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Cité Descartes Champs-sur-Marne 77455 Marne la Vallée Cedex, France. E-mail: bocquet@cerea.enpc.fr

A consistent formalism for a Bayesian design of control space for an optimal
assimilation of observations was proposed in Part I of this two-part article. This
optimal discretization of control space leads to an efficient data assimilation scheme
implementation. However, the construction of the grid itself, prior to its use for data
assimilation, requires an optimization that may be challenging for high-dimensional
systems. This paper derives analytical solutions for these optimal grids in the limit
where the discretization of control space has a large number of grid cells. Analytical
solutions for the density of grid cells are obtained for the so-called tilings, qtrees and
ftrees, that represent different types of adaptive grids, with more or fewer degrees
of freedom. These analytical solutions are explicit and the algorithms that allow
densities to be converted into discrete adaptive grids are costless.

The approach is tested with a simplified physics in the Jacobian matrix in a tracer
dispersion context in which radionuclides are monitored by the global observation
network operated by the Comprehensive Nuclear Test Ban Treaty Organisation of
the United Nations. The asymptotic solutions are then compared to the optimal
grids obtained from the methodology perfected in Part I. In this example, and using
qtree representations, the discrepancy between the approximate solution and the
exact solution almost vanishes when the number of grid cells represents as few
as 1% of the total number of grid cells in the finest grid. This opens the way to
the application of this multiscale data assimilation framework to computationally
challenging problems. Copyright c© 2011 Royal Meteorological Society
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1. Introduction

The concept of an optimal representation of control
space was introduced by Bocquet (2009), building on the
standpoint developed in the seminal work of Rodgers (2000)
in the context of remote sounding. The idea is to define a
discretization of large parameter spaces that best accounts
for the observations. Those spaces are typically met in
geophysical and environmental problems where fields of

forcing parameters are uncertain, such as in atmospheric
chemistry, where the emissions are poorly known. The
theory was applied to the inverse modelling of source of
atmospheric tracers. In many data assimilation experiments,
such as the inversions of air quality pollutant sources or
greenhouse gases fluxes, one is interested in the reduction
of uncertainty achieved by the assimilation of observations.
It was shown that optimal adaptive grids of control space
can yield a reduction of uncertainty equivalent to a highly
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resolved regular grid, but with a far fewer number of grid
cells.

1.1. Selected results from Part I

In Part I of this work (Bocquet et al., 2011), the optimal
representation theory was perfected. The multiscale aspect
of the theory was made Bayesian, allowing for a consistent
use of background information on control space parameters.

One considers the typical inverse modelling problem

µ = Hσ + ε . (1)

where µ ∈ R
p is the vector of observations, H is the

Jacobian matrix of the problem (linear or linearized),
σ ∈ R

N is the vector of parameters, which is defined in
control space, and ε is the vector of observational error. The
typical data assimilation problem related to this equation
assumes some prior statistical information on the errors
that follow a Gaussian distribution ε ∼ N(0, R), and on
the parameters that follow the Gaussian background-error
statistics σ ∼ N(σ b, B). For a general representation (or
discretization) of control space ω, the observation equation
would read:

µ = Hωσω + εω . (2)

Such representation ω is an adaptive discretization made of
cells of various form and sizes, each one representing a scalar
variable, that compose a partition of the domain � of control
space. Coarsening �ω and prolongation ��

ω operators are
used to scale up or down these grid cells. The prolongation
operator is derived using all available information from the
background.

Assume these grid cells are aggregations of smaller grid
cells defined on a regular finest grid with Nfg grid cells. Then
the prolongation of the representation ω (with N ≤ Nfg grid
cells) to the finest grid, followed by a coarsening back to
ω, should correspond to the identity operator: �ω��

ω = IN .
However the reverse, coarsening from the finest grid to ω,
and prolongating back to the finest grid, implies a loss of
information, so that the resulting (affine) operator is not the
identity but

��
ω�ω = (IN − �ω)σ b + �ω , (3)

where

�ω = B�T
ω

(
�ωB�T

ω

)−1
�ω . (4)

Aggregation errors that account for representativeness
errors are taken into account in this framework. We called
them scale-covariant errors because they follow

εω = ε + H (IN − �ω) (σ − σ b) . (5)

New objective functions for the design of the optimal
representations were introduced: the degrees of freedom for
the signal (DFS) Jω = N − Tr

(
B−1

ω Pa
ω

)
, which is a well-

used criterion in data assimilation though not used for that
purpose. A data-dependent criterion was also introduced.

In conjunction with scale-covariant errors, the DFS
criterion takes the simple scale-dependent form

Jω = Tr
{
�ωBHT

(
R + HBHT

)−1
H
}

. (6)

We shall use this objective function for the design of
representations in the rest of this article.

The adaptive grids are optimized on a dictionary of
representations. A large dictionary was composed of general
tilings. Each tiling is a set of rectangles (or tiles) that partition
control space. Definition and implementation can be found
in Part I. Figure 4 (this paper) also offers an illustration.
By construction the subset of qtrees provides adaptive grids
that are less efficient than optimal tilings (Figure 2 in the
current paper provides an illustration). However, it was
shown in Part I that the discrepancy is small. Besides the
qtrees are expected to be computationally more efficient
than the general tilings, as explained below.

