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Abstract

This manuscript is devoted to the attempts on the design of new nonlinear data
assimilation schemes. The variational and sequential assimilation methods are re-
viewed with emphasis on their performances on dealing with nonlinearity and high
dimension of the environmental dynamical systems. The nonlinear data assimila-
tion is based on Bayesian formulation and its approximate solutions. Sequential
Monte Carlo methods, especially particle filters, are discussed. Several issues, i.e.
variational formulation in the information viewpoint in the context of nonlinear
data assimilation, efficient sampling techniques, and parallel implementation of the
filters, might bring new ideas for the design of new nonlinear data assimilation
schemes. In the end we briefly summarize the applications of data assimilation for
air pollution.
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1 Introduction

Data assimilation aims at optimal estimations of system states from diverse
sources of information, such as nonlinear dynamics governed by physical laws,
statistics features, and observations. Subsequent forecast can thus be con-
ducted based on the assimilated system states. Data assimilation plays im-
portant roles for numerical environmental predictions in meteorology and
oceanography. The main challenging tasks are to deal with the nonlinearity
and the high dimension of environmental dynamical systems.

The observations are sparse and insufficient in the phase space of state vari-
ables. In addition, there are observational errors due to the lack of measure-
ment precisions. That is why the prediction problem can not be described to
be deterministic, instead, stochastic dynamic prediction was proposed (Ep-
stein 1969). It was assumed that the physical laws, which govern the system
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dynamical behavior, are entirely deterministic, but the initial conditions are
probabilistic. Therefore the state probability density evolves conditioned to the
observations. The predictions are statistic items according to state probability
density. Following this stochastic approach, Fleming (1971a, 1971b) extended
the predictability studies, and Leith (1974) investigated the ensemble forecast
based on a Monte Carlo sampling of the stochastic initial conditions.

In this stochastic context, the infinite degrees of freedom in realities are re-
duced to be the uncertainties of initial conditions. For instance the number of
degrees of freedom modern primitive equations are of the order of 107 (Kalnay
2003). The numerical prediction is transformed to be an initial condition prob-
lem. However, the enormous computational load, which results from the eval-
uation of expected values of the state variables as well as their variances and
covariances, impedes the immediate applications of stochastic dynamic pre-
diction. Epstein stated in the end of his 1969 Tellus paper that this stochastic
method was designed to be rather research tools than operational procedures
at that moment.

One is often told that data assimilation schemes are catalogued into sequential
and variational approaches. Neither of them are deterministic (for the equiv-
alence between the two approaches, see Lorenc 1986, Li and Navon 2003).
The variational approaches started by Sasaki (1958, 1970) alleviate the heavy
computational load of the estimation problem by feasible iterative solution of
variational systems. In the variational formulation of Sasaki (1970), the model
dynamics was underemphasized, and the state evolution was tracked under a
weak constraint of model dynamics. Initial conditions were not considered
in the assimilation system, therefore, the original variational formulation of
Sasaki is not adaptable to the Epstein stochastic approach. Le Dimet (1982,
1986 with Talagrand) is the first that realizes this and proposes the proper
variational formulation to iteratively solve the estimation problem of initial
conditions for high dimensional atmospheric system. The model dynamics is
of great benefit for the efficient iteration in the form of adjoint model. The
variational methods are then widely spread in data assimilation community in
diverse applications, i.e. uncertainties estimation of boundary conditions (Le
Dimet 1993) and model errors (Vidard 2001), sensitivity analysis (Ngodock
1996, Le Dimet 2002) and adaptive observations (Navon 2003). Further re-
ductions can be achieved by optimal control in the subspace of the control
variables (Sophie thesis 2001).

When considering model nonlinearities, representer methods are proposed to
solve the generalized inverse problem by a sequence of linear iterates of Euler-
Lagrange equations in a finite dimensional data space spanned by representers
of measurements. However, both adjoint model and tangent linear model can
be considered as linear operators on the direct model, thus the truncation
errors can not be omitted for highly nonlinear systems. The cost function of
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the variational methods will carry multiple optima (Gauthier 1992; Miller et
al. 1994). In this case, one might resort to global optimization methods, such
as simulated annealing (Kruger 1993). For high dimensional systems, global
optimization methods are computationally prohibitive. Pires et al. (1996) pro-
pose the quasi-static variational assimilation algorithm for determining the
global minimum based on successive small increments of assimilation period.
In practice, regularization items can be added to the cost function to avoid
the minimization process from getting trapped around local minima.

The main drawback of the variational approach is that no flow dependent
error covariances are provided, whereas in sequential approach, there is a fil-
tering process to estimate not only state estimation but also error statistics
when new observations are collected. For review of sequential data assimilation
techniques, we refer to Bertino et al. 2003, Eversen 2003 and Hamill 2004.

