
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 137: 1340–1356, July 2011 A

Bayesian design of control space for optimal assimilation
of observations. Part I: Consistent multiscale formalism

M. Bocquet,a,b* L. Wua,b and F. Chevallierc
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In geophysical data assimilation, the control space is by definition the set of
parameters which are estimated through the assimilation of observations. It has
recently been proposed to design the discretizations of control space in order to
assimilate observations optimally. The present paper describes the embedding of
that formalism in a consistent Bayesian framework. General background errors
are now accounted for. Scale-dependent errors, such as aggregation errors (that
lead to representativeness errors) are consistently introduced. The optimal adaptive
discretizations of control space minimize a criterion on a dictionary of grids. New
criteria are proposed: degrees of freedom for the signal (DFS) built on the averaging
kernel operator, and an observation-dependent criterion.

These concepts and results are applied to atmospheric transport of pollutants. The
algorithms are tested on the European tracer experiment (ETEX), and on a prototype
of CO2 flux inversion over Europe using a simplified CarboEurope-IP network. New
types of adaptive discretization of control space are tested such as quaternary trees
or factorised trees. Quaternary trees are proven to be both economical, in terms
of storage and CPU time, and efficient on the test cases. This sets the path for the
application of this methodology to high-dimensional and noisy geophysical systems.
Part II of this article will develop asymptotic solutions for the design of control space
representations that are obtained analytically and are contenders to exact numerical
optimizations. Copyright c© 2011 Royal Meteorological Society
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1. Introduction

1.1. The resolution issue

Researchers using inverse modelling techniques in atmos-
pheric chemistry have faced the so-called ‘resolution
problem’.

A first example is given by the gridded emission
inventories which are multidimensional fields and key

components of the models. Unfortunately, the uncertainty
of these fields is quite high (of the order of 40% for
the ozone precursors in air quality at continental scale,
for instance). Observations could help to constrain the
emission fields through inverse modelling and reduce this
uncertainty, e.g. Elbern et al. (2007) for an application to
the precursors of ozone, or Davoine and Bocquet (2007)
for an application to an accidental release of radionuclides.
Both the model equations and the control space of the
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emission field need to be discretised at some predefined
space and time resolution. The space and time resolutions
of the discretised control space are not necessarily the
same as those of state space. There is a non-trivial choice
of resolution to be made. Furthermore, inventories are
built at a given resolution, the model runs at another, and
the data assimilation scheme injects the information of all
observations into the system at still another scale depending
on the nature of the instruments: ground-based, satellite,
radar, lidar, etc. Therefore, the system should ideally be
considered multiscale.

Another example pertains to the inverse modelling of
greenhouse gases. Early carbon flux inversions relied on a
partition of the globe (the control space of fluxes) into about
20 sub-domains representing several types of continental or
ocean exchange with the atmosphere, with an annual or
monthly time resolution (e.g. Fan et al., 1998; Bousquet
et al., 2000). This was necessary because of the limited
computational power together with a limited number of
precise observations of CO2 concentration. However, such
gross partitioning led to severe aggregation errors (Trampert
and Sneider, 1996; Kaminski et al., 2001). Thus it is tempting
to increase the space and time resolutions of control
space. But the total number of variables could dramatically
exceed the total number of observations. Besides, because
of the nature of transport and dispersion, the inverse
modelling problem is ill-posed. Therefore a regularisation
is needed (Rödenbeck et al., 2003), which can be written
as a Tikhonov regularising term, as is usually done in
geophysical data assimilation. This regularisation, which
spatially and temporally correlates the errors, may stem
from real physical correlations due, for instance, to similar
ecosystems (Chevallier et al., 2006). But it may also be
artificial and correspond to a smooth aggregate of variables.
Note that this distinction is not always made clear in the
literature.

In both cases, there is a difficult choice to be made on the
resolution of control space. To make the problem worse,
Bocquet (2005) has shown that, for atmospheric dispersion
problems, the source estimation of atmospheric pollutant
from inversions using pointwise measurements depends
strongly on the control space resolution, even when using a
proper classical Tikhonov regularisation (background-error
term of quadratic form in the cost function).

1.2. Multiscale approach

To partially solve this resolution issue, a multiscale
framework for such inversions was proposed (Bocquet,
2009). It is at the crossroads between a coarse partitioning
of control space subject to aggregation errors and a highly
resolved control space where regularisation is decisive. The
method consists of constructing an adaptive grid of control
space (also called a representation of control space in the
following). This adaptive grid is optimal in the sense that
it is designed to optimally capture the information carried
by the observations and inject into control space through
a model and the assimilation system. This is achieved
by maximizing an objective function that measures the
reduction of uncertainty granted by the observations on a
space of all potential adaptive grids (later called a dictionary
or class).

The method quantifies how observational information is
propagated into control space. It diagnoses poorly observed

areas. It informs how space- and time-scales should be
related for the problem at hand. Also, it has strong
algorithmic implication. Indeed, the method shows how to
devise adaptive grids of control space that have significantly
fewer grid cells than the original finest regular grid, but
which can still capture most of the information content of
observations. Such an adaptive grid was built and tested
on the European Tracer Experiment (ETEX; Nodop et al.,
1998). The inversion of the source term of this dispersion
event was performed much faster with an optimization over
about 100 times fewer independent variables in this adaptive
grid, with results very similar to those obtained with a regular
fine grid.

The method also offers a starting point for a general
conceptual and mathematical framework for multiscale data
assimilation in atmospheric chemistry, or in other areas of
geophysics.

This two-part article aims to continue and improve the
potential of this formalism and prepare for large-scale
applications. The first part explores a few essential questions
still unanswered, such as

• Can the Bayesian approach that is currently used in
geophysical data assimilation be made consistent with
the multiscale framework of the method?

• Can a non-diagonal background-error covariance
matrix be taken into account in this formalism? Such
matrices are often used in air quality, greenhouse
gas flux inversions and, more generally, in data
assimilation schemes for geophysical forecasting
systems.

• Can scale-dependent errors be accounted for?
• Can one use other grid optimization objective

functions, such as DFS, or observation-dependent
criteria?

• Can one perform the optimization within a simpler
or more economical dictionary of adaptive grids than
the so-called tiling dictionary introduced by Bocquet
(2009)?

The results are obtained with a view to applications in
atmospheric chemistry and air quality, but most of the
findings are more general and could be applied outside this
scope whenever the choice of control space is complex and
decisive.

1.3. Outline

The conceptual and mathematical framework will be
presented in section 2. The multiscale description of
control space is made consistent with the assimilation of
observations using Bayesian principles.

Section 3 deals with errors which may enter the inversions,
and which are scale-dependent. Of particular interest are
the aggregation errors occurring when grid cells are merged.
They lead to representativeness errors.

The construction of optimal representations of control
space requires the definition of a criterion that ranks adaptive
grids in a given dictionary of representations. In addition to
the so-called Fisher criterion introduced by Bocquet (2009),
we add two new criteria in section 4. One is based on the
DFS which measures the theoretical information gain in
the analysis. A third criterion is defined with an objective
function that not only depends on the prior statistics but
also on the observations themselves.

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 137: 1340–1356 (2011)



1342 M. Bocquet et al.

In section 5, most of the developments will be illustrated
on two test cases: the ETEX-I dispersion event using real
measurements and realistic physics (from a chemistry and
transport model), and another demonstration case based on
a simplified European CO2 network (CarboEurope-IP).

In section 6, the dictionary of tilings is compared to a
dictionary of quaternary tree structures (later called qtrees).
Although suggested in Bocquet (2009), the quaternary tree
structure was not tested and studied there.

Finally, in section 7, we summarise the results. We discuss
its connection with other multiscale formalisms introduced
very recently in data assimilation. We also discuss the scope
of the method and its extension to nonlinear models.
Elements that justify the need for Part II (Bocquet et al.,
2011) of this work are explained.

2. Multiscale modelling

This section extends the multiscale approach developed in
Bocquet (2009). It goes farther on several points, and unifies
the concepts using a Bayesian methodology.