1.2. Computational costs

The numerical optimization of the grid of control space
entails the minimization of a functional. This functional
depends on Lagrange parameters. Among them, Nfg

parameters enforce the one-point one-tile constraints and a
single one enforces the number of tiles of the representation.
The optimizations are carried out with the L-BFGS-B quasi-
Newton minimizer (Byrd et al., 1995), on Nfg + 1 variables.
It is difficult to estimate a priori the number of iterations
of the minimization since it is problem-dependent, and
since it depends on choices made by the operator such
as the stopping criterion. As a general rule though, the
minimization of a quadratic functional to machine precision
has cubic dependence in the number of variables ((Nfg + 1)3

here). With the iterative BFGS minimization, each iteration
computational cost scales like (Nfg + 1)2 multiplications,
whereas it scales like L(Nfg + 1) multiplications for the
limited memory L-BFGS, where L is the memory length.
(Typically L � 10–30 for high-dimensional applications.)

However, this does not account for the evaluation of
the cost function and of its gradient which is a vector
of Nfg + 1 components. Such evaluations are required by
the quasi-Newton algorithm and they are needed at each
iteration. For high-dimensional geophysical systems, most
of the computational time would be spent there. The cost
function has the form of a sum over all tiles of the multiscale
structure. Hence, the computational cost of the functional
is linear in the total number of tiles. The total number of
tiles scales at most like 4Nfg in the general 2D tiling case, and
at most like 4/3Nfg in the 2D qtree case. This explains why
the qtrees are faster to optimize on than the general tilings,
even though the number of grid cells in the finest grid Nfg

is the same. In the examples of Part I, the optimization over
the dictionary of qtrees were at least twice as fast as the
optimization on the dictionary of general tilings. However,
it does not have to match perfectly the 1/3 scaling since the
sum of the cost function is parallelised in both cases with
communication overheads. Also note that the regularisation
of the functional used in Part I requires functions such
as logarithm and exponential which are more costly that
matrix-vector multiplications.

As a clearly distinct problem, one needs to compute
Jacobian H. For high-dimensional problems, most of the
computational power can be dedicated to H, running
geophysical numerical models. But once H is computed
and stored, optimizations can be performed without the
need to re-compute it, except if models are nonlinear.

Finally the storage requirements of the multiscale Jacobian
scales like the total number of tiles of the multiscale structure,
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which was an argument in favour of the qtrees over the
general tilings (three times more costly for a 2D domain)
put forward in Bocquet (2009).

1.3. Objectives

For an application where the observation locations and
schedule are known a priori, the optimization on the
dictionary of grids can be performed a priori once and for
all subsequent data assimilation analyses. However, even for
moderately high-dimensional Jacobians, the optimization
can be computationally challenging.

The objective of this Part II article is to introduce
sub-optimal analytical solutions to the problem of the
construction of optimal adaptive grids. A continuum or
asymptotic limit of the problem will be first defined.
An optimization will be analytically performed in the
continuum limit framework. As a result, a density of tiles
will be obtained. A discretization algorithm will then be
needed to build discrete representations of control space,
using those continuum densities.

Note that this is a constructive approach. The overall
interest of the theory must be judged on the quantitative
performance of the representation that it yields. This
performance is objectively measured by an objective
function such as the DFS.

1.4. Outline

The results of this article will be illustrated using a problem
of interest for the Comprehensive Nuclear Test Ban Treaty
Organisation (CTBTO) of the United Nations, but using
simplified physics in the Jacobian. Details of the setup are
given in section 2. The asymptotic analytical solutions are
derived in section 3. They are introduced with increasing
complexity. The continuum limit will be first derived
in the one-dimensional (1D) case, because the limiting
density of tiles is expected to be asymptotically exact.
The multidimensional case is then treated but depends
on the type of dictionary employed: ftrees, qtrees, or tilings.
Focussing on the general tilings and qtrees, the construction
of a discrete representation of control space using these
analytical densities is then discussed, and simple algorithms
are proposed. In some cases, the analytical densities may
be improper (they cannot be normalized to one). This
corresponds to a problem uncovered by Bocquet (2005),
and it is dealt with in this context. In section 4, several of
these results are illustrated on the CTBTO test case. We
summarize the results and conclude in section 5.

2. The CTBTO atmospheric monitoring network

The formalism recalled above and the following theoretical
development will be illustrated on a tracer dispersion
problem at global scale.

The Comprehensive Test Ban Treaty signed by 182
states bans nuclear explosions (United Nations, 1996). The
verification of the treaty is implemented by the United
Nations CTBTO, based in Vienna, Austria. It operates an
International Monitoring System (IMS) and collects seismic,
infrasound, and hydro-acoustic data as well as radionuclide
(particulate matter and noble gases) activity concentrations.
These observations could be used for inverse modelling

purposes to track the origin of a nuclear test, and characterize
it (signature, intensity).

As for the CarboEurope-IP test case of Part I, a much
simpler prototype of the radionuclide IMS network is used
here, with only 79 annual-mean measurements, one for each
of the 79 radionuclide monitoring stations. The Jacobian
matrix is computed similarly, assuming a power law for
each of the adjoint solutions

c∗
i (r) = 1

rα
, (7)

where r is the great-circle distance separating the observation
point from the point where this sensitivity is being
computed. The exponent α � 2.4 is chosen heuristically
following Roustan and Bocquet (2006), and comes from the
rate of decrease of an average footprint from the observation
point. It must be understood as an average midlatitude value.
Other choices of α will be made in section 4, to account for
different diffusion conditions. The Jacobian entries are given
by [H]ik = [c∗

i ]k, where c∗
i is a discretized adjoint solution.

The multiscale structure is built on a finest regular
Mercator grid on the globe. It has dimensions N f

x = 512 and
N f

y = 256. The number of cells of size �x = �y = 0.703125◦

in this grid is Nfg = 131 072. A multiscale structure of eight
levels for each direction is defined. It means that the finest
grid cells can be coarse-grained 8 times following a dyadic
hierarchy. Hence the coarser regular grid, made of the
coarser tiles, has dimensions Nc

x = 4 and Nc
y = 2.

