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Abstract

In this article we present a mathematical model of plant structure dynamics by
introducing Dynamic Botanic Graph (DBG) for linear and branch growth patterns.
DBG is designed for better integration of topolgical growth patterns and physiolog-
ical laws into plant architecture models, such that a complete functional-structural
description of plant growth could be readily achieved. Substructure is an efficient
simulation algorithm in tree theory. We interpret substructure formulae in the con-
text of DBG, and its efficiency is proven to be linearly proportional to the number
of physiological ages and the number of chronological ages.
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1 Introduction

By plant functional-structural dynamics, we mean that plant grows along time
driven by morphogenesis rules and by physiological laws. When environmen-
tal conditions and geometrical descriptions are available, the simulation of
functional-structural plant model (FSPM [1]) provides matter productions and
shapes of plant elementary constituents (i.e. individual organs). FSPMs play
an important role in diverse applications in agronomy [25], computer graphics
[16], [4], and plant physiology [3]. There are recent studies on FSPM in differ-
ent spatio-temporal organizations [22], [15], [7], however, a general description
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of plant functional-structural features remains to be an open problem due to
experimental and physiological reasons.

Plant structure refers to topological architecture and geometrical information.
The latter involves the location, orientation and the form of plant constituents
in its three-dimensional canopy; the former describes the topological connec-
tions of these constituents. Architectural (or topological) model, deals with
mainly topological structure, which was initialized by Hallé et al [12] and has
been investigated featured by Multiscale Tree Graph [9], L-systems [17], and
automaton [2]. MTG provides a rigorous mathematical description of mutlis-
cale topological structures, however, these description are rather static snap-
shot of the the growth of plant structure (termed by plant structure dynamics),
but not growth driven by morphogenesis rules. L-systems are general tools for
modelling growing structure by rewriting grammars. Much effort has been
paid to the generation of plant image, and interface to physiological knowl-
edge has been proposed [14]. In the L-systems approach, botanic concepts,
such as that of multiscale structure, are not closely integrated, as somehow
impedes their simulation efficiency and their applications in agronomy. For
the approach of automaton, i.e. Dual-Scale Automaton (DSA) [30], there is a
lack of incremental description of plant structure dynamics.

In this article, we present a mathematical model of plant structure dynam-
ics, which intents to balance the merits of different architectural models. The
model is naturally a descendant of the dual-scale automaton. The botanic
knowledge is respected by adopting the notions from AMAP research group.
Growth grammars are introduced to model the morphogenesis governed by a
botanic clock named growth cycle or chronological age. The graph definition
of multiscale structure is kept. The model is designed for the integration of
not only topological growth patterns discovered by botanists, but also physi-
ological laws when considering varying environment conditions. The attempt
is supposed to leap one step further in plant structure dynamics towards a
general description of complete functional-structural plant characteristics. We
name the model dynamic botanic graph.

The paper is organized as follows. Section 2 is devoted to botanic background
knowledge, in which the model spatio-temporal characteristics is introduced.
Section 4 describes the DBG formulation. Simulation efficiency of substructure
for complex tree structure is illustrated in section 5. The comparison with other
architecture models is discussed in section 6, followed by the conclusion and
perspective of section 7.
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Fig. 1. Botanic notions and dual-scale automaton.

2 Notations

Plant structure dynamics is featured by its temporal-spatio characteristics.
Plant topological structure is organized as series of a hierarchically ascending
scales: metamer, Growth Unit (GU for short), Bearing Axis (BA), substruc-
ture, and the whole plant individual (see figure 1). The architectural elemen-
tary entity, metamer, is composed of a node, the internode from beneath, the
apical bud, the associated organs, i.e. leaves or fruits, and the axillary buds
that can develop into a branch afterwards. The metamorphic variations of
metamers are characterized by a notion of Physiological Age (PA) that refers
to metamorphic phases from vegetative development to floral stage [21]. The
temporal organization is based on the assumption that plant undergo Growth
Cycles (GC) of a biological clock. During each GC the plant metabolism re-
sults in the emergence of a cohort of new organs.

