de changements d'échelles

- Méthodes numériques
- 2 Couplage de modèles
- Paramétrisations sous-maille
- Méthodes stochastiques
- Séduction d'échelle statistique

Plan

Couplage : modèle de panache sous-maille

- Description : modèle à bouffées et couplage
- Panache sous-maille passif à l'échelle continentale
- Panache sous-maille réactif à l'échelle régionale

Réduction d'échelle statistique

- Principes de la réduction d'échelle pour la qualité de l'air
- Application à l'échelle européenne
- Réduction de dimension

Description : modèle à bouffées gaussiennes

- Émission ponctuelle continue, de débit Q_s : discrétisation en une série de bouffées, séparées par un pas de temps Δt_{puff}
- 2 Distribution gaussienne dans les trois directions pour chaque bouffée,
- Onditions météorologiques uniformes au sein d'une bouffée.

- Bouffée *i* émise au temps $t_i = i\Delta t_{puff}$,
- Coordonnées xⁱ_c, yⁱ_c et zⁱ_c,
- Si vent constant \overline{u} selon x: $x_c^i(t) = x_s + \overline{u} (t - t_i),$

• Écarts types
$$\sigma_x^i(t-t_i)$$
, $\sigma_y^i(t-t_i)$, $\sigma_z^i(t-t_i)$.

Description : modèle à bouffées gaussiennes

Écarts types gaussiens

- Paramétrisations empiriques (expériences de dispersion),
- Dépendent de la distance x (ou du temps t), et de la météorologie,
- Trois paramétrisations : Briggs, Doury, théorie de la similitude

Modèles gaussiens de Polyphemus - première partie de la thèse

- Modèle gaussien de panache (« plume ») et à bouffées (« puff »),
- Évaluation sur des expériences de dispersion (Prairie Grass, Kincaid), bons résultats
- Sensibilité aux paramétrisations, incertitudes

Référence : Korsakissok, I. et Mallet, V. (2009a). Comparative study of Gaussian dispersion formulae within the Polyphemus

platform : evaluation with Prairie Grass and Kincaid experiments. J. Applied Meteor. DOI : 10.1175/2009JAMC2160.1. In Press.

Description : couplage – principe

- Couplage modèle eulérien modèle à bouffées pour les sources ponctuelles
- Bouffées « injectées » dans le modèle eulérien au bout d'un certain temps (« temps d'injection »)

Description : couplage – méthodes d'injection

Critères d'injection : (1) temps fixé ou (2) taille de la bouffée

 Injection sur une colonne : la masse de la bouffée est répartie dans les mailles sur la verticale, dans la colonne où se situe son centre.

Injection répartie : La répartition de la masse est faite sur la verticale et l'horizontale, sur les mailles couvertes par la bouffée.

Application à l'échelle continentale : ETEX

Questions posées

- Quel est l'impact d'une meilleure représentation des émissions sur les concentrations ? Sur la diffusion ?
- Quelle est la sensibilité aux paramétrisations locales ?
- Quelle est l'échelle (spatiale et temporelle) appropriée pour utiliser le modèle local ? Quelle est l'influence de la résolution du maillage ?
 - ETEX : traceur passif, échelle européenne, 7 jours de mesure
 - Comparaison Polair3D (eulérien) avec/sans traitement sous-maille
 - Temps d'injection : une heure

Référence : Korsakissok, I. et Mallet, V. (2009b). Subgrid-scale treatment for major point sources in an Eulerian model : a

sensitivity study on the ETEX and Chernobyl cases. Journal of Geophysical Research - Atmospheres. DOI :

10.1029/2009JD012774. In Press.

I. Bourdin-Korsakissok (CEREA)

Impact spatial du traitement sous-maille (horizontal)

Concentrations au sol en μ g m⁻³, 5 h après la fin de l'émission (pas de temps 200).

Impact spatial du traitement sous-maille (horizontal)

Concentrations au sol en μ g m⁻³, 38 h après la fin de l'émission (pas de temps 400).