2.1. Data assimilation context

A simplified typical data assimilation set-up is employed.
For the data assimilation problem at hand, the control
space, named after its domain �, is discretised into cells
of a grid ω. This grid can be regular (grid cells of equal
size in a given system of coordinates), or not. It may have
several space dimensions, and possibly one time dimension.
For instance, in atmospheric chemistry inverse modelling,
the control space is often the vector space of emission gas
fluxes from the ground, at any time. Therefore there are two
space dimensions plus the time dimension (2D+T). A vector
representing a discretised flux or source field is denoted σ .

A clear distinction is made between control space and state
space, which could be discretised at different resolutions,
although they could share a subspace or even be identical.

We assume that the measurement vector µ is related to
the source σ through a Jacobian matrix H, which stands
for both the system’s evolution model and the observation
operator. It could result from the linearisation of models,
but for simplicity we shall hypothesise that the models are
linear. The equation that links the observation to the source
via the models reads

µ = Hσ + ε , (1)

where ε is the vector of errors (of any type). Note
that space and time are not split up in this simplified
equation, so that H links elements in space and time. We
assume that σ follows a Gaussian prior probability density
function (pdf): σ ∼ N(σ b, B) where σ b is the first guess,
and B the background-error covariance matrix. The errors
are supposed to be unbiased and follow a normal pdf:
ε ∼ N(0, R), where R is the observational-error covariance
matrix. We shall designate by σ a and Pa the analysed source
and the analysis-error covariance matrix respectively. Both
result from a data assimilation or inverse modelling analysis.

2.2. Multiscale framework

The control space discretization is discussed now, as well as
the way to define a multiscale Jacobian.

2.2.1. Multiscale mesh

A multiscale mesh is defined first. It is assumed that the
domain � is discretised into a fine-resolution regular grid,
which represents the finest available discretization. The
number of grid cells in the grid is Nfg. Grid cells at coarser
scales will be obtained by dyadic coarse-grainings of cells
in the finest grid, i.e. two grid cells that are adjacent along
one direction can be merged into a coarser cell (hence the
adjective dyadic which qualifies this binary grouping). The
dyadic coarse-grainings can be performed in each space or
time direction of the domain �. The number of coarse-
grainings in each direction is limited by the number of
accessible scales denoted by nx, ny, and nt for a 2D+T domain
(ETEX-I case), or nx and ny for a 2D domain (simplified
CarboEurope-IP case). In the ETEX-I, and similarly in the
simplified CarboEurope-IP, each coarse-grained cell has an
intrinsic scale vector of integers

l = (lx, ly, lt) ,

where 0 ≤ lx < nx, 0 ≤ ly < ny, and 0 ≤ lt < nt . The scale
levels are set by lx, ly and lt . For each direction, label 0
corresponds to the finest scale. For instance, the cells in the
finest regular grid all share the same scale vector l = (0, 0, 0).

2.2.2. Multiscale Jacobian

Correspondingly, the Jacobian defined in Eq. (1) is
generalized to a multiscale Jacobian. H is usually computed
in the finest regular grid, using either direct forward
simulations or backward adjoint simulations. Then dyadic
coarse-grainings of the Jacobian are performed by simple
averaging. Note that the multiscale Jacobian could also be
defined using several Jacobians obtained at different scales
from different models, or different versions of the same core
model.

2.2.3. Adaptive representations

Using this multiscale framework, one can build represen-
tations (adaptive grids) of �. A representation ω is a set
of cells of many sizes (depending on the scale of the cell),
that cover �. A set, or dictionary, of representations will
generically be called R(�). Besides, a representation will be
called admissible, if it is a strict partition of �. That is, a
single grid cell corresponds to each point in �.

Several kinds of multiscale structures were contemplated
in Bocquet (2009). In each case, successive time coarse-
grainings were represented by a binary tree. 2D space could
be considered as the tensor product of two binary trees, one
for each space direction. This means that the grid cells, or
tiles of such a representation are the Kronecker products of
two 1D elements of binary trees, one for each direction. This
led to the so-called tiling representations.

In the case of two directions of space, one could use
instead a quaternary tree, called qtree later. This means that
each mother tile can be refined into four daughter tiles,
instead of two. This reduces the space occupied by the
multiscale Jacobian at the expense of a smaller (therefore
less rich) dictionary R(�). Note that the dictionary of
qtrees is included in the dictionary of tilings (any qtree
is a tiling). In Figure 1, a 2D tiling made of the tensorial
product of two binary trees, one for each space direction,
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Figure 1. Schematic illustration of three types of structure, in two dimensions. (a) shows the tensorial product structure of two binary trees, one for Ox,
one for Oy, to produce a collections of 2D tilings. (b) shows the direct product structure of two binary trees (or ftree), one for Ox, one for Oy. (c) shows
a quaternary tree structure, or qtree. In each case, an example of a generated grid is drawn.

is plotted. An example of qtree is also shown. A third type
of representation, which is the direct product of two binary
trees (called factorised tree or ftree later) is also displayed.

2.3. Restriction and prolongation

To climb up or down the scales in the multiscale ladder, one
needs to define a restriction operator that tells how a source
is coarse-grained, and a prolongation operator that tells how
the source is refined through the scales. Rodgers (2000) gives
an in-depth discussion on the topic.

First, let us consider the restriction operator. Assume σ is
a source vector which is known in the finest regular grid. Let
ω be an adaptive representation of a dictionary R(�). The
coarse-graining of σ in ω is defined by σω = �ωσ , where
�ω : R

Nfg → R
N stands for the coarse-graining operator.

This operator is supposed to be unambiguously defined.
In most of the article, we suppose it identifies with
simple averaging. But the formalism does not rule out
more complex coarse-graining with associated prolongation
operator given by a spline interpolation, or model-specific
coarser Jacobians.

A source can also be refined thanks to a prolongation
operator ��

ω : R
N → R

Nfg which refines σω into σ = ��
ωσω.

This operator is ambiguous, since additional information
is needed to reconstruct a source at higher resolution. One
possible choice, which we shall call the deterministic one,
is to set ��

ω = �T
ω. A schematic of the use of the restriction

and prolongation operators is displayed in Figure 2
However, in this data assimilation framework, one has

prior information on the source that may be exploited.
The pdf q(σ ) gives prior information on σ . Following
the statistical assumptions after Eq. (1), it is chosen to be
Gaussian q(σ ) ∼ N(σ b, B). From this prior defined in the
finest regular grid, one can infer, thanks to �ω, the prior pdf
of σ in representation ω

qω(σω) ∼ N(σ b
ω, Bω) , (2)

with

σ b
ω = �ωσ b , Bω = �ωB�T

ω . (3)

Conversely, assume one knows σω in representation ω. Since
the problem is underdetermined, then one could opt for the

most likely refinement. It is given by the mode of q(σ |σω).
From Bayes’ rule, it is clear that

q(σ |σω) = q(σ )

qω(σω)
δ (σω − �ωσ ) , (4)

where δ is the Dirac distribution. Then the mode of this
posterior Gaussian distribution is given by

σ � = σ b + B�T
ω

(
�ωB�T

ω

)−1
(σω − �ωσ b) . (5)

Thus ��
ω would be an affine operator. We denote by ��

ω its
tangent linear component

��
ω ≡ B�T

ω

(
�ωB�T

ω

)−1
. (6)

Moreover, we define

�ω ≡ ��
ω�ω = B�T

ω

(
�ωB�T

ω

)−1
�ω , (7)

so that we can choose as a prolongation operator

��
ω ≡ (INfg − �ω)σ b + ��

ω , (8)

where INfg is the identity operator. Since the refinement is
now a probabilistic process, errors are attached to it. The
corresponding error covariance matrix is

P�
ω = B − B�T

ω

(
�ωB�T

ω

)−1
�ωB

=
(

INfg − �ω

)
B . (9)

As expected, if the representation ω is close to the finest
grid, {Nfg − Rank(�ω)}/Nfg � 1, the refinement error is
negligible. If the representation is coarse, Rank(�ω)/Nfg

� 1, the refinement error is limited by that of the
background.

Those operators first satisfy

�ω��
ω = IN , (10)

which is a consistency identity. Any reasonable prolongation
operator should satisfy it. Then, one verifies that

��
ω�ω =

(
INfg − �ω

)
σ b + �ω . (11)
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Figure 2. Schematic of the restriction and prolongation operators from the
finest regular grid to a representation (adaptive grid) ω, and vice versa.