At each GC for one metamer of Physiological Age p, (i) an apical buds (initially
set as seed) forms one GU of a set of new metamers that construct the axis,
(ii) each axillary bud gives birth to one GU that construct the secondary
branches. The two kinds of growth process consequently produce apical and/or
lateral substructures that represent the self-similarity within the plant whole
structure. The new metamers born of both apical and axillary buds may have
the same PA p or a higher PA ¢. Thus the metamer is identified by 4 indices
and denoted as my,(k,n):

e The CA n of the plant.
e The CA k of the metamer, that is, the organs of this metamer have appeared



for £ GCs.
e The PA pe P ={1,..., P} of the bearing axis that the metamer belongs.
e The PA ¢ € P, = {0} U {p,..., P} of the branches that result from the
axillary buds of the metamer.

Here ¢ = 0 indicates no axillary buds, P is the maximal PA, there are totally
f(P) types of metamers:

fr)=ya+n ="

=1

(1)

A metamer may bear several organs of o—type, whose number is denoted by
mg.(k,n) (0 € O = {e,qa, f,c,r}, where e stands for internodes, a for leaves,
f for fruits, ¢ for layers or rings, r for root), as well as apical bud m;, (k,n)
of number bj, and several axillary buds m], (k,n) of number b}, ,q € P, =
{p,..., P}. Usually b), equals one or zero (death of apical bud).

Metamers of same CA k at different plant CA, say n and n+ 1, have different
sizes, due to the environment oscillations and the change of sink abilities of
that type of organ to attract biomass. However when considering topological
structures, the geometry of organs is not of our interest, therefore metamer
mypq(k,n) is reduced to my,, with two indices p and ¢, for buds similarly we
have m» for m[ (k,n), B € B={A,L}.

3 Dual-Scale Automaton [30]

Now we consider the topological occupation of organogenesis. The Growth
Unit of PA p, denoted as U,, is a succession of metamers m,, repeated r,,
times, here ¢ for U, is chosen from a PA index set Q, C P, according to
biological rules or observations. The bearing axis is a concatenation of GU of
different PAs together with the final apical bud. The apical bud of U, can die
or mute to older PA p, after 7,-times repetitions of U,. The axillary buds of
metamer m,,, produce U, that starts the growth of the secondary branches.

The process above can be described by dual-scale automaton thanks to the
notions of macrostate and microstate. Microstate is defined to be the metamer
that is characterized by the PA of its bearing axis and the PA of its axillary
buds, and macrostate corresponds to the growth unit. Therefore a macrostate
consists of succession of microstates. The concatenation of macrostates reflects
the rhythmic growth, and forms the topological structure of the whole plant



(figure 1).

example 1
The parameters for the plant is as

P=3,N=9; byy=1VYq€ Qp; 7m13=2,112=1,793 =2; @)

m=5mn=3m3=1 pmpm=2pu=3,u3=-=.

where o denote death. N is the maximal plant CA. The status transition graph of
dual-scale automaton for this example is shown in figure 1. O

4 Dynamic Botanic Graph

Diagrams in figure 1 are rather directed graphs resulting from the state transi-
tions of automata. The transition functions for both macrostate and microstate
automata are given descriptively in [30].

We emphasize that DSA is already equipped with concept of Chronological
Age, however, it lacks the description of a CA-based dynamics. We enforce
the DSA formularization by introducing Dynamic Botanic Graph (DBG). By
“dynamic”, we mean that the CA-based organogenesis dynamics can be better
elucidated by the notion of growth grammar; by “botanic” we highlight the
botanic organization of macrostate/microstate; and by “graph”, we refer to
the resulting graph of automata state transition. In order to compare DBG
with L-systems, we adopt some notations from [17], [18]. The frontier between
DSA and L-systems is somehow blurred in the presentation of DBG.