Impact spatial du traitement sous-maille (vertical)

Profils verticaux des concentrations (moyenne sur tout l'espace) en fonction du temps, en μ g m⁻³. Référence (Polair3D).

I. Bourdin-Korsakissok (CEREA)

Impact spatial du traitement sous-maille (vertical)

Profils verticaux des concentrations (moyenne sur tout l'espace) en fonction du temps, en μ g m⁻³. Panache sous-maille, similitude.

I. Bourdin-Korsakissok (CEREA)

Impact spatial du traitement sous-maille (vertical)

Profils verticaux des concentrations (moyenne sur tout l'espace) en fonction du temps, en μ g m⁻³. Panache sous-maille, Doury.

I. Bourdin-Korsakissok (CEREA)

Comparaison aux observations

- MFBE = $\frac{2}{n} \sum_{i=1}^{n} \frac{x_i y_i}{x_i + y_i}$ (biais fractionnel), avec x_i valeurs simulées, et y_i valeurs observées (*n* observations),
- Corrélation = $\frac{\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})(y_i-\overline{y})}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2 \times \frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y})^2}}$, avec $\overline{\alpha}$ la moyenne des α_i sur les *n* observations (α étant *x* ou *y*),
- FAC2(FAC5) = proportion de valeurs simulées à moins d'un facteur 2(5) des observations.

Modèle	Moyenne	MFBE	Corrélation	FAC2	FAC5
Obs	0.21	0.00	1.00	1.00	1.00
Polair3D	0.68	1.07	0.60	0.19	0.36
Similitude	0.48	0.79	0.65	0.19	0.37
Doury	0.39	0.61	0.68	0.20	0.39
Briggs	0.43	0.70	0.51	0.22	0.39

Comparaison aux observations sur 168 stations. Moyenne en µg m⁻³. Panache sous-maille avec l'injection sur une colonne et

un temps d'injection d'une heure.

I. Bourdin-Korsakissok (CEREA)

- Modèle « local », impact « global »
- Effet du panache sous-maille : diffusion verticale en champ proche
- Meilleurs résultats si plus de diffusion (Doury, colonne)

Influence de la résolution du maillage sur l'émission

Résolutions plus fines : ÷8, ÷4, ÷2

• Emission dans une maille, ou répartie sur plusieurs mailles

Influence de la résolution du maillage sur l'émission

- Résolutions plus fines : ÷8, ÷4, ÷2
- Performances moins bonnes à fine résolution

I. Bourdin-Korsakissok (CEREA)

Influence de la résolution sur le panache sous-maille

Corrélation, biais (MBE), FAC2 et FAC5 pour plusieurs résolutions de maillage, pour Polair3D (_ _ _) et le panache sous-maille (différente configurations). Bésolution initiale 0.5°. abscisse 3 (.....).

Impact du panache sous-maille plus grand pour un maillage fin

Temps d'injection fixé (une heure)

6

Influence de la résolution sur le panache sous-maille

Corrélation, biais (MBE), FAC2 et FAC5 pour plusieurs résolutions de maillage, pour Polair3D (- - -) et le panache sous-maille (différente configurations). Résolution initiale 0.5°, abscisse 3 (-----).

Impact du panache sous-maille plus grand pour un maillage fin

I. Bourdin-Korsakissok (CEREA)

Échelle régionale : panache sous-maille réactif

Questions posées

- Quel est l'impact d'une meilleure représentation des émissions sur un panache réactif ?
- Quel est l'impact sur les espèces primaires, secondaires ?
- Impact sur les résultats moyens pour six mois ?
 - Variabilité spatiale et/ou impact aux stations?

Référence : Korsakissok, I. et Mallet, V. (2009c). Development and application of a reactive plume-in-grid model : Evaluation over Greater Paris. Atmospheric Chemistry and Physics. Submitted.