The linear operator �ω is a projector since it can be checked
that �2

ω = �ω. Besides, it is B−1-symmetric since

〈x, �ωy〉B−1 = xTB−1B�T
ω

(
�ωB�T

ω

)−1
�ωy

= xT�T
ωB−1y

= 〈�T
ωx, y〉B−1 , (12)

where 〈, 〉B−1 is the scalar product built on B−1. In matrix
form, this is equivalent to

�ωB = B�T
ω . (13)

�ω cannot be the identity because the coarse-graining
implies a loss of information that, in general, cannot be
fully recovered. The approach will be called the Bayesian or
probabilistic prescription of ��

ω.

2.4. Observation equation in any representation

The mathematical formalism being laid, the observation
equation Eq. (1) can be written in any representation ω

of R(�). The Jacobian H becomes Hω = H��
ω. Inheriting

from ��
ω, Hω is an affine operator. The observation equation

reads

µ = Hωσω + εω = H��
ω�ωσ + εω

= Hσ b + H�ω(σ − σ b) + εω . (14)

The error εω has been made scale-dependent, because
several sources of errors depend on the scale, such as the
aggregation errors, or the errors in model subgrid physical
parametrisations.

2.5. Reduction of the correlated case

When B is not diagonal, correlation between errors of values
defined on different tiles will occur. Non-zero covariances
in B may come from true physical correlation in the errors.
They may also come from imposed correlations between
variables, a form of variable aggregation, or coarse-graining.
This second case is discarded here because our coarsening
scheme already copes with this explicitly.

Off-diagonal terms in B, which induce correlations
between tiles, complicate the optimization scheme con-
siderably. In particular the calculation of ��

ω entails the

representation-dependent computation of the inverse of
Bω.

One way out of this is to redefine the original coarsening
scheme �ω so that B induces no error cross-correlations
between coarse-grained tiles. To do so, one defines a new
coarse-graining operator, a substitute for �ω:

�̃ω = �ωB−1/2 . (15)

This implies that the adaptive grid cells no longer represent
a partition of the control space domain. Instead, they
are (a priori) statistically independent linear combinations
of the former cells. Coarse-graining is now applied
to these combinations, maintaining the property of
statistical independence, rather than to the original grid
cells.

As a result, redefining �ω into �̃ω, the background-error
covariance matrix in representation ω becomes

Bω = �̃ωB�̃
T
ω = �ω�T

ω . (16)

Also the prolongation operator Eq. (8) changes according to

σ̃ �
ω = σ b + B�̃

T
ω

(
�̃ωB�̃

T
ω

)−1(
σ̃ω − �̃ωσ b

)
= σ b + B1/2�T

ω

(
�ω�T

ω

)−1(
σ̃ω− �ωB−1/2σ b

)
. (17)

As a consequence, one obtains

�̃ω�̃
�

ω = IN , (18)

�̃
�

ω�̃ω = B1/2�T
ω(�ω�T

ω)−1�ωB−1/2 = �̃ω . (19)

One checks also that �̃ω is B−1-symmetric.

3. Accounting for scale-dependent errors

The observations in µ are representative of some scale. This
scale may not be accessible to modellers. Vector µ is related
to σ at the finest scale, but also σω at a coarser scale through
Eq. (1) and Eq. (14):

µ = Hσ + ε = Hωσω + εω . (20)

Then consistency would impose that the errors are scale-
dependent (hence the notation εω), because the numerical
model is.

3.1. Scale-free errors

In Bocquet (2009), only scale-independent errors ε were
considered. It means that these errors are attached to the
observations themselves (instrumental errors), or pertain to
model errors that are scale-free. For the sake of consistency,
the measurements themselves are to be scale-dependent in
this case:

µω = Hωσω + ε . (21)

This is a natural standpoint in a synthetic data assimilation
experiment performed at several scales. In this context, each
Jacobian at different scales is assumed to be derived from
a perfect model, so that discretization errors are discarded.
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The synthetic measurements of such an experiment
are

µt
ω = Hωσ t

ω , (22)

where σ t
ω = �ωσ t. These synthetic measurements are pos-

sibly made noisy. This is the point of view adopted
by Bocquet (2005) and Saide et al. (2011). Hω could
either be obtained by coarsening of H or by several
models at several resolutions that are assumed per-
fect.

Since scale-dependent errors are discarded, this type
of study is ideal to assess the signal in the observations
without bothering about scale-dependent biases in the
model, especially representativeness errors.

3.2. Errors due to aggregation only

Let us assume that errors are specified in the finest grid
level, ε = µ − Hσ , and that they may originate from many
sources. Then, errors at larger scale εω = µ − Hωσω are
supposed to be solely due to this original error, plus
errors entirely due to coarsening, or aggregation error
that leads to representativeness error. In that case, the
model scaling is entirely explained by the coarsening Hω =
H��

ω. Since µ = Hσ + ε = Hσ b + H�ω (σ − σ b) + εω,
the aggregation error, or scale-covariant error, can be
identified:

εω = ε + H
(

INfg − �ω

)
(σ − σ b) . (23)

Assuming independence of the error and source error priors,
the computation of the covariance matrix of these errors
yields

Rω = R + H
(

INfg − �ω

)
BHT . (24)

The fact that �ω is B−1-symmetric has been used in the

derivation. Since H
(

INfg − �ω

)
BHT is a positive matrix,

the mean variance of the errors always increases because of
the aggregation.

Intuitively, the statistics of the innovation vectorµ − Hσ b

should not depend on the scale. However, when written in
terms of errors, the innovation depends formally on the
representation ω:

µ − Hσ b = µ − Hωσω + Hωσω − Hσ b

= εω + Hωσω − Hωσ b
ω

= εω + Hω

(
σω − σ b

ω

)
. (25)

We have used the fact that:

µb = Hωσ b
ω = H�∗

ω�ωσ b

= Hσ b + H�ω(σ b − σ b) = Hσ b . (26)

This paradox is only superficial since one can check that the
statistics of the innovation are truly scale-independent:

Rω + HωBωHT
ω

= R + H(INfg − �ω)BHT + H�ωB�T
ωHT

= R + HBHT . (27)

More generally, an analysis performed in the representa-
tion ω is obtained by coarsening the analysis at the finest
scale. Hence, in this case, the multiscale formalism has no
theoretical benefit compared to performing data assimila-
tion in the finest grid (although there are major practical
advantages). This can be understood by applying Bayes’ rule
directly, using Gaussian statistics,

q(σω|µ) = q(µ|σω) q(σω)

q(µ)

∝ exp

{
−1

2
(σω − σ b

ω)TB−1
ω (σω − σ b

ω)

−1

2
(µ − Hωσω)TR−1

ω (µ − Hωσω)

}
. (28)

This leads to the estimate

σ a
ω = σ b

ω + BωHT
ω

(
Rω + HωBωHT

ω

)−1
(µ − Hσ b)

= �ω

{
σ b + BHT

(
R + HBHT

)−1
(µ − Hσ b)

}
= �ωσ a , (29)

with σ a the emission estimation in the finest grid.
The analysis-error covariance matrix transforms similarly
according to

Pa
ω = �ω

{
B− BHT

(
R + HBHT

)−1
HB

}
�T

ω

= �ωPa�T
ω , (30)

where Pa is the analysis-error covariance matrix in the finest
grid. This can also be consistently obtained, through the
finest scale:

q(σω|µ) =
∫

dσ q(σω|σ , µ) q(σ |µ)

=
∫

dσ δ (σω − �ωσ ) q(σ |µ) , (31)

which yields Eqs (29) and (30), by a simple convolution of
Gaussian pdfs.

3.3. Scale-dependent model errors

As a first step, the errors were assumed to be scale-
free εω ≡ ε, for instance coming from the observation:
instrumental errors. Then, in addition, aggregation errors
were taken into account by coarse-graining at fine resolution:

εω ≡ ε + εc
ω, where εc

ω = H
(

INfg − �ω

)
(σ − σ b).