3. Approximate solution from a continuum limit

We would like to investigate the optimization of the DFS
criterion Eq. (6) in the asymptotic limit where the grid
spacing tends to zero (continuum limit). The criterion can
also be written

Jω = Tr
{
�̃ωH̃T

(
Ip + H̃H̃T

)−1
H̃
}

, (8)

where H̃ = R−1/2HB1/2 is the Jacobian for which the
statistics are normalized and uncorrelated in both state
and observation space (following e.g. Rodgers, 2000), and
where �̃ω = B−1/2�ωB1/2 is a symmetric projector.

The singular value decomposition of the normalized
Jacobian matrix is

H̃ = R−1/2HB1/2 = VDUT , (9)

where V ∈ R
p×p satisfies VVT = VTV = Ip, U ∈ R

Nfg×p

satisfies UTU = INfg , and D ∈ R
p×p is the diagonal matrix of

positive singular values {λi}i=1,... ,p (assuming p ≤ Nfg). As a
result, the objective function can be reduced to

Jω =Tr
{

D2
(

Ip + D2
)−1

UT�ωU
}

=
p∑

i=1

λ2
i

1 + λ2
i

uT
i �ωui , (10)

where the ui are the p singular vectors in R
Nfg . In the

following we will denote

f (λi) = λ2
i

1 + λ2
i

(11)
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as the spectral signature of the criterion. Another example is
given by the objective function Tr

(
BHTR−1H

)
mentioned

in Part I, and which we have called the Fisher criterion; it
has signature f (λi) = λ2

i .
Assuming the restriction operator has been redefined

according to Part I (�ωB−1/2), then the projector operator
�̃ω can be written:

�̃ω =
∑

l

nl∑
k=1

αω
l,k

vl,k vT
l,k

vT
l,k vl,k

, (12)

where the vl,k are vectors of R
Nfg that represent tiles of

any scale (defined by l) and position (defined by k), in the
multiscale structure. They have been defined more precisely
in Part I.

3.1. Asymptotic limit in the one-dimensional case

As a first cautious step, we consider the 1D case. The interval
[xb, xf ] is partitioned with

xb = x0 < x1 < x2 < . . . < xN−1 < xN = xf .

The number N of intervals [xk, xk+1] is fixed, whereas the
nodes’positions xk for k = 1, . . . , N − 1 are to be optimized.
Here, there is no need to assume any discrete structure,
because of the natural order in [xb, xf ]. But it can be done
here for the sake of simplicity: the xk are supposed to take
values in a fine regular grid{

xb + (xf − xb)
j

Nfg

}
j=0,··· ,Nfg

.

Using Eqs (10) and (12), one obtains

Jω =
p∑

i=1

f (λi)uT
i �ωui =

p∑
i=1

f (λi)
N∑

k=1

(
vT

k ui
)2

vT
k vk

, (13)

where the vector vk ∈ R
Nfg are defined similarly to the vl,k.

They have components equal to 1 for entries between xk−1

and xk, and have null components elsewhere.
Assuming at this stage that H̃ (and its singular vector

decomposition) has a continuum limit, the singular vector
ui ∈ R

Nfg has the functional limit ui(x). It is assumed that it
is normalized: ∫ xf

xb

dx u2
i (x) = 1 , (14)

provided it can be (which will be questioned later). Then,
one shows

Jω =
p∑

i=1

f (λi)
N−1∑
k=0

1

xk+1− xk

(∫ xk+1

xk

dx ui(x)

)2

. (15)

If ui is assumed sufficiently regular, one obtains the following
asymptotic expansion when N is large, or, more precisely,
when 0 ≤ Nfg − N � Nfg:(∫ xk+1

xk

dx ui(x)

)2

� (xk+1 − xk)

∫ xk+1

xk

dx u2
i (x)

− 1

12
(xk+1−xk)4 (∂xui)

2

| xk+xk+1
2

. (16)

Then, at the next leading order, one gets

Jω =
p∑

i=1

f (λi)
N−1∑
k=0

1

xk+1− xk

(∫ xk+1

xk

dx ui(x)

)2

�
p∑

i=1

f (λi)

∫ xf

xb

dx u2
i (x)

− 1

12

p∑
i=1

f (λi)
N−1∑
k=0

(xk+1− xk)3 (∂xui)
2

| xk+xk+1
2

. (17)

The first term of this expansion is merely the maximum
reachable value of the cost function

p∑
i=1

f (λi) . (18)

It does not depend on the grid. The second term depends on
the positions of the grid’s nodes xk. To define a continuum
limit of this term, we first define an ancillary variable ξ

taking values in the interval [0, 1]. Then, for each singular
value i = 1, . . . , p

N−1∑
k=0

(xk+1 − xk)3 (∂xui)
2

| xk+xk+1
2

�
N−1∑
k=0

(
x

[
k+1

N

]
− x

[
k

N

])3
(∂xui)

2

(
x

[
k

N

])

� 1

N3

N−1∑
k=0

{
N

(
x

[
k+1

N

]
− x

[
k

N

])}3
(∂xui)

2

(
x

[
k

N

])

∼
N→∞

1

N3

∫ 1

0
dξ

(
dx

dξ

)3

(∂xui)
2 {x(ξ)}

∼
N→∞

1

N3

∫ xf

xb

dx

(
dx

dξ

)2

(∂xui)
2 (x). (19)

The coordinate x has been considered a function of the
parameter ξ . Note that dx/dξ measures the resolution of
the network in the interval [xb, xf ]. Its inverse measures the
density of the partition points xk in the asymptotic limit
N → ∞:

ρ(x) = dξ

dx
. (20)

Keeping only the leading-order term that depends on this
density, and which scales a priori like N−3, the cost function
Jω has the continuum limit:

Jρ =
∫ xf

xb

dx ρ−2(x)

( p∑
i=1

f (λi) (∂xui)
2 (x)

)
. (21)

Because of the change of sign, it ought to be minimized if Jω

is to be maximized. One is looking for a normalized density
such that ∫ xf

xb

dx ρ(x) = 1.