Chimie dans les bouffées : bouffées superposées

- Les espèces d'une bouffée α réagissent entre elles
- Les espèces de bouffées α et β superposées réagissent entre elles
- Les espèces d'une bouffée réagissent avec les espèces de fond
- Volume de la bouffée α $V_{\alpha} = \frac{\langle c_A^{\alpha} \rangle^2}{\langle c_A^{\alpha^2} \rangle}$

 c^{α}_{A} concentration moyenne de l'espèce A dans la bouffée α

 $Q^{lpha}_{A} = \langle c^{lpha}_{A} \rangle$ quantité totale de A dans lpha avec $\langle \ \cdot \ \rangle$ intégrale sur tout l'espace

• Volume de superposition entre deux bouffées α et β $\frac{V_{\alpha\beta}}{V_{\alpha}V_{\beta}} = \frac{\langle C_{A}^{\alpha}C_{A}^{\beta} \rangle}{\langle C_{A}^{\alpha} \rangle \langle C_{A}^{\beta} \rangle}$

 Concentration de superposition de la bouffée α, sur toutes les bouffées β avec lesquelles V_{αβ} ≠ 0
 Concentration de superposition de la bouffée α, sur toutes les bouffées β avec lesquelles

$$\widehat{c_{\mathcal{A}}^{lpha}} = \sum_{eta} \mathcal{Q}_{\mathcal{A}}^{eta} \; rac{\mathcal{V}_{lphaeta}}{\mathcal{V}_{lpha}\mathcal{V}_{eta}} = \sum_{eta} c_{\mathcal{A}}^{eta} \; rac{\mathcal{V}_{lphaeta}}{\mathcal{V}_{lpha}}$$

I. Bourdin-Korsakissok (CEREA)

Chimie dans les bouffées : interaction avec le fond

A + B
$$\stackrel{k}{\rightarrow}$$
 P
 $c^{\alpha}_{A}, c^{\alpha}_{B}$ bouffée
 c^{b}_{A}, c^{b}_{B} fond

$$\frac{dc^{b}_{A}}{dt} = -kc^{b}_{A} c^{b}_{B} - c^{\alpha}_{B} c^{b}_{B} + c^{\alpha}_{A} c^{b}_{B} + c^{\alpha}_{B} c^{b}_{A})$$
interactions

$$\frac{dc^{a}_{A}}{dt} = -kc^{b}_{A} c^{b}_{B} \text{ chimie dans le fond (eulérien)}$$

$$\frac{dc^{\alpha}_{A}}{dt} = \frac{d(c^{\alpha}_{A} + c^{b}_{A})}{dt} - \frac{dc^{b}_{A}}{dt} \text{ bouffée = perturbation du fond}$$
Titration de l'ozone
 $O_{3} + NO \stackrel{k}{\rightarrow} NO_{2} + O_{2}$

• panache de NO_x (NO+NO₂)
• Fond (homogène) d'ozone O_{3}
Dans le panache, O_{3} diminue

I. Bourdin-Korsakissok (CEREA)

Échelle régionale : photochimie en Île-de-France

Sources sélectionnées (●), et stations de mesure rurales (▼) et urbaines (▼). Gauche : SO₂, droite : NO. Le diamètre des cercles est proportionnel au taux d'émission des sources.

- Île-de-France, été 2001 (1^{er} avril 27 septembre)
- Modèle de panache sous-maille avec la chimie des bouffées (RACM, chimie gazeuse complexe), comparaison avec Polair3D
- Injection des bouffées à 20 minutes, similitude, injection colonne
- 89 sources ponctuelles : $Q_s > 10^6 \ \mu g \ s^{-1}$ pour NO_x ou SO₂

Impact spatial du traitement sous-maille

Différences de concentrations au sol : Polair3D - panache sous-maille. Moyenne sur six mois ($\mu g m^{-3}$).

I. Bourdin-Korsakissok (CEREA)

Changements d'échelle

3.5

3.5

3.0 3.5

Comparaison aux observations

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2}$$
, avec x_i valeurs simulées, et y_i valeurs observées.