A third decomposition could involve
(i) the scale-independent observation error εo which would
also include model error that could be scale-independent,
(ii) an error due to discretization εc

ω (coarse-graining), and
a model error that would be scale-dependent εm

ω :

εω = εo + εc
ω + εm

ω . (32)

On the one hand Tr
(
E

[
εc

ω(εc
ω)T

])
would be decreasing as the

resolution increases. On the other hand, Tr
(
E

[
εm

ω (εm
ω )T

])
may have various behaviours depending on how the physics
of the problem is parametrised and how the errors of the
parametrisations depend on scale.
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For instance, and for the latter source of errors, a large
error increase is observed in atmospheric dispersion, when
increasing the resolution of the atmospheric dispersion
model beyond the reliable resolution of the meteorological
fields used to drive the simulations.

In the rest of the article, we shall assume that the errors
that are modelled account for scale-independent errors of all
kinds, plus the scale-covariant aggregation errors. Additional
scale-dependent model errors will not be considered.

4. Optimality criteria and optimization

4.1. Three optimality criteria

In addition to a multiscale formalism, the dependence of
errors on the scale has been studied. Now, the optimal design
of the representation of control space can be introduced.
Three possible criteria of optimality are tested.

4.1.1. The Fisher criterion

Given our original incentive, which is to construct an
adaptive grid of control space, optimal for data assimilation,
the optimality criterion must be a measure of the quality of
the analysis. In Bocquet (2009), the following criterion was
chosen

J = Tr
(
BHTR−1H

)
. (33)

It is inspired by the Fisher information matrix, normalised
by the background-error covariance matrix, so that the
criterion is invariant by a change of coordinate in control
space (for a given grid). Specifically, it measures the
reduction of uncertainty granted by the observations.

In a representation ω, the criterion reads

Jω = Tr
(

BωHT
ωR−1

ω Hω

)
. (34)

The operator Hω = H��
ω is the tangent linear operator of

the affine operator Hω (which explains the difference of
notation). Because only the linear part of Hω survives when
averaging over the errors to obtain second-order moments,
Hω appears in the criterion rather than Hω.

If one assumes that the errors are essentially scale-
independent, then Rω � R. In that case, Jω can be written
in terms of �ω using the machinery developed earlier:

Jω = Tr
[
�ωB�T

ω

(
��

ω

)T
HTR−1H��

ω

]
= Tr

[
�ωB�T

ωHTR−1H
]

. (35)

Using the Bayesian prolongation operator ��
ω that makes

use of the prior, one obtains further

Jω = Tr
(
�ωBHTR−1H

)
, (36)

owning to the B−1-symmetry of �ω.
But, if the errors are scale-covariant following Eq. (23),

the Fisher criterion Eq. (33) reads

Jω = Tr
[
BωHT

ωR−1
ω Hω

]
= Tr

[
�ωBHT

{
R+H(IN − �ω)BHT

}−1
H

]
, (37)

which is more difficult to optimize because of the nonlinear
dependence of Jω in �ω. The additional term is expected to
increase the trust in the finest grid descriptions rather than
the coarser ones.

4.1.2. Degrees of freedom for the signal

The dependence in �ω is actually simpler if the criterion (to
be maximized) is chosen to be

Jω = −Tr
[
B−1

ω Pa
ω − IN

]
= Tr

[
HωBωHT

ω

(
Rω + HωBωHT

ω

)−1
]

= Tr
[
�ωBHT

(
R + HBHT

)−1
H

]
, (38)

using the innovation statistics scaling, Eq. (27).
This criterion Jω = Tr

(
IN − B−1

ω Pa
ω

)
is known to

measure the number of DFS, i.e. the information load
that helps resolve the parameter space. It is actually more
common in data assimilation literature than the cost
function (Eq. (36)). In the absence of any source of errors,
the DFS are equal to the number of scalar observations that
are assimilated (p here). In the presence of errors, the DFS
ranges between 0 and the number of observations p, because
the information of the observations is also used to resolve the
noise (Rodgers, 2000). So the maximization of Jω entails
maximizing these degrees of freedom, which seems very
natural. Note that criterion Eq. (36) is the limiting case of
this DFS criterion when R is inflated or when B vanishes.

In this vein, given an admissible representation ω,

εl,k = vT
l,kBHT

(
R + HBHT

)−1
Hvl,k

vT
l,kHvl,k

(39)

would represent the number of degrees of freedom per grid
cell or tile. It is an objective measure of the data density
(Rodgers, 2000) in parameter space.

4.1.3. Data-dependent criterion

One could consider the relative entropy, that is to say a gain
in information, attached to the reconstructed parameters of
control space (such as source variables). When the inference
leading to the reconstructed source is Bayesian, and when the
statistics are Gaussian, this information gain is (Kleeman,
2002)

KBayes
σ = 1

2
ln

∣∣∣B (
B−1 + HTR−1H

) ∣∣∣
+ 1

2
Tr

[(
B−1+HTR−1H

)−1
B−1− IN

]
+ 1

2
(µ−Hσ b)T(R + HBHT)−1

×HBHT(R+HBHT)−1(µ−Hσ b) ,

(40)

whereas in a maximum entropy inference context, only the
third term of Eq. (40) appears (Bocquet, 2008):

Kσ =1

2
(µ − Hσ b)T(R + HBHT)−1

×HBHT(R + HBHT)−1(µ − Hσ b) .

(41)

This term is a measure of the gain of information on
the estimate of the source, whereas the additional terms in
Eq. (40) focus on the gain in the knowledge of the uncertainty
of this estimate. The former measures the information
gain on the first-order moment, while the latter measures
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the information gain on the second-order moments. The
average of the Bayesian result over all potential µ is

Eµ

[
KBayes

σ

]
= 1

2
ln

∣∣∣I + BHTR−1H
∣∣∣ , (42)

whereas in the maximum entropy case, it is

Eµ [Kσ ] = 1

2
Tr

[
(R + HBHT)−1HBHT

]
, (43)

which is half of the DFS.
Therefore, Eq. (41) could be used as a criterion for

its simplicity and its physical interpretation. Applied to a
representation ω, and defining Jω ≡ Kω

σ , it reads

Jω =Tr
[
BωHT

ω(Rω + HωBωHT
ω)−1(µ − µb)

×(µ − µb)T(Rω + HωBωHT
ω)−1Hω

]
,

(44)

where µb = Hσ b = Hωσ b
ω is scale-independent. The choice

of the scale-covariant error Eq. (23) leads to

Jω =Tr
[
�ωBHT(R + HBHT)−1(µ − µb)

× (µ − µb)T(R + HBHT)−1H
]

,
(45)

where the cyclic property of the trace operator has been
used. Contrary to the Fisher and DFS criteria, this criterion
depends on the observation vector µ. By Eq. (43), when
averaged over all possible sources and errors following the
prior statistics, it yields half of the DFS criterion.

The total gain of information both on the source and on
the errors in the maximum entropy inference is

Kσ ,ε =Kσ + Kε

= 1

2
(µ − µb)T(R + HBHT)−1(µ − µb) .

(46)

Using a scale-covariant error Eq. (23) implies that Kσ ,ε

is scale-invariant. However, Kσ is not. Therefore the
information is distributed differently depending on the
scale, or more generally the representation ω.

4.2. Reduction of the criteria in the correlated case

When B is not necessarily diagonal, a redefinition of the
original restriction operator �ω into �̃ω = �ωB−1/2 was
advocated. Let us take the example of the Fisher criterion.
With this redefinition, the optimality criterion becomes

Jω = Tr
(
�̃ωBHTR−1H

)
= Tr

(
�ωB1/2HTR−1HB1/2

)
, (47)

where �ω is now reduced to

�ω = �T
ω

(
�ω�T

ω

)−1
�ω , (48)

where �ω is the original coarse-graining restriction operator
obtained by simple averaging. Similar results can be obtained
for the other two criteria.

In the following, we shall assume that either B is
proportional to the identity, or one applies the above
redefinition to �ω. Although this reduction of the correlated
case is to be used in future work and needed to be addressed
in this methodological article, it will not be directly used in
the following test cases.