The theoretical backbones of sequential data assimilation methods are based
on stochastic dynamic prediction (Epstein 1969) and optimal filter (Jazwinski
1970). The assimilation process is composed of two inter-evolutional steps:
forecast (or prediction) and update (or analysis). In prediction step the esti-
mation results of the latest analysis step are used as the initial conditions for
the forecast at next time step. The resulting forecast is then filtered together
with the new observations for an state analysis (optimal estimation). In the
context of stochastic dynamic prediction, the forecast can be chosen as statis-
tics items (usually mean) calculated according to the state probability density
function (pdf).

The evolution of the state pdf is governed by continuity partial differential
equations (PDE), such as Louiville equation (Epstein 1969; Ehrendorfer 1994)
or Fokker-Planck equation (Jazwinski 1970; Miller et al. 1999). A general
nonlinear filtering framework using Bayesian theorem can then be proposed
to adjust the state prior pdf (solution of Louiville equation) by the observa-
tions to achieve the state posterior pdf (Jazwinski 1970; Lorenc 1986). The
state estimation can thus be conducted either by maximizing the posterior pdf
(maximum a posteriori, MAP) or by minimizing the variances (van Leeuwen
2003).

The practical problem is that neither pdf evolution PDEs nor Bayesian for-
mula are computational feasible for high dimensional systems. Approximation
has to be made. Note that the original formulation is actually nonlinear, and
approximation methods defined in the low dimensional subspace usually relax
this nonlinearity to some extent. We have to balance the nonlinearity con-
straint and approximation precision for problem-relevant realities.

The approximation approaches follow mainly simplification strategy and sub-
space concept, or both. For simplification methods, the original problem be-
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comes relatively feasible by proper assumptions. For instance, if we assume
that the model dynamics are linear, and if states and observations are Gaus-
sian, the original problem will be reduced to a best linear unbiased estimation
problem (BLUE). Kalman filter (KF) can thus be derived in this case (Kalman
1960). For nearly nonlinear systems, the truncation errors of the linearaliza-
tion are acceptable, the Kalman filter can be extended (Extended KF – EKF,
Jazwinski 1970, Ghil and Malanotte-Rizzoli 1991).

The subspace concept is based on the studies of attractors of the nonlinear
dynamics that lead to dominant low dimensional systems (Lorenz 1963, Lions
et al. 1997). The state space is decomposed into subspaces that represent rapid
and slow changes respectively (Lions 1997). The slow one can be considered
as the climatic long-range tendence, whereas the rapid one characterizes the
short-range oscillations like gravity waves. For short range prediction, since
there is little change for slow-change subspace, the efficiency will be achieved
by optimize only in the rapid-change space. However, special cautions have to
be paid for the initialization and evolution of this subspace for best represen-
tation of the original model dynamics. For such reduction data assimilation
methods in the framework of Kalman filter, we refer to multivariate empir-
ical orthogonal functions (EOFs) representation (Cane et al. 1996), singular
evolutive extended Kalman filter (SEEK, Pham et al. 1998) and reduced rank
square root Kalman filter (RRSQRT, Verlaan and Heemink 1997).

Monte Carlo approximation can be considered as the projection of state space
to a subspace that is spanned by random samples. The notorious O(n

1
2 ) con-

vergence property (where n the number of samples, Casella and Berger 1990) of
Monte Carlo methods impedes themselves from wide applications for data as-
similation in early days. Things were changed when Evensen (1994) employed
Monte Carlo methods to approximate the covariance for the Kalman filter
update. In the applications of the so-called ensemble Kalman filter method
(EnKF; Evensen 1994; Burgers et al. 1998; Evensen 2003), it is observed that
100 members of ensemble are sufficient for many real cases. The scientific in-
terest are devoted to the generation of efficient ensembles. A notable process
is to perform the sampling equipped with the concept of reduction methods
(energy-based singular vector methods, Molteni et al. 1996; breeding meth-
ods, Toth and Kalnay 1997; singular evolutive interpolated Kalman filter –
SEIK, Pham 2000; error subspace statistical estimation – ESSE, Lermusiaux
and Robinson 1999).