The functional minimization of Jρ under that constraint
yields the density

ρ∗(x) ∝
( p∑

i=1

f (λi) (∂xui)
2 (x)

)1/3

. (22)
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We expect that this result is the exact asymptotic density,
since no approximation was used in this limit. The
multidimensional case is less simple, since it depends on
the type of discrete dictionary the continuum limit is taken
from.

3.2. Asymptotic limit in the multidimensional case

The 2D case d = 2 will mainly be investigated, but a selection
of generalizing results will be given in higher dimension.

3.2.1. Ftrees

Let us first assume that the tiling belongs to the subset
defined as the direct product of two binary trees, one for
each direction. It belongs to the dictionary of the ftrees. It
has been shown in Part I that they offer poor performances
compared with other representation classes. Nevertheless,
in this analytical study, they correspond to the missing link
between a presumably asymptotically exact solution in the
1D case and approximate solutions in the multidimensional
cases, as the direct product of two 1D structures.

Then, in the asymptotic limit, one can define a density
ρx(x) and a density ρy(y) that measure the density of the
mesh in each of the two directions. It is possible to reason as
in the 1D case so that one can re-use Eq. (21). An asymptotic
cost function, constrained by the normalization conditions
of the densities is

Jρ =
∫ xf

xb

∫ yf

yb

dxdy ρ−2
x

( p∑
i=1

f (λi) (∂xui)
2

)

+
∫ xf

xb

∫ yf

yb

dxdy ρ−2
y

( p∑
i=1

f (λi)
(
∂yui
)2)

+ γx

(∫ xf

xb

dx ρx−1

)
+ γy

(∫ yf

yb

dy ρy−1

)
, (23)

where the Lagrange multipliers γx and γy impose the
normalization of the densities. This leads to the optimal
densities defined on the domain [xb, xf ] × [yb, yf ]:

ρ∗
x ∝
[∫ yf

yb

dy

( p∑
i=1

f (λi) (∂xui)
2

)]1/3

,

ρ∗
y ∝
[∫ xf

xb

dx

( p∑
i=1

f (λi)
(
∂yui
)2)]1/3

.


(24)

In dimension d > 2, the calculation is very similar and leads,
for any i = 1, · · · , d, to

ρ∗
xi

∝
∫ d∏

j=1, j �=i

dxj

( p∑
l=1

f (λl)
(
∂xi ul
)2)1/3

. (25)

Applied to the power law influence function c∗(r) = r−α

and in dimension d = 2, the total density is

ρ∗ ∝
√|x||y|
r

2
3 (α+2)

, (26)

reasonably far from the singularity r = 0. Even though the
influence function is rotationally invariant, the solution for
the density of tiles is not. This is not surprising, since all
ftrees are very anisotropic, with quite a limited number of
degrees of freedom.

3.2.2. Qtrees

Let us assume that we wish to extract the asymptotic limit
from a quaternary tree structure in dimension d = 2. We
consider one square of this qtree of size [a, b] × [a, b] in the
local coordinates’ system. The contribution of this square
and of the singular vector ui to the cost function Jω has the
expansion

(b − a)2
∫

[a,b]2
dx dy u2

i (x, y)

− 1

12
(b − a)6

{
(∂xui)

2+(∂yui
)2}

|
(

a+b
2 , a+b

2

) , (27)

resulting from a similar Taylor expansion to the 1D case
(Eq. (16)). Let us denote {Sk}k=1,... ,N , the N squares that
partition the grid. The area of square Sk is |Sk|. Using
Eq. (27), let us sum their contribution:

Jω �
p∑

i=1

f (λi)

∫
�

dx dy u2
i (x, y)

− 1

12

p∑
i=1

f (λi)
N∑

k=1

|Sk|2 ‖∇ui‖2 . (28)

Defining the 2D density ρ by the inverse of the area of the
local square, ρ ∝ |Sk|−1, one obtains the asymptotic cost
function

Jρ =
∫

�

dx dy ρ−1

( p∑
i=1

f (λi) ‖∇ui‖2

)

+ γ

(∫
�

dx dy ρ − 1

)
, (29)

where γ enforces the normalization condition of the density.
As a result, the optimal density is

ρ∗ ∝
( p∑

i=1

f (λi) ‖∇ui‖2

)1/2

. (30)

In dimension d, a quaternary tree would be generalized
to 2d-tree, that is a tree with potentially 2d daughter nodes
for each mother node. The straightforward generalization
of the 2D result to d > 2 yields

Jρ =
∫

�

dd x ρ− 2
d

( p∑
i=1

f (λi) ‖∇ui‖2

)

+ γ

(∫
�

dd x ρ − 1

)
. (31)

As a result, the d-dimensional optimal density is

ρ∗ ∝
( p∑

i=1

f (λi) ‖∇ui‖2

) d
2+d

. (32)

Applied to the power law influence function c∗(r) = r−α in
dimension d = 2, where r = ‖x‖, the radial density equals
ρ∗ ∝ r−α . Contrary to the ftrees, it is rotationally invariant.
It could also be checked directly on Eq. (32), since the
density is defined through the norm of a gradient.
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3.2.3. General tilings