4.3. Algebraic formalism

Since the main goal is to optimize the representations of
control space, we need to transform this abstract description
of the multiscale structure and errors into numerical
mathematics. For each tile at scales l, a vector vl,k in R

Nfg is
defined. Here l = (lx, ly, lt) represents the scales of the tile,
k is the tile index in the set of tiles of the same type (i.e.
of the same scales l). Recall that the finest regular grid is
made of the tiles of scales l = (0, 0, 0). By construction, these
tiles are in one-to-one correspondence with the canonical
vectors {ei,j,h} of R

Nfg . At a coarser scale, a tile at scales l
can be partitioned into finer grid cells of the finest regular
grid. Correspondingly, its vector vl,k is defined as the sum of
the canonical vectors {ei,j,h} representing the finest grid cells
that compose the tile:

vl,k =
2lx∑

δi=1

2ly∑
δj=1

2lt∑
δh=1

eik+δi−1, jk+δj−1, hk+δh−1 , (49)

where ik, jk and hk are the smallest indices of the finest tiles
composing tile (l, k).

From Eq. (7), and using the fact that B is proportional
to the identity by definition or after the above redefinition
Eq. (15), one obtains an explicit formula for �ω:

�ω =
∑

l

nl∑
k=1

αω
l,k

vl,kvT
l,k

vT
l,kvl,k

, (50)

where nl is the number of tiles in the set of tiles with scale
vector l, which runs on all predefined scales 0 ≤ lx < nx,
0 ≤ ly < ny and 0 ≤ lt < nt . The coefficients αω

l,k define
representation ω: αω

l,k is 1 when tile (l, k) belongs to the
representation ω and is zero when it does not. Equation (50)
can be checked by applying projector Eq. (7) on any vector
vl,k. From now on, the superscript ω on αω

l,k will be dropped
to simplify the notation.

Since B is (truly or effectively) diagonal, then for any
two vectors, vT

l,kBvl′,k′ is non-zero, if and only if the two
vectors correspond to overlapping tiles. If they belong to
an admissible representation (the tiles form partition of �),
then the matrix element is non-zero only if (l, k) = (l′, k′).

Then, inserting Eq. (50) into Eq. (47), the cost function
reads

Jω =
∑

l

nl∑
k=1

αl,kεl,k , (51)

where εl,k = vT
l,kWvl,k/vT

l,kvl,k. For instance, in the case of the

Fisher criterion one has W = B1/2HTR−1HB1/2. The local
energy εl,k is a local measure of the contribution of the cell
to the cost function.

In the following subsection we assume that Jω is of this
form.

4.4. Solving for optimal representations

The goal is to optimize the functional Eq. (51) on all
admissible representations. In order to lift the constraint
of admissibility (the tiles cannot overlap), one introduces a
Lagrangian. A fixed number of tiles is imposed thanks to
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a single multiplier ζ . The one point:one tile requirement
is imposed thanks to a vector λ of Nfg multipliers. Each
multiplier is associated with one grid cell of the finest
regular grid. The Lagrangian reads

L(ω) =
∑

l

nl∑
k=1

αl,k εl,k +
Nfg∑
k=1

λk

(∑
l

αl,̃k − 1

)

+ ζ

(∑
l

nl∑
k=1

αl,k − N

)
.

(52)

The sum on k = 1, . . . , Nfg runs on all cells of the finest
grid. In this sum, αl,k̃ is the coefficient attached to the tile
at scale l that covers cell k from the finest grid. This tile has
index k̃ among the nl tiles related to scale l. The Lagrangian
can also be written as

L(ω) =
∑

l

nl∑
k=1

(
εl,k + vT

l,kλ + ζ
)
αl,k −

Nfg∑
k=1

λk − ζN . (53)

Then the maximum can formally be taken on all
representations, admissible or not, with any number of
tiles in [Ncg, Nfg], where Ncg is the number of grid cells in
the coarsest regular grid. As a first step, the optimization is
performed on the set of coefficients αl,k that have been freed
from the constraints through the multipliers. This is made
easier (to a limited extent) by the fact that αl,k can only be
0 or 1. Then one obtains an effective cost function of the
Lagrange parameters:

L̂(λ, ζ ) = max
ω∈R(�)

L(ω) = max
αl,k

L(ω)

=
∑

l

nl∑
k=1

max
(
0, εl,k + vT

l,kλ + ζ
)

−
Nfg∑
k=1

λk − ζN . (54)

Because this cost function is dual to L(ω), it needs to be
minimized, not maximized (Borwein and Lewis, 2000).
Note that the cost function is not smooth since it is
non-differentiable on the edges of a polytope. Hence,
optimization on the Lagrange parameters cannot make
direct use of gradient-based minimization techniques.
Besides, this functional may not be convex, nor is it
guaranteed that it has a single minimum. To overcome
these potential problems, a regularisation of this effective
cost function is needed.

A statistical mechanics analogy was used earlier by
Bocquet (2009) to solve this problem. We develop here an
equivalent analytical approach through information theory.
We look for the least committed representation, described
by a pdf q(α) in the vector α, given that all constraints
are satisfied on average. At finite temperature β−1, the
optimal pdf is the one that maximizes the criterion with a
weight β , plus the relative entropy of the representation pdf
relative to the (non-admissible) geometry where all tiles are

equiprobable.

J̃(q) = −
∑
α

q(α) ln q(α)

+ β
∑

l

nl∑
k=1

∑
α

q(α)αl,k εl,k

+
Nfg∑
k=1

λk

∑
α

q(α)

(∑
l

αl,̃k − 1

)

+ ζ

(∑
l

nl∑
k=1

∑
α

q(α) αl,k − N

)
= −

∑
α

q(α) ln q(α)

+
∑

l

nl∑
k=1

q(α)
(
β εl,k + vT

l,k λ + ζ
)
αl,k

−
Nfg∑
k=1

λk − ζN . (55)

A first optimization on q leads to

q(α) ∝ exp

∑
l,k

αl,k
(
β εl,k + vT

l,k λ + ζ
) . (56)

∑
l,k is shorthand for

∑
l

∑nl
k=1. The substitution of q given

by Eq. (56) into Eq. (55) leads to a dual Lagrangian

Ĵβ(λ, ζ ) = ln Zβ(λ, ζ ) −
Nfg∑
k=1

λk − ζN , (57)

where the partition function Zβ , is given (after factorisation)
by

Zβ(λ, ζ ) =
∏
l,k

{
1 + exp

(
βεl,k + vT

l,k λ + ζ
)}

. (58)

This leads to the dual Lagrangian, function of the Lagrange
parameters

Ĵβ(λ, ζ ) =
∑

l,k

ln
{
1 + exp

(
β εl,k + vT

l,k λ + ζ
)}

−
Nfg∑
k=1

λk − ζN . (59)

This cost function is the one that was obtained in Bocquet
(2009) using the statistical mechanics analogy. From the
minimization of this free energy, yielding λ∗ and ζ ∗, one
obtains the filling factor

α∗
l,k = 1

β

∂ ln Zβ

∂εl,k
= 1

1+exp
(
−β εl,k−vT

l,k λ∗− ζ ∗
) . (60)

When β goes to infinity, the filling factors α∗
l,k converge

to either 0 or 1. An alternate statistical regularisation is
proposed in the Appendix.
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5. Illustrations

The formalism described in the previous sections will be
illustrated on two examples related to the transport and fate
of atmospheric constituents.

5.1. Simplified CarboEurope-IP network

5.1.1. Set-up

The CarboEurope-IP network routinely measures CO2

concentrations over Europe at a precision of 0.1 ppm, and
is part of the global monitoring network of greenhouses
gases. The observations from this network of 22 stations
can be used to perform inverse modelling of CO2 sources
and sinks (http://www.carboeurope.org). Here we will use a
much simpler prototype to apply the above formalism to this
issue. Firstly, we shall use only one annual-mean observation
for each station (for a total of 22). Secondly, we will use a
drastically simpler model to construct the Jacobian H, made
of the influence functions for each of those observations.
Each influence function c∗ attached to an observation i is
assumed to be an average power law

c∗
i (r) ∝ 1

rα
, (61)

where r is the great-circle distance separating the observation
location and the point where this sensitivity is being
computed. The exponent α � 2.4 is chosen heuristically
following Roustan and Bocquet (2006). As an average
midlatitude footprint, it bears some realism. The Jacobian
entries are given by [H]ik = [c∗

i ]k, where c∗
i is the discretised

influence function. One is then looking for an optimal
stationary adaptive representation.

A multiscale structure of six levels for each direction is
defined. The domain � of control space is 22◦W–42◦E,
34–66◦N. Its finest regular grid has dimensions Nx = 128
and Ny = 64, with grid-cell sizes �x = �y = 0.50◦. The
total number of cells in this grid is therefore Nfg =
8192.