Although EnKF solves partly the nonlinear problem at a moderate cost by
Monte Carlo estimation of the mean and covariance of the prior governed
by probability PDEs, the linear update of Kalman filter imposes the Gaussian
assumption of prior and linearity of dynamics. Potentially (theoretically) there
would be difficulties for EnKF to correctly track the state variables for non-
Gaussian and strongly nonlinear high dimensional systems.
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The nonlinear filtering, originally formulated by Jazwinski (1970), is brought
to the scientific focus as a candidate of better assimilation scheme over linear
update (van Leeuwen and Evensen 1996; Evensen 1997; Miller et al. 1999;
Anderson and Anderson 1999; Pham 2001; Uzunoglu et al. 2005). The nonlin-
ear filtering is supposed to better assimilate observations avoiding unbounded
error growth within predictability limits. The techniques of sequential impor-
tance resampling (SIR, Liu and Chen, 1998, Doucet et al. 2001) and kernel
approximation (Silverman 1986) in statistics community are imported for ef-
ficient Monte Carlo approximation of the nonlinear filtering problem. The
sequential Monte Carlo technique – Particle filter – has drawn intensive at-
tentions and becomes an active research subject (Pham 2001; Arulampalam
et al. 2002; van Leeuwen 2003; Kivman 2003; Kim et al. 2003; Eyink and Kim
2005; Xiong and Navon 2005). Crucial issues are the methodologies on how
to efficiently and adaptively generate the Monte Carlo samples for the com-
plex dynamics and accumulation of observations (Bishop et al. 2001; Miller
and Ehret 2002; Mitchel et al. 2002; Uzunoglu et al. 2005), and on how to
adaptively perform the filtering given the relatively small ensembles (Lermu-
siaux 2002; Ott et al. 2004; Anderson 2004b). Much of these work are devoted
to EnKF sampling, while efficient sampling for nonlinear particle filtering re-
mains to be a scientific target.

This report is not for the purpose of a comprehensive state-of-art of the
stochastic approach for data assimilation. We just summarize the main for-
mulae for some important sequential schemes. The general nonlinear data
assimilation framework is presented in section 2. The subsequent section is
devoted to the linear suboptimal Kalman filter and its variants. Particle fil-
ter, as well as its applications in data assimilation, is introduced in section 4.
While section 5 is devoted to several recent directions for particle filter design
for data assimilation. Finally, we briefly summarize the applications of data
assimilation to chemical atmospheric transport models.

2 Nonlinear data assimilation, a Bayesian framework

In the data assimilation context, the atmospheric, oceanic or other environ-
mental systems are described as an equation from time tk−1 to tk,

xt(tk) = Mk−1[x
t(tk−1)] + ηk−1, (1)

where x is the state vector of n dimension, M corresponds to the (nonlinear)
dynamics operator, and ηk−1 is the system noise vector. Let xt

k = xt(tk).
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At each time tk, one observes,

yo
k = Hk[x

t(tk)] + εk, (2)

where H is the (nonlinear) observation operator, yo
k ≡ yo(tk) is the observa-

tion vector at time tk of p dimension, and εk is the observation noise vector.
Typically p ¿ n. The system noise ηk−1 and observation noise εk are supposed
to be mutually independent. The initial state pdf is denoted p(xt

0).

Let us denote the observation set up to tk by Yk ≡ {yo
i , i = 1, ..k}. The data

assimilation is thus an absorption process of the information from observation
Yk to decrease the model uncertainties for better state estimations of condi-
tioned density. Note that if no observations at initial time t0 we have Y0 = Ø,
hence p(x0|Y0) = p(x0). As indicated in introduction procession, the assimi-
lation process follows the two steps of forecast and analysis. Suppose that our
assimilation time interval is [tk−1, tk], the objective is thus the estimation of
p(xt

k|Yk).

Forecast:

The prior pdf p(xt
k|Yk−1) can be obtained by theory of stochastic dynamics

prediction in the form of Chapman-Kolmogorov equation (Jazwinski 1970),

p(xt
k|Yk−1) =

∫
p(xt

k|xt
k−1)p(xt

k−1|Yk−1)dx
t
k−1 (3)

where p(xt
k|xt

k−1) is defined by the dynamics model (1) and noise statistics of
ηk−1.

Analysis:

Applying Bayes rule, we have (see van der Merwe et al. 2000)

p(xt
k|Yk) =

p(yo
k|xt

k)p(xt
k|Yk−1)

p(yo
k|Yk−1)

, (4)

where p(xt
k|Yk−1) is the prior pdf provided by the forecast step, p(xt

k|Yk) is the
posterior pdf, p(yo

k|xt
k) is called likelihood and defined by observation model

(2) and noise statistics of εk, and p(yo
k|Yk−1) is the normalization constant

sometimes called evidence or marginal likelihood,

p(yo
k|Yk−1) =

∫
p(yo

k|xt
k)p(xt

k|Yk−1)dx
t
k (5)
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Note that there is an implicit assumption that model (1) is a Markov process
of order one. When model dynamics are described as Itô stochastic differen-
tial equation (SDE), one can derive the pdf evolution PDE as Fokker-Planck
equation (Jazwinski 1970; Miller et al. 1999) instead of the integral form of
Chapman-Kolmogorov (3). Furthermore when system error item is omitted
in eqn. (1), the pdf evolution will be governed by Louiville equation (Epstein
1969; Ehrendorfer 1994).