Espèce	Moyenne	MFBE	Corrélation	RMSE
SO ₂	13.76/11.98	0.66/0.55	0.35/0.31	13.08/11.88
NO	20.93/19.64	0.41/0.36	0.47/0.46	33.08/31.62
NO ₂	35.84/35.23	0.06/0.04	0.58/0.57	35.23/35.84
O ₃	40.24/41.05	-0.46/-0.44	0.68/0.68	30.58/30.18

Comparaison aux observations sur six mois. Moyenne et RMSE en $(\mu g m^{-3})$. Polair3D/panache sous-maille.

- Impact relatif : part des sources ponctuelles dans les émissions
- Espèces primaires vs espèces secondaires

RMSE aux stations

Polair3D,

panache

sous-maille

Conclusion : modèle de panache sous-maille

Conclusions

- Mise en évidence de l'importance la diffusion verticale
- Variabilité due aux paramétrisations locales
- Importance de la météorologie (trajectoire et cisaillement)
- Échelles spatiales et temporelles de l'impact pour les espèces réactives/passives

Perspectives

- Scission des bouffées (météorologie)
- Résolution des champs météorologiques : couplage avec un modèle météorologique local
- Extension du modèle de panache sous-maille aux sources linéiques : émissions routières

Échelle de représentativité des stations

Rayon de représentativité r des stations : émissions, topographie...

 $r_{\rm urbain} < r_{\rm périurbain} < r_{\rm rural} < r_{\rm fond}$

I. Bourdin-Korsakissok (CEREA)

Erreur de représentativité

Erreur de représentativité du modèle

- Échelle de représentativité r d'une station
- Échelle « bien représentée » par le modèle eulérien : L ~ quelques mailles.

 $r \ll L \rightarrow$ erreur de représentativité

 Erreur totale à la station k : écart entre le modèle x_k et les mesures y_k (au temps t)

 $\epsilon_k(t) = x_k(t) - y_k(t) = \epsilon_{k_{\text{représentativité}}}(t) + \epsilon_{k_{\text{modèle}}}(t) + \epsilon_{k_{\text{mesure}}}(t)$

Même un modèle « parfait » (ϵ_{kmodèle} = 0) ferait une erreur aux stations...
Réduction d'échelle : réduire l'erreur de représentativité

Réduction d'échelle statistique

Principe : déterminer une relation statistique entre la variable à grande échelle (sortie du modèle) et la variable à petite échelle (observations)

période d'apprentissage

Période d'apprentissage suffisamment longue (variations météorologiques) : relation « systématique » entre *x* et *y*

I. Bourdin-Korsakissok (CEREA)

Réduction d'échelle statistique

Principe : déterminer une relation statistique entre la variable à grande échelle (sortie du modèle) et la variable à petite échelle (observations)

Régression linéaire à une station

$$\mathbf{y} = \mathbf{X}^{\mathsf{T}} \mathbf{b} + \boldsymbol{\epsilon},$$

- $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)^T$ observations à la station aux temps (t_1, \dots, t_n)
- X = (x₁,..., x_m)^T matrice de taille m × n, sorties de m modèles, avec x_s sorties du modèle s (concentrations interpolées)
- y, x_s centrés : $\overline{y} = 0$, $\overline{x_s} = 0$
- **b** coefficients de régression pour les *m* modèles (taille *m*)
- ϵ résidu de la régression (taille *n*) à minimiser.

Estimation des moindres carrés : $\hat{\boldsymbol{b}} = (XX^T)^{-1}X \boldsymbol{y}$ et $\hat{\boldsymbol{y}} = X^T \hat{\boldsymbol{b}}$

Application à l'échelle continentale

Questions posées

- Quel est l'impact de la réduction d'échelle sur les performances ?
- Quelle est l'influence de la réduction d'échelle en fonction du type de station (rural/urbain), donc de son échelle de représentativité ?
- Quel est l'apport d'un ensemble de modèles ?