With such simple assumptions, this example only
represents a prototype of the kind of results that could
be achieved with a more realistic physical model and
observation set. It allows us to test the ideas presented
in this article, as well as sketch a future computationally
demanding full-scale application.

5.1.2. DFS criterion for the simplified CarboEurope-IP
network case

It is first assumed that the model and observations are
perfect (the error covariance matrix R � 0 is negligible).
The background-error covariance matrix is taken diagonal.
For simplicity it is assumed that σ b = 0. Figure 3(a) shows
the optimal adaptive grid with N = 512, which represents
6% of the number of cells in the finest grid. The DFS
obtained is 21.514, as compared to p = 22 observations.
This means that this representation is able to capture all the
degrees of freedom that could have been obtained in the
finest grid. The densification of the grid close to Scandinavia
is due to two outlying stations: Pallas and Zeppelin, while
the densification in the Atlantic is due to the outlying station
of Ivittuut, Greenland. These three stations are used in the

(a)

(b)

(c)

Figure 3. Optimal adaptive grids over the tiling dictionary for
the CarboEurope-IP prototype with N = 512. (a) corresponds to an
optimization using the DFS criterion with negligible errors R � 0. (b)
corresponds to an optimization using the DFS criterion with errors. (c)
corresponds to an optimization using criterion Eq. (36).

optimization, but do not lie in the part of the domain that is
shown here.

Then we assume a diagonal non-null error covariance
matrix R, such that the theoretical maximum DFS is 5.89,
much lower than the available p = 22 observations, which
is quite realistic. The optimal grid that is obtained with
N = 512 reaches the DFS 5.88. The result is displayed in
Figure 3(b). The main difference is that the grid is even more
peaked around the stations. Indeed, in Eq. (38), R acts as a
threshold below which the propagation of information from
control space to the observations, represented by HBHT,
becomes less relevant (the denominator is dominated by
R rather than by HBHT). As the errors represented by R
increase, the information is propagated at shorter distances.
The criterion Eq. (36) is the limiting case of Eq. (38)
when observation/model errors dominate the background
errors: R is far superior to HBHT for any reasonable
norm. It consistently leads to the grid design displayed
in Figure 3(c), which is even slightly more peaked than the
grid of Figure 3(b).
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5.2. ETEX-I dispersion experiment

5.2.1. Set-up

The second example is the European Tracer Experiment
(ETEX), and in particular its first campaign, ETEX-I.
Organised by the Joint Research Centre at Ispra, Italy, it
dates back to 12 October 1994, 1600 UTC, when 340 kg of
perfluoromethylcyclohexane were released uniformly over
12 h, at Monterfil, in Brittany, France. 168 stations of the
World Meteorological Organisation (WMO) monitored
the subsequent plume throughout Europe. The weather
conditions (low pressure over Scotland) were selected so
that the plume would be advected eastward toward the
stations.

The measurements were intensively used to benchmark
chemistry and transport models (Nodop et al., 1998), but
also more recently for the tests of inverse modelling
methodologies (Krysta et al., 2008). In particular, it was
shown that, with a considerable reduction of the grid-cell
numbers, the optimal tiling leads to inversions very similar
to the one obtained with a fine regular grid.

A multiscale structure of five levels for each direction is
defined. The finest regular grid is 20.8125◦W–15.1875◦E,
36.5625–54.5625◦N, with Nx = 64, Ny = 32, and Nt = 160.
The number of cells of size �x = �y = 0.5625◦ and
�t = 1 h in the finest grid is N = 327680.

Contrary to the example of CarboEurope-IP, H is
obtained from a realistic Eulerian chemistry and transport
model (Bocquet, 2007, gives modelling details). Also the
adaptive grid will be dynamic: it will be optimized on the
ground and in time.

5.2.2. Comparing designs with ETEX-I

The differences between the data-dependent criterion and
the DFS, data-free, criterion are illustrated on the ETEX-I
case. For both criteria, a scale-covariant error is assumed.
The data-free criterion is therefore Eq. (38) while the data-
dependent criterion is Eq. (45). A limited dataset of 201
real observations of tracer concentration is used. The same
set was employed by Bocquet (2009), but with criterion
Eq. (36).

We seek optimal grids of the same size N = 402 as in
Bocquet (2009). The optimal 2D+T grid obtained from the
data-free criterion is displayed in Figure 4, while the optimal
2D+T grid obtained from the data-dependent criterion is
displayed in Figure 5. N = 402 offers a tight compromise
for the data-free criterion optimization in terms of high DFS
and significant reduction of the tile numbers (0.1% of the
total number of grid cells in the finest grid: N = 327 680).
The resulting DFS is 75.70, while the maximum achievable
DFS in the finest grid is 157.5. Since error statistics have
been taken into account, it is lower than the perfect model
case of 201 DFS. It is also the maximum of criterion Eq. (45),
that is the maximum of the achievable information gain via
a maximum entropy on the mean inference.

The main difference is seen over Ireland. Indeed the
value of the concentrations at the stations in Brittany are
high and do not rule out a source upwind near Ireland
or in the Atlantic, so that the grid is refined there. On
the contrary, the data-free criterion accounts for any set of
values compatible with the prior. The true observation set
used in the data-dependent criterion is only one specific

set, so that a refinement near the monitoring network is
preferred at the expense of a refinement over Ireland and
the Atlantic.

5.2.3. Inverse modelling with ETEX-I

Inverse modelling is performed using several adaptive grids
and the results are reported in Table I. The details of the set-
up of the inverse modelling are the same as those reported
by Bocquet (2009), and they are not repeated here.

Two types of inversion are considered: Gaussian and
non-Gaussian. The Gaussian type is based on Gaussian
background errors, such as those assumed in this article,
while the non-Gaussian type is based on non-Gaussian
background errors (following Bocquet et al., 2010, and
references therein) that ensures positiveness of the source.
The total retrieved mass and the mass retrieved near the
location of the release site are reported in the table. Scalar
m0 is a mass scale that parametrises the background-error
term, whereas χ is the prior observation-error standard
deviation. The results obtained for the DFS criterion are
similar to those obtained with the Fisher criterion, and
the remarks of Bocquet (2009) are still valid. However, for
the grid obtained from the data-dependent criterion, the
inversions lead to a very good localization of the source (not
shown here but it can be inferred from the figures of the
table) and an underestimation of the retrieved mass. The
better localization is due to a stronger refinement of the
grid close to the release site. On the downside, it probably
strengthens the importance of the measurements performed
on nearby sites, known to be largely overestimated by
Eulerian dispersion models on ETEX-I, leading to an
underestimation by the data assimilation scheme because
of this model error. The inversions with adaptive grids are
also compared to those performed with the regular grid of
resolution 2.25◦ × 2.25◦ × 1h in Table I.

5.3. An optimal number N of tiles?

When one adds one more tile to an optimal adaptive grid,
there is a marginal gain in the objective function which
is defined mathematically by ∂NJω∗

N
. It can numerically

be accessed through the parameter −ζ ∗, conjugate to the
number of tiles, because

dJω∗
N

dN
= dL̂N

dN
(λ∗, ζ ∗)

= ∂L̂N

∂N
+

(
∂λ∗

∂N

)T

∇λL̂N +
(

∂ζ ∗

∂N

)
∂ζ L̂N

= − ζ ∗ , (62)

which can be checked by differentiating Eq. (54) with respect
to N . If there is an optimal number N� of tiles which is non-
trivial (i.e. strictly Ncg < N� < Nfg), then ζ ∗

N� is zero. To
obtain such a grid, with an optimal N�, it is sufficient to
get rid of the tile number constraint in the optimization of
Eq. (54). Unfortunately, the existence of such a non-trivial
N� is not a simple issue.

Consider the generic objective function Jω = Tr (�ω�),
where �ω is the projector onto representation ω and � is a
positive definite matrix. If ω∗

N is the optimal representation
for this criterion with N tiles, then Jω∗

N
is an increasing

function of N . Suppose ω∗
N has been determined for
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Figure 4. Snapshots of the 2D+T optimal adaptive grid with N = 402 tiles for a selection of 201 concentration observations of the ETEX-I dispersion
event. The criterion is given by the data-independent cost function Eq. (38). Time is indicated in the top left-hand corner of each panel. The triangles
indicate the WMO stations that reported at least one of these 201 observations. The disk indicates the true source location of ETEX-I.