4.1  Formulation

Definition 1 We summarize the configuration matrices as follows

= [uplixp, Mutation vector of PAs for apical buds
= [Tp]1xP, Repetition vector for macrostates U,,p € P
= [p?]1xn, Functioning vector for o-type organ

= [rpglPx(p+1), Repetition matriz for microstate mpq in U,

= [bpq] PxPs Count matriz for azillary bud in metamer my,

M, = [my, |pxp+1), Count matriz for organs in metamer mpq, 0 € {b, f}

(3)

Functioning status ¢f indicate the appearance of o—type organ, precisely 0
for inexistence, 1 for appearance, herein N is the mazimal Chronological Age.
The p—row of microstate repetition matriz R signifies the repetition time rp,
of metamer m,, in macriostate U,. When q ¢ Q,,, we have r,, = 0. Usually the
occurrences of different types of metamers comply with a ascending order of q.
The first column of R corresponds the repetition time of metamers that have
no azillary buds. The p+ 1 column of p—row indicates r,, times of repetition
of metamer my, and so on. In the case of all metamers have azillary buds,
we denote R for residue matriz after the erasion of the first column of R
(0-valued), similarly My for M.

\

The configuration A is defined as set of configuration matrices
A={, 7 ,R,B,M,}.

Definition 2 We define the succession order of metamer occupation in macrostate
Up, that is, for g1,q2 € Qp, succession order,

q1 < go, (4)

means that the apical bud m, ~ gives birth to metamer mypq,. The metamer mypq,
is called the ascendant of metamer my,,, and in reverse my,, is the descendant
of Myg,. The last metamer in U, is called Terminal Metamer (TM) of U,. The
first indez in the ordered sequence Q, is denoted by q, and the last q, thus TM
of PA p is denoted by myyg.

Definition 3 Growth Unit formulation

The Growth Unit U, of PA p is a succession of metamers, each metamer
except TM gives birth to its descendant during certain period, the so-called
plastonchron, we denote the formulation of Growth Unit U, for one Growth



Cycle as
Up=[I myy (5)

q€Qp
The relation a - b means adjacent occupation of metamer a and b on the axis
(note that the relation - bears no commutativity, that is, a-b-c # a-c-b). There

are totally 3> rpq plastonchrons in one GC. The sequence [1,cq, follows an
q€Qp
implicit ascending order of q.

For the next GC, the axillary buds m/) and the apical bud of TM m; will
give birth to new Growth Units according to the following definition of growth
grammar.

Definition 4 Growth grammar:

For growth unit U, that repeats r times in its corresponding bearing axis, the
growth grammar or rule for its associated buds qu,B = {L,T} can be ab-
stracted as

primb— U, g€ Qp
paimpr— Uy <1, (6)

ps:miz— Uy, r =1,
The corresponding Uy, = 7, is called Terminal Growth Unit (TGU).

Definition 5 DBG is a triplet G(n) =< M,P, A >, where M = {mpq}pep,qe0,
is an alphabet of metamers with mazimum number P(P+3)/2, P is the growth
grammar, and A is the configuration, G(n) is the string (or graph, defined in
section 5) generated at GC n. Plants always start to grow from seeds, thus we
neglect the initial string (or graph).

4.2 Ezamples

example 2 : Holttum model

Holttum model is a very simple unbranched structure terminated by an inflorescence
([17], page 65). In this case, we have the maximal PA P = 1, the maximal CA
N = n + 1. There is only one metamer (M = {myo}) for macrostate Uj, that is
Uy = mqg. The configuration A is as



R=(1 0,My=(1 0),B=0,7=(s),7 =(n+1)gf =Tp/ =(0...0 1)

The growth grammer P is

pg:mlTor—>m10 r<n-+1
p3:miy— e r=n+1
The CA-based organogenesis dynamics

G@E)=ml,, i=1,...,n+1

example 3: DBG formularization of DSA example 1

From example 1, we have

N =9,P =3,M = {m3,m12,ma3, m30}

The configuration A is as follows (e denotes the death)

0012 011 0011
R=]0002|.B=]|001|-Ma={0001],
1000 000 1000

7=(531)7=(23¢) 9" =T=(111111111)

——

n

(7)

The growth grammar is as (6) abstracts. Macrostates are marked with the accolades