When the tiles are elements of the Kronecker product of
two binary trees, then, in the asymptotic limit, ρx and ρy are
functions of both x and y. In this case, the total density ρxρy

ought to be normalized to one (there is a finite number of
tiles), but the directional densities are not. We conjecture
that the limiting optimal density over the domain � is
inferred from the minimum of the following functional of
the densities:

Jρ =
∫

�

dx dy ρ−2
x

( p∑
i=1

f (λi) (∂xui)
2

)

+
∫

�

dx dy ρ−2
y

( p∑
i=1

f (λi)
(
∂yui
)2)

+ γ

(∫
�

dx dy ρxρy − 1

)
. (33)

This leads to the optimal density

ρ∗
x ρ∗

y ∝
[( p∑

i=1

f (λi)(∂xui)
2

)( p∑
i=1

f (λi)
(
∂yui
)2)]1/4

. (34)

Note that, along the derivation, one also gets

ρ∗
x ∝
[ p∑

i=1

f (λi)(∂xui)
2

]3/8[ p∑
i=1

f (λi)
(
∂yui
)2]−1/8

,

ρ∗
y ∝
[ p∑

i=1

f (λi)(∂xui)
2

]−1/8[ p∑
i=1

f (λi)
(
∂yui
)2]3/8

.


(35)

More generally, in dimension d, assuming that the
dictionary of representations is the Kronecker product of
binary trees, one for each direction, the optimal density has
the form

ρ∗ ∝
 d∏

q=1

( p∑
i=1

f (λi)
(
∂xq ui
)2)

1
2+d

. (36)

Applied to the power law influence function c∗(r) = r−α

and in dimension d = 2, the total density is

ρ∗ ∝
√|x||y|

rα+2
. (37)

Contrary to the qtrees, this density is not rotationally
invariant.

Our understanding is that the general tilings allow singular
objects in the continuum limit, which are directional. These
are stretched tiles, which resembles lines or segments in
the continuum limit. But, by construction, these can only
be created in the Ox and Oy directions. Because of these
directional objects, optimal solutions in the continuum
limit may not be rotationally invariant, even though the
underlying continuum problem is. On the contrary, for
a qtree, each split or merging of tiles in one direction is
accompanied by the same operation in the second direction
of the qtree, so as to form coarser squares. Therefore the
singular tiles that can be found in the continuum limit of a
tiling cannot be created in the continuum limit of a qtree.

3.3. Construction of a discrete adaptive grid

Assume that an approximation ρ∗ of the optimal
discretization density is known for each point of the domain,
such as the asymptotic densities derived earlier. One would
like to build a qtree or a general tiling, with a fixed number
of tiles, based on the continuum density ρ∗, or in the case
of a general tiling, based on the two continuum densities
ρ∗

x and ρ∗
y . This would be an alternative approach to the

non-approximate but demanding variational method of
Part I.

For the sake of simplicity and because of the examples
below, it is assumed that the domain has two space
dimensions, and no time dimension. The ftrees class will
not be considered here because of its insufficient overall
performance, which was demonstrated in Part I. For the
qtrees and the general tilings, we shall adopt the following
heuristic algorithms.

3.3.1. Qtree

Firstly, assume that the hierarchical structure follows a
quaternary tree. Because there is a natural tree structure
(the qtree itself), the algorithm can be conceived recursively,
from the coarsest tiles to the finest ones. For each tile of size
[a, b] × [a, b], one can define an index which corresponds
to the integrated density ρ∗ over that tile:∫

[a,b]×[a,b]
dx dy ρ∗. (38)

We start with the coarsest single tile which for the sake
of simplicity is assumed to cover the full 2D domain. Its
index is greater than one. Otherwise, the final optimal tiling
identifies with this single coarse tile. Then the cell is split
into four sub-tiles, if there exists a finer level (otherwise one
ascribes the coarse tile to the final tiling). For each one of the
four resulting tiles, the index can be computed. Take one of
the tiles. If its index is lower or equal to 1, then keep this tile
as a piece of the final tiling. Then take the second, third and
fourth tiles and do the same. If the index is greater than 1,
then one should proceed in the subdivision for each one of
these three tiles.

3.3.2. General tiling

Secondly, assume that the hierarchical structure follows the
Kronecker product of two binary trees. For each tile in the
following, typically a box [a, b] × [c, d] ∈ �, one can define
an index which corresponds to the integrated density in
the Ox direction ρ∗

x or in the Oy direction ρ∗
y over that

tile. Assume again for simplicity that the full 2D domain
corresponds to a single coarsest tile. First, if the index
product ∫

[a,b]×[c,d]
dx dy ρ∗

x ρ∗
y , (39)

which is the total tile density, is lower than 1, the final optimal
tiling identifies with this single coarse tile. Otherwise, two
integrated indices can be computed for each one of the two
directions. Then, the cell is split into two sub-tiles in the
direction which corresponds to the greater index, either

1

d − c

∫
[a,b]

dx ρ∗
x or

1

b − a

∫
[c,d]

dy ρ∗
y , (40)
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provided such a split is allowed in the hierarchical structure.
For both resulting tiles, the index∫

[a,b]×[c,d]
dxdy ρ∗

x ρ∗
y (41)

can be computed. Take one of the tiles. If its index is lower
or equal to 1, then keep this tile as a piece of the final
near-optimal tiling. Otherwise, one should proceed in the
subdivision. Compute the integrated indices related to ρ∗

x
and ρ∗

y . Then, split the tile in the direction with the biggest
index. Next, take the second tile and do the same, and so on.