Application à l'échelle continentale

- Prévision des pics d'ozone à l'échelle européenne, année 2001
- Réseaux de mesure : Pioneer (154 stations) et Airbase (1247 stations)
- Réduction d'échelle

pour un seul modèle (« modèle de référence »),

2 pour un ensemble de modèles

Prévision à un jour : apprentissage du début de l'année au jour N, prévision pour le jour N + 1 (cinq mois)

Application à l'échelle continentale

- Prévision des pics d'ozone à l'échelle européenne, année 2001
- Réseaux de mesure : Pioneer (154 stations) et Airbase (1247 stations)
- Réduction d'échelle
 - pour un seul modèle (« modèle de référence »),
 - 2 pour un ensemble de modèles

Prévision à un jour : apprentissage du début de l'année au jour N, prévision pour le jour N + 1 (cinq mois)

Réduction d'échelle sur un seul modèle

Stations urbaines. (min : -9.6; max : 1.8)

Stations rurales. (min : -7.8; max : 2.4)

Stations périurbaines. (min : -8.4 ; max : 2.8)

Stations	RMSE modèle	RMSE prévision
Toutes (154)	22.4	21.1 (-6%)
Urbaines (35)	25.4	22.6 (-11%)
Péri-urbaines (47)	24.0	22.9 (-4%)
Rurales (72)	19.5	19.1 (-2%)

Différences de RMSE aux stations, avec le modèle de référence, et après réduction d'échelle (prévision à 1 jour). RMSE sur cinq mois (µg m⁻³).
 Différence négative (•) : la réduction d'échelle diminue la RMSE.
 Différence positive (•) : la réduction d'échelle augmente la RMSE.

I. Bourdin-Korsakissok (CEREA)

Prise en compte de l'ensemble

- Ensemble de 107 modèles : paramétrisations, données d'entrée
- Modèle de référence : « bonne » configuration (Polair3D)
- Choix aléatoire de N_s modèles parmi les 107

RMSE (cinq mois, 93 stations) sur le réseau Pioneer : modèle de référence avec et sans réduction d'échelle, et RMSE pour l'ensemble en fonction du nombre de modèles (μ g m⁻³). Prévision à un jour.

I. Bourdin-Korsakissok (CEREA)

Prise en compte de l'ensemble : colinéarité

Estimation des coefficients de régression : $\hat{\boldsymbol{b}} = (\boldsymbol{X}\boldsymbol{X}^{T})^{-1}\boldsymbol{X}\boldsymbol{y}$ Variance des coefficients de régression : var $(\hat{\boldsymbol{b}}) = \sigma_{\epsilon}^{2} (\boldsymbol{X}\boldsymbol{X}^{T})^{-1}$

Si XX^{T} mal conditionnée, var $(\widehat{\boldsymbol{b}})$ très grand : estimation non fiable... Indicateurs de colinéarité : nombre de conditionnement κ et facteur d'inflation de la variance vif $(\boldsymbol{s}) = \frac{1}{1-R_{s}^{2}}$ avec R_{s} corrélation multiple entre le modèle s et les autres

modèles.

Indicateurs de colinéarité en fonction du nombre de modèles de l'ensemble : moyenne sur les stations, et moyenne sur les modèles pour le vif

I. Bourdin-Korsakissok (CEREA)

Réduction de dimension

- Ohoix de N_s modèles au hasard, ou calibration d'un ensemble
- 2 Décomposition en composantes principales « PCA »
- Oécomposition en composantes principales ajustées « PFC »

Décomposition en composantes principales

- Principe : éliminer les redondances, garder les « modes » dominants
- Vecteurs propres p_k de la matrice $C_{XX} = XX^T$: directions principales

Projection de x(t) sur la base des pk

$$\boldsymbol{x}(t) = \sum_{k=1}^{m} \alpha_k(t) \boldsymbol{p}_k.$$

- Les coefficients α_k(t) sont les composantes principales (orthogonales)
- Les valeurs propres λ_k donnent l'importance des modes (part expliquée de variance de X) → tronquer aux N_m premiers modes

Décomposition en composantes principales

Variance expliquée par un mode $k : \lambda_k / \sum_i \lambda_j$ (puis moyenne sur les stations)

Réduction d'échelle sur les N_m premières composantes principales : RMSE (cinq mois, Pioneer, 93 stations) en fonction du nombre de modes inclus (µg m⁻³). Prévision à un jour.