{ }. The U, is interpreted as

. 2
Ul . m13 -mMi2
. 2

Us : mag



4.8 Botanical explanations

Definition 6 Definition of auziliary alphabet for DBG strings.
For convenience the parentheses () is used to mark certain part of the strings,
but does not mean any additional operation. When a metamer my, has dor-

mant buds, it is marked as my,,, and after its buds grow into new metamers,

it is marked as Ty,. Similar to the notions in [18], one can add auziliary
letters to analysis the strings in DBG. For instance, let V' be extended by
Ve =V U{][ |} and Vi = V U {#}. The words that are bracketed by | , |
are lateral branches. The branches can be covered up by # to show the marked
axis.

We list the organogenesis for example 3 at each CA as (10).

CA1:miy- my,

CA2: (Mizlmy])? - Mio[{mds}] - {mf5 - myn}

CA 3 : (M3[Ms0])? - o (s [mso])*{m3s }]
(Ma[my,))? - Mi2[{m3;}] - {mly - myy}

CA 4 (Mira[Mi0])” - Mo (Mg [Miso])? - (Mia[mso])? - m3s)

2 - Mo (Mizs[mso)) *{m3s }]

-mp[{m3s}] - {mis - mio}

CA 5 : (M3[Mis0))? - Mg (Mas[Miso])? - (TMias[Miso])? - (Mias[mze])? - {1mso}]

-(M13[mao])

(M1 [ms0) )2

2

<(M3[Mi30])? - Mo (M3 [Mis0])? - (T2s[mse])? - mis)

2 - Mg [(Tigs[mgg])*{m3; }]
'(m13[m30])2 'm12[{m33}] : {miﬁ. "My}

CA 6 : (M13[Mis0])” - Mg (T23[Miso])” - (TMas[Mis0])? - (Mas[Ms0])? - {70 }]

2

<(m13[mM30])

- (Tis[Ms0])? - (a3 [m30])? - mige]
30])*{ (Mias[m0)?} - {m33}]

30] 2. {mgs}]



CA T (Ms[Miz0))” - o[ (iza[MMz0])? - (M3 [MM30])? - (s [MM30])? - {TM30}]
(M13[Mi30])? - M2 (23 [Mas0])? - (Miza[Mazo])? - (Mazs[MMz0])? - Mz
(M3 [Mizo])? - 2] (23 [Mia0])*{ (Maa[M30) } - (T23) [1m230]” - m230]
-(Mir3[Mis0]) - Mro[(Mias[Mizo])” - (Mias[mag])? - {m33}]
{ (M3 [M30])? - Mo (izs[mso])” - mis]}

(Mg [mize])? - mis

2

CA 8: (My3[Ms0))? - Maz|(M2s[Miz0])? - (Maz[Mize])? - (s [Miz0])? - Tz

2

M13[M30])? - Mo [(Mas[Miso])? - (Mas[Mrs0])? - (s [Ms0]) - Tso)

N

mi3 [mso]

N

)? -
- o[ (M3 [z ])*{ (Miaa[M30)? } - (23 ) [mgo]” - Mgy
)? -

: mlz[(mz?,[ 30] (mzzs[m?,o])2 . (ng [m30])2 'mso]

N

- o[ (g3 [m30]) (m23[m30])2 : m%3]

mi3 [m30]
2

( )
«(m )
«(M13[Mso))
(m )
«(m )

s [Mi30])? - (Mo [msg])? - m3,

CA 9 : (Mmi3[Miso))? - Mao[(Mas[Mis0])? - (Tas[Miso])? + (o [Mis0])? - TMiso]

2

(s [Mi30])? - M| (Tas[Miso])? - (M [Miz0])? - (M23[Miso])? - Mzo]

)2
: m12[(m23 m30])2{(m23[m30)2} : (m23)[m30]2 : m:so]

[\

AULE] [m30]

30])% + (Ta3[Miso])? + (TMas[Mis0])? - Tiso]