The direct implementation of these two algorithms yields
adaptive grids with the targeted density in most of the
domain, but the total number of tiles can be far from the
targeted number N . This phenomenon is explained and
remedied in the following subsections.

3.4. Divergent and convergent cases

The algorithm described above entails that the normalization
of the optimal densities are known, whereas the asymptotic
solutions are unnormalized densities. To obtain an approx-
imate normalization, one can estimate the normalization
factor by summing the contributions of the unnormalized
discrete density on each grid cell of the mesh where the
singular vectors are defined.

In the previous sections, we have assumed that the
integrals ∫

�

u2
i (x1, . . . , xd)

d∏
q=1

dxq (42)

are proper (for i = 1, . . . , d), and densities like Eq. (32)and
Eq. (36) are integrable. It turns out that there are relevant
cases where this is not true. In fact, the examples that we have
taken with an average adjoint solution of the form Eq. (7)
and with α � 2.4, are divergent. This type of divergence
has been explained by Bocquet (2005, 2009) and Saide et al.
(2011), and is likely to affect data assimilation in air quality
and atmospheric dispersion applications, where pointwise
measurements are involved (which is so in most cases).

Using the findings of Bocquet (2005), a criterion of
convergence for these integrals can be established. The
singular vectors of the Jacobian matrix H are combinations
of the adjoint solutions. Close to the divergence, every
singular vector identifies with one of the adjoint solutions
attached to one of the observations. In this limit, it was shown
that the diagonal elements of the innovation statistics behave
like an integral over the full domain punctured by a small
ball �i of radius ri around the observation point:∫

�i

dd x u2
i (x) ∼

∫ ∞

ri

dr rd−1−2α . (43)

Applied to the toy model Eq. (7), this leads to the
convergence criterion α < d/2. These integrals also appear
as the first term of the expansions of the cost functions
computed earlier.

The divergence can also be characterized on the grid
density ρ∗ directly from Eq. (32): the behaviour of ρ∗ close
to the observation site i is dominated by

ρ∗(r) ∼ r
d

2+d (d−2α) , (44)

which leads to the same criterion.
In practice, it means that two regimes can be expected

when computing an optimal grid. Firstly, if the data
assimilation problem is non-divergent (α < d/2 in the toy
model case), then one should not expect any divergence in
the way the domain is gridded, and the above asymptotic
results hold. Secondly, if the data assimilation problem
is divergent (α > d/2 in the toy model case), then the
optimization will tend to refine the grid as much as possible
in the vicinities of the observation sites. Then, the above
asymptotic results do not hold as such.

The criterion of convergence is violated in the examples
of Parts I and II. This is clear in the CarboEurope-IP and
CTBTO cases, and assessed from the experiments of Bocquet
(2005, 2009) in the case of ETEX-I, which uses a realistic
dispersion model.

However, because there is an underlying finest regular
grid, in these divergent cases the density will in fact saturate
to the density of the finest grid.

3.5. Saturation zone

For the sake of simplicity, assume that the dictionary of
representations stems from a 2d-tree. Besides, the regime
may be divergent. In this case, the asymptotic solution
Eq. (32) does not hold. Instead the optimal density is the
optimum of the functional

Jρ =
∫

�

dd x ρ− 2
d

( p∑
i=1

f (λi) ‖∇ui‖2

)

+ γ

(∫
�

dd x ρ − 1

)
+
∫

�

dd x ξ(ρ − ν) , (45)

where γ is the Lagrange multiplier enforcing the
normalization of the density, and ξ(x) ≥ 0 is a function
of multipliers that enforces a higher bound ν of the targeted
density ρ. Let us define ϕ as a level of the function

ψ(x) =
( p∑

i=1

f (λi) ‖∇ui(x)‖2

) d
2+d

. (46)

Then we define the sub-domain of � related to ϕ

�ϕ ={x ∈ �, ψ(x) ≤ ϕ} , �\�ϕ ={x ∈ �, ψ(x) > ϕ} .

(47)

In subdomain �ϕ , the solution of the density is proportional
to ψ(x), whereas in the saturation zone �\�ϕ , it is equal
to ν since ξ(x) is non-zero on the saturation zone, and
null elsewhere. One needs to determine the right level ϕ.
The normalization of the density and the continuity of the
density determine the right ϕ. Define the function

�(ϕ) = 1 − ν|�\�ϕ |∫
�ϕ

dd x ψ(x)
, (48)

where |�\�ϕ | is the area of �\�ϕ . Then the solution ϕ∗
satisfies the equation

�(ϕ)ϕ = ν , (49)

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 137: 1357–1368 (2011)



1364 M. Bocquet and L. Wu

which enforces the continuity of the density. Since it is
straightforward to compute � numerically, the solution of
this nonlinear 1D problem is easily obtained numerically.
Once ϕ∗ is determined, the solution reads

∀x ∈ �\�ϕ∗ : ρ(x) = ν ,

∀x ∈ �ϕ∗ : ρ(x) = �(ϕ∗) ψ(x) .

}
(50)

3.6. Practical algorithms

Although this asymptotic solution is simple enough to
implement, we found that a more practical approach can be
used to construct a discretized representation that respects
this asymptotic result. To obtain a discrete representation,
even in the divergent case, one can apply directly the
algorithms detailed in section 3.3. In the non-divergent
case, the effective number of tiles will be equal or close to the
target number of tiles. However, in the divergent case, this
effective number could differ significantly from the target
number. Yet, obviously, it is an increasing function of the
target number. Therefore, one can use a dichotomy and
vary the target number until the effective number matches
the original target number. Because the construction of a
representation from the asymptotic limit is costless, it is
cheap to run such a dichotomic search. This turns out to be
as efficient as simple so that it is used in the following.