Figure 5. As Figure 4, but the optimality criterion is now given by the data-dependent cost function Eq. (45).

Table I. Results of source inverse modelling experiments on ETEX-I, using several types of regular or adaptive grids built
from the criteria introduced in this article. The total mass of tracer released during ETEX-I was 340 kg at a point location.

Grid type Criterion type N Inversion type m0 (kg) χ (ng m−3) Local mass (kg) Total mass (kg)

Regular 20480 Gaussian 0.025 0.25 234 680
Regular 20480 Non-Gaussian 5 0.25 220 327
Tiling Fisher 402 Gaussian 0.025 0.25 270 1005
Tiling Fisher 402 Non-Gaussian 5 0.25 205 238
Tiling DFS 402 Gaussian 0.025 0.25 268 1136
Tiling DFS 402 Non-Gaussian 5 0.25 200 252
Tiling Data-dependent 402 Gaussian 0.025 0.25 173 599
Tiling Data-dependent 402 Non-Gaussian 5 0.25 134 195
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Figure 6. Schematic of the posterior error (arbitrary units), or of a
reasonable criterion resulting from the aggregation, model and estimation
errors, as a function of the resolution.

N ≤ Nfg − 1 and let us look for a better representation
ωN+1 with N + 1 tiles. Take any tile of ω∗

N and split it
into two sub-tiles. This leads to a representation ωN+1 that
does not have to be optimal. If the eigensystem of � is
{vi, ζi}i=1,··· ,Nfg

, then

Jω = Tr (�ω�) =
Nfg∑
i=1

ζi

∑
l,k

αl,k

(
vT

l,kvi

)2

vT
l,kvl,k

. (63)

It is not difficult to show that the sum of the quantity
(vT

l,kvi)2/vT
l,kvl,k of two sub-tiles is greater or equal to the

same quantity for the mother tile. Since the ζi are all positive,
one concludes that Jω∗

N
≤ JωN+1 , so that Jω∗

N
≤ Jω∗

N+1
.

As a consequence, criteria Eqs (36) and (38) are
monotonic functions of the optimal representations ω∗

N ,
when N increases. The maximum of the objective function
is reached in the finest regular grid. This was numerically
checked by Bocquet (2009) in the case of the first objective
function. It will be checked in section 6 for the second
objective function based on the DFS.

This also applies to the data-dependent objective function
Eq. (45), because in this case � is of the form � = uuT,
where u is

u =B1/2HTw with
(

R +HBHT
)

w = µ − µb . (64)

However, such monotonic behaviour may not be satisfied
for an arbitrary objective function. The DFS and data-
dependent objective functions used in this article account for
aggregation errors that decrease with N , and for estimation
errors that increase with N (for a given dataset). The net
result is an error reduction with increasing N . In an even
more realistic context, one should also take into account
scale-dependent model errors εm

ω , that are not of aggregation
type, as discussed in section 3. Then there may be an optimal
N∗, as illustrated in Figure 6. This paradigm has been
established in the greenhouse gas inversion community (e.g.
Peylin et al., 2001).

Such a non-trivial optimum should also exist when the
errors are scale-free (as discussed in section 3). For instance,
in the case of the data-dependent cost function, yet without
taking into account aggregation (scale-covariant) errors, it
was shown by Bocquet (2005) that the objective function

vanishes when N goes to infinity. For a finite resolution limit
(large but finite Nfg), the objective function is expected to
ultimately decrease to a finite limiting value imposed by the
finest accessible resolution. Taking into account aggregation
errors counteracts this increase in information gain, because
fields on coarser grids are not as trusted as fields defined in
the finest grid. Again, this trust in the finest grid is likely to
be mitigated by taking into account realistic scale-dependent
model errors, yielding a non-trivial N�.

6. General tilings versus qtrees and ftrees

In the previous sections, a multiscale framework has been
defined and a data assimilation system was made consistent
with it, including scale-covariant aggregation errors. This
allowed optimal representations of control space for the
assimilation of observations to be built. Up to this point,
the adaptive grids were optimized on a dictionary of general
tilings. For a 2D+T parameter field, and when employing a
dyadic multiscale structure, storing the multiscale Jacobian
in memory requires up to eight times the size of the
Jacobian of the finest grid. It is thus of practical concern
to use a smaller, but still efficient enough, dictionary of
representations.

6.1. Qtrees

If one adopts a quaternary tree structure (qtree) for the
spatial part instead of the tensor product of two dyadic
structures while keeping a binary tree multiscale structure
for time, then storing the multiscale Jacobian in memory
requires at most 8/3 times the size of the Jacobian of the
finest grid. Note that the set of qtrees built on the same
domain is a subset of the tilings.

In order to compare the results, we use again the ETEX-
I example to visually illustrate the qtree representations.
Figure 7 displays an optimal representation with the same
assumption and for the same criterion as for the example of
Figure 5. The corresponding tiling and qtree representations
are consistently refined at the same space and time spots.

Figure 8 displays the DFS of optimal tilings, optimal
qtrees, and regular grids, for a wide range of N . The
optimal tilings and optimal qtrees are far superior to regular
grids: much more information is captured with the same
number of cells in an optimal adaptive grid. Besides, for
a fixed N , the optimal qtree captures fewer DFS than
the corresponding optimal tiling. This must be so since
qtrees form a subset of tilings. Nevertheless, the drop in
performance is very moderate. Moreover the optimization
times for these computations were roughly two times shorter
for the qtrees than for the tilings. Their respective numerical
efficiencies will discussed in Part II of this article. Therefore,
we believe that optimizing on qtrees is a good substitute for
an optimization on tilings.

6.2. Ftrees

A factorised tree, or ftree is defined as the direct product
of binary trees. In the 2D case, the ftree is the direct
product of two binary trees, one for each of the two
directions. An example of such an adaptive grid is displayed
in Figure 1(b). It is similar to the grid used by global
numerical weather prediction models or chemical transport
models that require zooming onto some region, such as
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Figure 7. As Figure 4, but the optimal representation is searched in the qtree set.

Arpège (Action de Recherche Petite Echelle Grande Echelle)
by Météo-France or LMDZ (Laboratoire de Météorologie
Dynamique ‘Zoom’).

Contrary to the qtree dictionary, the generation of all
ftrees requires computation of the value of the Jacobian for
any tile, so the same amount of memory would be required
as that of the dictionary of general tilings.

This dictionary of ftrees has considerably fewer degrees of
freedom than both the dictionary of tilings and the dictionary
of qtrees. Moreover, the optimization algorithm over the set
of ftrees requires an adaptation of the general algorithm
used for the tilings and for the qtrees. Two vectors of filling
factors, say αx and αy, one for each direction, are required.
The global filling factor, at scales (lx, ly) and position (kx, ky)
could thus be a product of the two directional ones (other
choices are possible):

α(lx,ly),(kx,ky) = αx
lx ,kx

α
y
ly ,ky

. (65)

The application of our optimization algorithm leads to the
computation of the partition function Eq. (58). However, its
computation is less simple for the ftrees because, on the one
hand, α is factorised into two contributions (one for each
direction), and on the other hand, the energies ε(lx,ly),(kx,ky)

cannot be factorised. So there is no trivial factorisation of
the partition function according to the two directions.

We have opted for solving this optimization problem
iteratively. At first, one of the directions (say Ox) is frozen
and the vector αx is fixed. Then, one solves for αy, using
our algorithm applied to a 1D problem. Then, in turn,
direction Oy is frozen, and the newly obtained αy is fixed.
Then one solves for a new estimation of αx, and so on,
until convergence. We have contemplated a variant of the
algorithm, where one imposes a fixed number of tiles for
each direction, Nx and Ny, the global number of tiles N
being equal to N = NxNy.

This geometry is tested on the ETEX-I example and
its performance is compared to the skills of the tilings
and qtrees in Figure 8. So, one obtains results which are
significantly inferior to the performance of the qtrees, with

a substantial complication in the optimization. That is why
we recommend qtrees over ftrees in this context.