Décomposition en composantes principales ajustées

Référence : Cook, R. D. (2007). Fisher Lecture : Dimension Reduction in Regression. Stat. Sci., 22(1) :1-26.

- Principe : composantes principales dépendant de X et de y
- PCA sur une matrice \widehat{X} « ajustée » : projection de X sur un espace dépendant de \mathbf{y} : $\widehat{X}^T = P_F X^T$ avec $P_F = F_V^T (F_Y F_V^T)^{-1} F_Y$,
- F_y matrice contenant N_r fonctions de **y** (centré), de taille $(N_r \times N_t)$

• $F_y = y^T$: on a alors $N_r = 1$ (une seule composante)

- 2 Fonctions polynomiales : $F_y = (y^T, y^{2^T}, ...)^T$ relation entre X et y
- Solution F_y contenant N_r fonctions continues par morceaux, définies par

$$f_r(y_k) = \begin{cases} 1 - n_r/N_t & \text{si } y_k \in I_r, \\ -n_r/N_t & \text{sinon,} \end{cases}$$

avec n_r le nombre d'observations dans l'intervalle I_r $f_r(y_k) > 0$ si l'observation au temps t_k est dans I_r , < 0 sinon.

PFC avec les fonctions continues par morceaux

- Section 2014 Section 2014 Constants Choisis sur l'ensemble des valeurs de y.
- 2 « PFC2 » : nombre d'observations « constant » $n_r = rac{N_t}{N_r}$ ($r \in \llbracket 0, N_r \rrbracket$)
- 3 $N_r = 10$: si N_r grand, peu d'observations dans les intervalles ($n_r \sim 0$) : f_r prend des valeurs ~ 0 et F_v est mal conditionnée.

Nombre d'observations inclus dans chacun des intervalles. Abscisse : bornes de chaque intervalle (valeur de l'observation en μ g m⁻³).

I. Bourdin-Korsakissok (CEREA)

Réduction de dimension

Bilan : évaluation des différentes méthodes

Comparaison des performances en prévision (à un jour) aux stations du réseau Pioneer (93 stations).

- « Reference » : modèle de référence (sans réduction d'échelle).
- « 1 model » : réduction d'échelle sur le modèle de référence
- « 20 models » : réduction d'échelle sur un ensemble (20 modèles)
- « Calibrated » : réduction d'échelle sur un ensemble calibré sur les stations rurales (23 modèles)
- « PCA1 » : décomposition en composantes principales (40 modes expliquant 90% de la variance)
- « PCA2 » : décomposition en composantes principales (20 modes)
- « PFC1 » : décomposition en composantes principales ajustées à intervalles constants ($N_r = 10$)
- « PFC2 » : décomposition en composantes principales aiustées à nombre d'observations constant ($N_r = 10$)

Conclusion : réduction d'échelle

Conclusions

- Amélioration en fonction de la représentativité des stations
- Apport de l'ensemble très notable
- Réduction de dimension : intérêt des composantes principales ajustées (meilleurs résultats, plus faible nombre de régresseurs)
- Problème : déterminer les « bonnes » fonctions d'ajustement

Perspectives

- Différentes échelles, différents polluants (plus « locaux », e.g. NO_x)
- Prise en compte de l'erreur modèle via l'ensemble calibré
- Calcul plus fin du rayon de représentativité (covariogrammes)
- Estimation spatiales des concentrations (krigeage)

Conclusions

Bilan et perspectives

- Deux méthodes développées et évaluées, opérationnelles
- Meilleure prise en compte de la variabilité locale : impact aux stations, impact spatial
- Omplémentarité : modélisation et traitement statistique
- Importance de modéliser une échelle plus fine pour *plusieurs* processus (émissions et météorologie...)
- 4 Autres perspectives : maillage adaptatif, méthodes stochastiques

Merci de votre attention

47 / 43

I. Bourdin-Korsakissok (CEREA)