4. Illustration on the CTBTO case

Let us illustrate the relevance and usefulness of this
asymptotic approximations, but also explore their range
of validity, on the CTBTO example.

4.1. Qtree

Optimal qtree grids are built from a wide range of tile
numbers N = 2l, with l = 0, 2, . . . , 14, using the DFS
criterion Eq. (6). The DFS of each optimal qtree are plotted
against the number of tiles in Figure 1(a) (α = 2.4). The B
and R diagonal entries are chosen such that the total DFS
in the finest grid is 78.9936 rather than the ideal noise-free
value 79 (because there are 79 observations, one for each
station).

DFS values also given for regular grids to stress the
optimality of these qtrees.

The asymptotic solutions are obtained within a few
seconds, whereas the set of the 15 optimal representations
is obtained within 12 hours on a standard 8-core
computer. However the latter duration is very case-
dependent, and depends considerably on the stopping
criterion of the optimization and the required precision
of the solution.

Comparing the DFS of corresponding adaptive grids,
there is a clear discrepancy between the asymptotic qtree
and the optimal one, especially for a low value of the
total tile number N . This is clearly consistent with the fact
that these approximations are asymptotic. It is however
remarkable that for N = 2048, which represents only 1.6%
of the total number of grid cells in the finest grid, the
DFS of the asymptotic and the optimal qtree are very close:
78.58 and 78.79 respectively, which represent 99.5% and
99.7% respectively of the maximum DFS (which can only
be achieved in the finest grid). Figure 2 shows that the
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Figure 1. Degrees of freedom for the signal for optimal qtrees, obtained from
the asymptotic limit approximation, and regular grids against the number
of grid cells in the representation (CTBTO example). (a) corresponds to a
Jacobian generated with the power law exponent α = 2.4, (b) with α = 1,
and (c) with α = 0.5.

corresponding qtrees are quite similar, not only in terms of
DFS, but the structures are also quite close. We notice that
84% of the tiles in the two qtrees are shared.

Even though it cannot be seen on Figure 1, some of
the asymptotic solutions slightly outperform the optimal
grids obtained from the method of Part I for large N .
This is due to the fact that the discrete optimization
algorithm is performed at a large but nevertheless finite
value of a regularisation parameter β , and is therefore
slightly suboptimal, as explained in Part I.
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(a)

(b)

Figure 2. Visual comparison of optimal or near-optimal qtrees with N = 2048 obtained (a) from the plain optimization and (b) from the asymptotic
result.

Similar results can be obtained but for different values of
the power law exponent α of the influence function defined
by Eq. (7). Figure 1(b, c) illustrate cases α = 0.5, which is
a typical convergent case, and α = 1, which corresponds to
the borderline case between convergence and divergence for
d = 2. In the convergent case, the asymptotic grid and the
optimal grid are almost identical for every N , whereas the
regular grid performs well. Indeed, the influence function
fields are much smoother than in the α = 2.4 case, and
the asymptotic theory is expected to perform well as a
consequence.

In the borderline case, a discrepancy between the
asymptotic grid and the optimal grid appears. The regular
grid curve is almost linear with the logarithm of the number
of tiles. In this case too, the asymptotic and optimal qtrees
offer very similar performances in the asymptotic regime
N > 2048.

4.2. General tiling

The same comparison is carried out for optimal general
tilings and their asymptotic approximations. The results are
reported in Figure 3, for α = 2.4, 1.0 and 0.5.

For N = 2048, the optimal tiling captures 78.96 DFS while
the asymptotics tiling captures 73.33 DFS, which is worse
than the qtree asymptotic result (78.58). Nevertheless 49% of
the tiles in the asymptotic and optimal tiling are shared. Still,
in this regime and this value of N , the simpler asymptotic
qtree outperforms the asymptotic tiling. Therefore, for such
stringent regime (α = 2.4), optimizing on a qtree dictionary
might be simpler, faster, and actually more efficient. Yet, a
real non-simplistic Jacobian representing realistic dispersion
physics might not be that stringent. Also, realistic averaged
dispersion may exhibit strong anisotropy which may give an
advantage to general tilings over qtrees.

For N = 4096, the asymptotic tiling (78.985 DFS) does
outperform the asymptotic qtree (78.975 DFS). The optimal
tiling captures 78.988 DFS. The optimal and the asymptotic
tiling of control space share 60% of their tiles. The two
corresponding tilings at N = 4096 are shown in Figure 4.

4.3. When are regular grids good enough?

In Figures 1 and 3, the DFS curves of the regular grids with
respect to ln(N) are depending on the effective diffusion
regime, characterized by α. There is a transition of behaviour
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Figure 3. As Figure 1, but for optimal general tilings.

when α = 1, where the DFS seem to depend linearly on
ln(N). The expansion used earlier is not suited for the
diagnostic of such behaviour. One can show that, at least
for the toy model with a power law, the next leading-order
term is diverging for α > 0 when considering regular grids
(ρ uniform). Even though this divergence can be cured
by taking into account the finest regular grid acting as a
cut-off, there is a simpler heuristic argument that helps
understanding the dependence of regular grids with the
scale.

In order to compare with the numerical results, at
least qualitatively, we make several assumptions. A single
influence function u(x) ∝ ‖x‖−α , corresponding to a single

annual-mean observation, is considered in dimension
d = 2. The global domain is replaced with a finite planar
domain surrounding the observation site. Spectral analysis
with spherical harmonics is replaced with discrete Fourier
analysis. In turn, assuming the finite domain is large enough,
continuous Fourier analysis will be preferred to discrete
analysis for its simplicity. Hence the following argument is
only qualitative.