N
3
—
N

—

/\
3l
3

N

-(My3[Miso))” - ™ 30])? + (M3 [M30])?] - (M3 [mmag])? - Mg

( )
(m )
«(Mi3[mao])* - M
( )
( )

2

-(Migg[Mizo])? - (s [T - (Tias[mio])? - Mg

(10)
Take C A 3 for instance

(Mr3[Mis0])? - Mo (T3 [mgo]) *mis] - (Mas[mse])® - Mira[m3s] - {m?s - mys}

The main azis is

—92 92 __ 2
Myg = M2 * Mqg - Mi2 * Mg - Myg
The marked axis is

(Ms#)? - Mot - (Maz#)? - Maodt - mis - mys
The lateral branches are

10



[s13] = [S23] = [M0]; [S12] = [(M23[ms0])*mis)

Definition 7 Length function:
The expected number of new buds in some GU Uy that result from for bud mﬁ]
is named length function of metamer my,,, denoted 1g, and equals to (rule 6)

lg(qu) = bfm + > Timbim (11)

meQ;

The length function of growth unit U, is defined as 1g(Uy) = 1g(m]})

Some botanical notions can be illustrated by DBG. For instance, sympodial
development of a metamer m,, can be simulated by defining a physiological
mutation of death (u, = e) for its apical bud m;flq, and a reiteration of axillary
bud, that is, ¢ = p. Implementation of rhythmic growth (not considered yet
in [20]) is straight-forward by the macrostate/microstate definition. Acrotonic
growth of macrostate U, can be described as

18(Spg:) < 18(Spgs ), @< @,02€9 (12)

where let length function Ig of branch s,,, ¢ € Q) signifies the number of letters
other than [ and ] in word sp,.

5 Substructure concept

The substructure concept is interpreted in the context of DBG, as leads to
the proof of substructure dynamics formulae and the linear substructure com-
plexity.

5.1 Formulation

Definition 8 Substructure is a tree graph [9] h = (V,E,< . >), where V is
the set of vertices, £ is the set of edges between two adjacent vertices, < . >
is a mapping from € toV x V called incidence function. For instance, when
edge e is incident with vertices x and y, we have < e >= (z,y), with its initial
extremities denoted by < e| = x and with its its final extremities e >= y.
Two complementary link relationships are defined on the edges, that is, the
succession relationship “<” and the branching relationship “+7, denoted by
the map,

11



0:€— {'+/ <" (13)

In our case, we have ¥V C M, where M 1is defined in definition 5. The root
vertez of substructure of PA p is the first metamer my, of Up.

Definition 9 The substructure b, = (V, &, < . >) is called Bearing Azis (BA)
of PA p, if

V= {mlq” € {p7 My, - - '7IU'P}7q € Ql}
&= {6‘ <e>= (mlqmmlq]‘)’l € {pa Hpy - - 'a/J'P}aq’i < qj, qi, 45 S Ql} (14)
0:&— {'<'}

Definition 10 Branching substructure of PA p is defined as the bearing axis
b, together with all the lateral substructures associated with by, denoted as S,.
Note that the root vertices of these lateral substructures are myg,

le {paup""aMP}’ge Ql-

From the definition of branching structure, we can observe a recursive mech-
anism, that is, the lateral branching structures are composed of branching
structures with same or higher PA.

Definition 11 Macrostate substructure R, of PA p is defined as the macrostate
Uy together with all the lateral substructures associated with U,, denoted as R,
that is, R, is part (subgraph) of S,.

Both S, and R, can bear new metamers during the GC, as consequently change
their topological structures. We therefore denote S,(k) and R,(k) as the sub-
structures that appeared k GC before, that is, the substructures has a CA k.
When considering CA n of the whole plant individual, the geometric proper-
ties of substructures S,(k) and R,(k) evolve accordingly, hence substructures
are denoted as S,(k,n) and R, (k,n) in this case. Therefore the complete plant
is S1(n,n). The bud that is destined to bear S, is denoted as s,.

Definition 12 Two substructures hy = (V1,&1,< . >) and hy = (V,, &, <
.>) are called identical (denoted by hy =hy), if Vi =V, and & = &,.