7. Summary, discussion and future work

7.1. Summary

In this article, we have developed a consistent Bayesian
framework for the optimal design of control space in
geophysical data assimilation. Prior information on the
parameters of control space, including correlation of errors,
is now accounted for and embedded in a multiscale
framework. Prior information is also consistently used in
the prolongation operator, so that every bit of available
information is used when moving up and down the scale
ladder. Note that, since the control space parameters can
depend on both space and time, this framework accounts
for space and time together.

Observation errors originating from aggregation were
also explicitly considered in this framework. These scale-
covariant errors consistently yield scale-invariant innovation
statistics. The impact of observation errors on the optimal
design of the representation was illustrated in a CO2

flux inversion context using a simplified CarboEurope-IP
monitoring network. More general scale-dependent errors,
such as complex model errors, could not be studied here
since they are case-specific.

New objective functions to rank adaptive grids of a
dictionary of representation of control space have been
defined. The first one is a normalised measure of the
uncertainty Tr

(
B−1Pa

)
, which is similar to the criterion

at the heart of the Best Linear Unbiased Estimator (BLUE)
approach used in most current data assimilation schemes. It
is equal to the degrees of freedom for the signal (DFS). This
DFS measure, together with scale-covariant errors, leads to
an elegant criterion which is easier to optimize.

However, this DFS criterion is an implicit statistical
average over all potential observation sets prescribed by
the prior. That is why an observation-dependent criterion
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Figure 8. Degrees of freedom for the signal of optimal tilings, optimal
qtrees, optimal ftrees and regular grids versus the number of grid cells in
the representation (ETEX-I example).

has been defined, which corresponds to a gain of information
in the inference. Application to the real tracer dispersion
campaign ETEX-I, has shown that the optimal grid obtained
from this new criterion is not only refined around the
observation site and upwind of those stations, but also
in areas where an inversion of these observations might
indicate. However, one may object that an inversion crime is
committed when using such a data-dependent cost function,
since the adaptive grid that is used to perform Bayesian
inverse modelling using a set of observations has been
constructed with the help of the same set of observations. A
solution to this subtle issue is left for future work.

The existence of an optimal number of tiles N was also
discussed. All the well-controlled examples given here lead
to the choice of the largest (numerically) possible N . But
it was shown that taking into account a more complex
model error may lead to a finite optimal N . So this issue
remains very dependent on the physical context and on the
specification of the model through the various scales.

The choice of the representation dictionary on which
these criteria are optimized is another issue of practical
concern. General tilings, where grid cells are defined as the
Kronecker product of leaves of 1D binary tree structures,
offer a rich set, but the numerical optimization scheme
can be computationally demanding. As an alternative, we
have implemented and tested a qtree structure where spatial
tiles belong to a quaternary tree structure. Qtrees form a
subset of the dictionary of tilings. It is more economical
and faster to optimize in that subset. Furthermore, it has
been shown on the ETEX-I example that optimal qtrees
could be almost as efficient as optimal tilings. This is not so
for another class of representations, the ftrees, whose skills
are significantly inferior with a greater complexity in the
optimization algorithm.

7.2. Connection with other multicale data assimilation
approaches

The introduction of consistent multiscale formalisms is very
recent in data assimilation, even though the inner and outer
loops of 4D-Var can be seen as a precursor methodology
(Courtier, 1994). Exploiting the framework developed by
Willsky (2002), Zhou et al. (2008) have introduced a mul-
tiscale tree structure. A model operating at a different scale

is assigned to each level of the tree. Using conditional
probabilities and Bayes’ rule, the information carried by
the observations is propagated up and down the tree. This
formalism is meant to be efficient with ensemble Kalman
filtering. In a variational context, a fully consistent 4D-Var
scheme has been developed on top of a two-way nested
model (Simon et al., 2011). It has been used to propagate
information back and forth between the coarser and the finer
grids. Multigrid methods used in the numerical solution
of partial differential equations are percolating into data
assimilation, although making them consistent with a data
assimilation method is a challenge. As a preliminary step,
Neveu et al. (2010) have tested such a scheme on a Burgers
equation. The main advantage of the multigrid methods
is the acceleration of convergence of the data assimilation
scheme. In particular, it is shown to outperform the inner
and outer loops scheme.

These formalisms, as well as the one of this article,
are derived from first Bayesian principles. Therefore, to
a large extent, they should be equivalent. However, they
most naturally apply to different data assimilation schemes:
Kalman filters, 4D-Var, or BLUE matrix equations in our
case. That is why making connections between them cannot
be a simple task.

7.3. Extension of the formalism to general data assimilation
problems

The formalism developed in this article is expected to
suit environmental problems whose monitoring network
is known a priori, so that a grid optimization of control
space can be performed prior to any inference. Yet the
observation sites are not necessarily fixed, since the optimal
representations can be dynamical. It is expected to be of
primary interest for systems with sparse and inhomogeneous
observations, and for data assimilation systems where
the observational information is not propragated far, or
anisotropically. At the very least, the methodology can
help assess the areas which are poorly resolved (by the
conjunction of models and observations).

The formalism of this study has been developed using
the Jacobian of the system. In geophysics, the computation
of the Jacobian is not always affordable, especially when
the evolution model is nonlinear. To generalize our
methodology to the nonlinear forecasting context of
meteorology or oceanography, one needs to optimize the
representations and compute the required pieces of the
Jacobian when needed, similar to a standard 4D-Var. The
main difficulty is that the optimal grids require to access
second-order sensitivities, which are related to the Hessian
B−1 + HTR−1H. We anticipate that this might be achieved
using randomization techniques of Desroziers et al. (2005)
or a stochastic gradient algorithm. Using ensemble Kalman
filter methods, the error covariance matrix can be more
easily accessed since it is given by the empirical statistics
of the ensemble. As opposed to 4D-Var, control or state
space representations can only be optimized in space, and
not in time. After adequate inflation and localization, the
methodology could used to optimize the representations
of the state space and of control space. Furthermore,
the methodology might be seen as a substitute for the
localization of the raw empirical error covariance matrix.
Insteading of choosing an adequate localization length,
one chooses an adequate number of grid cells for the
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representation. The selection of an optimal representation
would project the raw covariance matrix onto the active
(real) degrees of freedom in the problem, curing any
rank deficiency. The methodology is adaptive and can
capture regions of the error covariance matrix where there
is structure that might be smoothed out using standard
uniform localization methods.

7.4. Towards computationally efficient designs

An optimization on tilings or qtrees could still be quite
time-consuming when the number of grid cells in the
finest grid reaches several hundred thousands, and when the
hierarchical structure is deep. The application of the theory
to large-dimensional systems, such as those contemplated
earlier, may therefore be computationally challenging. As a
short cut, an analytical approach based on the asymptotic
properties of the optimal grids has been developed to offer
an approximate but quick solution to the Bayesian design of
control space. This will be reported in Part II of this article.
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Appendix

Alternate statistical regularisation

Before enforcing the tile number and the one tile–one
point constraints, a tile can either be selected or not in the
representation, with a probability that depends on its energy
εl,k. Following this idea, one is led to a derivation similar to
that of subsection 4.4, but with a more physical touch. It
is assumed that the prior distribution (before imposing the
constraints) of the tiles follows a Bernoulli law: tile (l, k) is
a priori selected with probability

γ l,k = 1

1 + e−βεl,k
, (A.1)

which is the standard distribution factor of systems following
Fermi–Dirac statistics. The prior law is then

ν(α) =
∏
l,k

{
(1 − γ l,k) δαl,k,0 + γ l,k δαl,k,1

}
. (A.2)

One should then minimize the gain of information
(maximize the entropy) from the prior distribution to the
equilibrium distribution of tiles that satisfies the constraints.
The information gain is measured by the Kullback–Leibler
divergence (Kullback, 1959)

K(p, ν) =
∑
α

q(α) ln
q(α)

ν(α)
. (A.3)

The resulting cost function to be maximized is

J̃(p) = −
∑
α

q(α) ln
q(α)

ν(α)

+
∑

l

nl∑
k=1

q(α)
(

vT
l,kλ + ζ

)
αl,k

−
Nfg∑
k=1

λk − ζN .

(A.4)

The rest of the derivation is then unchanged, with the same
intermediate and final results.
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