Transposing Eq. (15) in dimension d = 2, the DFS
criterion reads

JN =
N∑

k=1

1

|Sk|
(∫

Sk

d2x u(x)

)2

=
N∑

k=1

|Sk|
(

1

|Sk|
∫

Sk

d2x u(x)

)2

. (51)

In the second line, it is made clear that u is coarse-grained
in cell Sk by taking its average. A heuristically similar filter
would be achieved by applying a cut-off � in Fourier space.
For regular grids and d = 2, � would be related to N by
� ∼ √

N . If û(p) is the Fourier transform of u(x), the
filtering operation is defined by

F�u(x) =
∫

�0≤‖p‖≤�

d2p û(p) e−ip·x , (52)

where �0 is the large-scale cut-off due to the finite domain
(which corresponds to N0 = Ncg = 8 in the simplified
CTBTO example).

For grid-cell number N related to the cut-off � = √
N ,

one gets

JN �
∫

�

d2x (F�u)2

�
∫

d2p F̂�u(p) F̂�u(−p)

�
∫

�0≤‖p‖≤�

d2p û(p) û(−p) . (53)

In the case u(x) ∝ ‖x‖−α , one obtains û(p) ∝ ‖p‖α−2. As a
consequence

JN ∝
∫

�0≤‖p‖≤�

d2p ‖p‖2(α−2) ∝
∫ �

�0

dp p2α−3 , (54)

where p = ‖p‖. The normalization of u allows us to
determine the proportionality constant for JN :

1 =
∫

�

d2x u2(x) =
∫

�0≤‖p‖≤�fg

d2p ‖p‖2(α−2) , (55)

where �fg = √Nfg is the cut-off imposed by the finest
regular grid. As a consequence, one obtains for α �= 1

JN � Nα−1 − Nα−1
0

Nα−1
fg − Nα−1

0

, (56)

and for α = 1

JN � ln(N/N0)

ln(Nfg/N0)
. (57)

Qualitatively, the predicted behaviour matches well the one
reported in the numerical experiments, for α < 1, α = 1,
and α > 1.
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(a)

(b)

Figure 4. As Figure 2, but for general tilings with N = 4096.

5. Summary and conclusion

In Part II, analytical solutions for the representations of
control space with a view to optimal data assimilation have
been proposed. These densities of tiles have been derived in
the continuum limit. They are asymptotic, in the sense that
they are approximations closer to the optimal solution in
the large N limit. The 1D case was first treated, since the
solution is expected to be exact in the asymptotic limit. For
the 2D cases and beyond, the continuum limit does depend
on the dictionary of representations, such as the set of
ftrees, qtrees, or general tilings. The qtree asymptotic limit
leads to one single rotationally invariant density. On the
contrary, ftree and tilings leads to directional densities, one
for each direction, and the total tile density is not rotationally
invariant. If this is quite trivial in the ftree case, it is more
surprising but understandable in the general tiling case.

Since these densities are continuum limit objects, an
algorithm is needed to build discrete adaptive grids from
them. Algorithms have been proposed for most efficient
multiscale structures: the dictionary of qtrees and the
dictionary of general tilings.

All the methodological results have then been tested on an
atmospheric dispersion toy model, pertaining to the Inter-
national Monitoring System network of the CTBTO. The
case corresponds to a 2D configuration, but the methodol-
ogy can be generalized to other dimensional configurations
such as the 2D+T ETEX-I example used in Part I.

It was shown that the asymptotic solutions yield
suboptimal representations that are quite close to the
optimal representations, even for a small fraction of
the maximum number of tiles achievable (N/Nfg � 1).
They even share a substantial number of tiles with the
optimal solutions. Note that there are at least two chained
approximations in the process. The first one is the fact that
the asymptotic expansion stops at the next leading order. The
second one is the heuristic algorithm that we have devised
to retrieve discrete representations and which may be sub-
optimal. Still, these solutions turned out to be satisfying on
the toy model and may well be used for practical problems.

In addition, it was found that the quality of the
approximations of these asymptotic solutions depends on
the physics. This was illustrated by the α exponent which
scales the magnitude of the physical diffusion. In particular,
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when α ≥ d/2, the density is improper which is related to
the findings of Bocquet (2005). Discrete representations can
nonetheless be built on these improper densities, because
of saturation zones that shield the singularities of the
density. An algorithm to deal with this problem is also
proposed.

The interest of these optimal representations versus the
regular grids was shown to depend also on the physics.
In particular, the more diffusive the regime is (typically
α > 1), the less efficient the regular grids are, and the
more beneficial the optimal representations are. Note that
the regime of the ETEX experiment discussed in Part I,
with a real physics Jacobian, corresponds rather to a
convex DFS curve where regular grids are particularly
inefficient.

An unexplored idea is to use these asymptotic solutions to
precondition the discrete optimization presented in Part I,
but it would require the dual optimization of Part I to
be exchanged for a primal optimization scheme where the
filling factors of each tile are explicit. This can be done but
is outside the present scope.

The first aim of this two-part article was to establish
a set of theoretical results on the topic. A secondary
goal is to prepare the application of the methodology to
atmospheric chemistry problems with large datasets and real
chemistry and transport models (hence large and realistic
Jacobians). In that respect, those asymptotic solutions and
the associated algorithms are key tools towards that goal.
We are currently applying the methodology on a realistic
CO2 inversion experiment, and on the IMS network of
the CTBTO preparatory commission, in collaboration with
experts in these two fields.
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