Proposition 1 All the branching substructure S,(k) of PA p and CA k, are
identical.

Definition 13 The substructure difference h between S; = (V1,&1,< . >) and

12



So = (Vy, &2, < . >) is defined as a directed graph, such that

thl\ng(V,5,<.>)
{veV:veV, andv ¢ Vs} (15)
{e€€:e€& ande ¢ &}

Theorem 1 Substructure dynamics is governed by the following formulae [6]

S,(0) = s, (16)
Sy(k)=Ry(k) - Sp(k —1), 0<k<m,, (17)
Sp(k)=T,(k) - Spy(k —7), k>, (18)

with

R, (k)= g { g () [Sy(k — 1))} (19)

Ty(k) = 111 Ry(1) (20)

proof

(i) Let us start from S,(0) = s,

(ii) The first macrostate U, of Sy is born of s, according to growth grammar (6)
p2: sp —> Up. We have R, (1) = Up, and Sp(1) = R,(1) - Sp(0) = U,,.

(iii) Considering S,(k — 1) and Sp(k) with 0 < k£ < 7,, branching substructure
Sp(k — 1) is formed by (k — 1) times of application of growth grammer (6) p2 on
bearing axis of PA p. Substructure Sp(k)\R,(k) at CA k is also formed by (k — 1)
times of applications of growth grammer (6) pe on bearing axis of PA p, hence
Sp(k —1) and S,(k)\R,(k) are identical (proposition 1). Therefore

Sp(k) = Ry(k) - Sp(k)\Rp(k) = Rp(k) - Sp(k — 1)

and by applying the definition 3 of GU formulation and growth grammar (6) p; on
metamers m,,, we have

Ry(k) = T {mpak) [Syk = 1)<} ™

q€Qp

(iv) Considering Sp(k) with k = 7, 4+ 1, the apical bud of TGU U, mutes according
to growth grammar (6) p3 : mZE > Uy, to form an GU of a terminal branching
substructure S, after 7, times of occupation of U, in the bearing axis b,. The
substructure Sy (k) is then composed of terminal substructure S),, and a series of 7,

13



macrostate substructure R, with ascending CA from the top (CA 2) to the bottom
(CA k) in by. That is

Sp(k =T1p+1) = Rp(1p + 1) - Rp(7p) - .. Rp(2) - Sy, (1)

or in form of
Spk =1p+1) =Tp(k) - Sup(k — Tp)
k—1p+1
TLk=mn+1)= ll—_[k Ry(1)

(v) For k > 7,+1, there will be aging process of substructure S;,, and 7, macrostate
substructure Ry, thus the formulae (18) and (20) are straightforward. [ |

Definition 14 Complezity definition

The complexity of DBG dynamics is defined as the application times of DBG
growth grammar. The complexity of branching substructure is defined as times
of branching substructure sticking.

Theorem 2 For sufficiently complex plant, the Complezity of DBG dynamics
s at least exponentially related to plant chronological age; the complexity of
branching substructure dynamics is at most linearly related to the number of
physiological ages and the number of chronological ages.

proof

Plant can undergo indefinite (infinite) growth, however, for fixed plant growth CA
k, k < oo, the increment times of substructure sticking at CA k is denoted wy,

(i)

For DBA dynamics, when k = 1, there is one application of growth grammar 6
p2 : 81 — Up, thus w; = 1, the number of buds associated with Uy (definition 7) is
a1 = lg( ) lg U1 = b Z 7‘1qb1q

qeQ1
when k = 2, there are a1 applications of growth grammar 6, wo = a1. The length
function of Us;, which appears in GC 2, is ag; = 1g(Us;),7 = 1,...,ws. Denote
w2

ap = minag;, we have wy = > ag; > wy - ag. For CA k, we have similar results

i i=1
Wk > Wg_1 - k1. Let @ = min ¢;, we have recursive relation, wy > a - wg_1, that is,

7

wg > of~1. We assume that the plant has sufficiently complex structure (« > 2).
(ii)
For branching substructure dynamics, let mp,(k) be one application of a branching
substructure. The term [S,(k — 1)]% signifies by, attachments of S;(k — 1). The
increment of sticking times for branching substructure of PA p at its CA k is denoted
wp k- Consider theorem 1, we have Vp € P,

Wp k = Tpg(1 + bpg) + 1, 0<k<T (21)
Wpk = Tp * Tpg(1 + bpg) + 1, k> (22)

14



CA

v

Fig. 2. Computational sequence of substructure, where ‘o’ signifies substructure at
corresponding grid of PA and CA, and ‘=’ indicates the calculation sequence.

(a) Suppose that all substructure Sy(k) can be retrieved from substructure library
S = {S,(k),1 < p < P, 1 <k < N}. For whole individual plant, p = 1. Let
B = maxwi j, we have wy = wy < Bi.

(b) When there is no substructure library, one has to firstly set up the substructure
library, the calculation sequence is thus from physiological-old and chronological-
young substructure to physiological-young and chronological-old substructure (fig-
ure 2). Let gF = max wy,, then wy = Zgzlwp,k <P-BF Let B = m]?,xﬁ’“, 1<k<
N, we have wy < P - 3, that is to say, the substructure complexity is linearly pro-
portional to number of physiological ages and number of chronological ages. Figure
3 shows the substructure computational graph for example 3.

Note that (1) substructure Sp(k) of maximal PA P is the concatenation of metamer
mpo; (2) once Sp(N) is calculated, the substructure library is constructed simul-
taneously. We can then perform more efficient simulation of case (a); (3) usually
B > «; and (4) substructure management is not considered (i.e. queries of substruc-
tures).

5.2 Remarks

The applications of DBG rules and branching substructure attachments are
comparable. The plant computation usually concerns with counting processes
or drawing procedures of organs. For the former, a number is associated with
each macrostate for DBG rules and each substructure in theorem 1; for a
organ drawing procedure, it corresponds to a copy of computer memory for
macrostate or substructure.

The substructure concept is sketched as a highly efficient computational algo-
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Fig. 3. Computational graph of substructure S1(5) and S1(8) in example 3 with
w15 and wy g as their incremental sticking times of substructures, where ‘o’ sig-
nifies substructure at corresponding grid of PA and CA. Arrows ‘=’ and ‘— —’
indicate sticking of physiological-old and chronological-young substructures. Note
that we just plot the computational graph for one GC, in fact the graph can be
processed recursively, say physiological-old and chronological-young substructures
can be linked to substructure S2(4) (marked as e).

rithm ([27], [13]) that features mainly in that (i) once and for all calculations
of substructure instances form a substructure library for both topological and
geometric information; (ii) the strategy, to be temporally economic at the cost
of spatial storage, is carried out in a reverse manner for drawing and counting
process.

The disadvantage of substructure approach is the lost of flexibility. For ex-
ample when considering varying and heterogeneous environmental conditions
within canopy, the two S3(4) (marked as ‘e’ in figure 3) called by S;(5) and
S1(8) respectively are topologically identical but geometrically different, since
two S»(4) undergo different environmental conditions. We thus have to con-
sider environment differences for each substructure of PA p and of CA £ for
the construction of substructure library &, consequently the size of the sub-
structure library will be enormously increased. For efficient simulation, ap-
proximation methods for environment conditions have to be subtly designed,
otherwise one can perform simulation metamer by metamer governed by DBG
rules.
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6 Comparison between DBG/substructure and other morphogen-
esis models

6.1 Comparison between L-systems and DBG/substructure

In brief, a simplest L-systems is a triplet G =< V,w,P >, where V is the
alphabet that includes all the letters of the system, aziom w is the initial
nonempty word for rewriting according to a finite set of rewriting rules P,
called productions [17]. Let V* denote the set of all words over V', and V' the
set of all nonempty words over V, then w € VT, P C V x V*. A production
rule p = (a,x) € P is written as a — Y, signifying that the letter a € V
be substituted by word x. L-systems representation for Holttum model in
example 2 is as follows ([17], page 65)

w: o ap
pi:  ai — I[L]ajy 0<i<n-1
Pn: G, — I[L]A

Pnp1: A= K

where the brackets || delimit branching structures. The n + 2 productions
indicates that after n steps of repetition of rewriting vegetative aper a;,0 <
1 < n —1 by a module that consists of an internode I, a branching leaf L,
and a new apex a;,1, the plant differentiates in the module that consists of an
internode, a branching leaf and a flowering apex A, then A transforms into an
inflorescence (flower) K.

The differences between DBG dynamics (7) and L-systems (23) for Holttum
model lie mainly in (i) for the former organs are organized into botanic notions
of metamer and growth unit etc., whereas for the latter there is no such botanic
organizations; (ii) DBG grammars are fixed according to botanic knowledge,
by contrast, productions of L-systems are flexible and have to be designed
skillfully; (iii) the flower comes into being after a so-called count process for
the latter, whereas for the former, the appearance of flower is governed by

functioning vector ¢’ without a consideration of flowering apex.

Both L-systems and DBG /substructure aim at the description of the complex-
enough plant structure based on a relatively small set of rules (database ampli-
fication in [23]). The rules for L-systems are strictly local, and the specification
of L-systems is not a trivial task [20]. Indeed, even for simple plants like in
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example 3, the L-systems implementation will be much more complex. In ad-
dition, Prusinkiewicz and Kari prove that with only local productions, the
subapical bracket deterministic L-systems can not simulate acrotonic growth
[19]. In other words, we need global information.

By contrast, DBG/substructure focus on the response of the following ques-
tion: How global patterns, like the Hallé’s 23 architectural model, are imple-
mented by relative local growth rules of hierarchical botanic entities?

The local growth rules of microstate/macrostate are complemented by the
configuration A of global patterns. Thus in addition to a CA-based dynamics,
DBG/substructure also takes advantage of the self-similarity thanks to its
botanic clarity, efficiency can thus be achieved (theorem 2).

L-systems, as a general tool, are more powerful. For instance the letters can
have other interpretation, i.e. cell; the local rules or productions are more flexi-
ble; and the rewriting system possibly serves as the analysis of self-replication
[24]. Whereas DBG /substructure is more efficient (since it narrows itself in
plant botanic structures), as is important in realistic applications, such as
optimal control, calibration, etc [26].

6.2 On Multiscale Tree Graph (MTG) and DBG/substructure

Godin and Caraglio investigate plant topological structures, and introduce
multiscale tree graph ([9]) as the backbone of AMAPmod software, which is
developed for the purpose of a formal and computational analysis of plant
architecture patterns based on a platform of a measurement database [10],
benefiting from Hidden Markovian statistics [11].

Both DBG/substructure and MTG originate from AMAP research group,
therefore they share the same botanic notions, such as internode, GU, bearing
axis, etc. DBG even adopts from MTG the graph definition of substructure.
The aim of MTG is to extract structural patterns from database of mea-
surement, whereas DBG /substructure in reverse profits from the given plant
patterns and provides a mathematical description of plant structure dynam-
ics. In figure 4 we show an intermediate interpretation of DBG for example 3
at chronological age 5 and its corresponding MTG.

7 Conclusion and perspective

A mathematical model of plant structure dynamics has been introduced by
balancing the merits of different architecture models in the formulation of dy-
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Fig. 4. (a) DBG Interpretation of ezample 8 at CA 5; (b) Abbreviation notion; (c)
The corresponding MTG graph

namic botanic graph. Substructure has been proven to be efficient simulation
algorithms in the context of DBG.

Dynamic botanic graph is ready to be expanded into a complete functional-
structural plant model by fulfilling physiological laws. The introduction of a
soil water moisture model exemplifies such integration, as leads to possible
agronomic applications on optimal irrigations [25]. Attempts in this direction
can also be found in GreenLab model [28]. For calibration and validation of
the model, please refer to [5], [29]. Further collaborations with botanists are
needed to enrich the growth grammar, such that broader growth patterns can
be represented.
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