3 Kalman Filter and its Variants

3.1 Extended Kalman filter

Given Gaussian p(xf
k−1|Yk−1), if noise εk and ηk−1 are mutually independent

Gaussian with known moments, and if dynamics operator Mk−1 and obser-
vation operator Hk are linear with respect to state vector xt and noises, the
forecast and analysis process of (3) and (4) equals to that of Kalman filter
(Kalman 1960).

For nonlinear cases, denote the linear operator Mk−1 and Hk the linear parts
of Mk−1 and Hk, that is,

Mk−1 ≡ ∂Mk−1

∂xt
k−1

Hk ≡ ∂Hk

∂xt
k

(6)

The approximate process of Kalman filter is then,

Forecast:

xf (tk) = Mk−1[x
a(tk−1)]

Pf (tk) = Mk−1P
a(tk−1)M

T
k−1 + Q(tk−1)

(7)

Analysis:

xa(tk) = xf (tk) + Kk(y
o
k −Hk[x

f (tk)])

Pa(tk) = (I−KkHk)P
f (tk)

(8)

where Kk is the Kalman gain,
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Kk = Pf (tk)H
T
k [HkP

f (tk)H
T
k + Rk]

−1 (9)

Here Qk and Rk are the covariance matrices of the zero mean noises ηk and
εk respectively.

In this case, the posterior pdf p(xf
k |Yk) is approximate by a Gaussian,

p(xt
k|Yk) ' N (xt

k;x
a
k,P

a
k) (10)

under the assumptions of Gaussian prior,

p(xt
k|Yk−1) ' N (xt

k;x
f
k ,P

f
k) (11)

When dynamics are highly nonlinear, these assumptions will no longer be
valid and prediction errors can be encountered. For instance the storm Lothar
is misforecasted in 1999, as causes enormous damages in Europe (Mackenzie
2003).

3.2 Reduced Kalman filters

The Kalman filter is computational infeasible for high dimensional systems, for
instance the primitive equations with state dimension n = 107 (Kalnay 2003).
A single storage of the covariance matrix is of size O(n2), and the covariance
calculation formula of P f in (7) requires 2n model integrals. For current set-
tings it will cost CPU times for years. In addition to the computational load,
unbounded error growth of EKF was reported (Evensen 1992).

Several methods have been proposed to approximate the huge covariance ma-
trix Pf based on subspace concept. Cane et al. (1996) were the first to apply
Kalman filter in the reduced state space spanned by r principal components,
namely multivariate empirical orthogonal functions (EOFs). Cohn and Todling
(1996) propose three reduced schemes for Kalman filter: the coarse grid ap-
proximation of Pf , the singular value decomposition of the tangent linear
model and the approximation eigendecomposition of Pf . Typical such meth-
ods are for example SEEK (Pham 1998) and RRSQRT (Verlaan and Heemink
1997).

We briefly list the data assimilation scheme of SEEK as follows.

Initialization:
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xa
0 = x0

Pa
0 = L0U0L

T
0

(12)

Forecast:

xf
k = Mk−1[x

a
k−1]

Lk = Mk−1Lk−1

Pf
k = LkUk−1L

T
k

(13)

Analysis:

U−1
k = U−1

k−1 + LT
k HT

k R−1
k Lk

xa
k = xf

k + Kk(y
o
k −Hk[x

f
k ])

Pa
k = LkUkL

T
k

(14)

where the filter gain Kk is as,

Kk = LkUkL
T
k HT

k R−1
k (15)

where the columns of Lk are r dominant eigenvectors of P f
k , and Uk is a

diagonal matrix of corresponding eigenvalues. The Kalman filter is performed
in the subspace spanned by the r eigenvectors.

3.3 Ensemble Kalman filter

The idea of ensemble Kalman filter is to use Monte Carlo methods for the
approximation of forecast covariance matrix Pf in the forecast step, whereas
linear update of Kalman filter is kept in the analysis step.

We list the data assimilation schemes of EnKF following the notations of
Nerger (2003).

Initialization:

Given initial pdf p(xt
0), an ensemble of r members are generated randomly,
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{xa(α)
0 , , α = 1, . . . , r} (16)

The approximate mean and covariance of initial pdf is,

x̄a
0 = 1

r

r∑
α=1

x
a(α)
0

P̃a
0 = 1

r−1

r∑
α=1

(
x

a(α)
0 − x̄a

0

) (
x

a(α)
0 − x̄a

0

)T (17)

Forecast:

x
f(α)
k = Mk−1[x

a(α)
k−1 ] + η

(α)
k−1

P̃f
k = 1

r−1

r∑
α=1

(
x

f(α)
k − x̄f

k

) (
x

f(α)
k − x̄f

k

)T (18)

where x̄f
k is the mean of ensemble {xf(α)

k , α = 1, .., r} defined similar to x̄a
0 in

(17).

Analysis:

x
a(α)
k = x

f(α)
k + K̃k

(
y

o(α)
k −Hk[x

f(α)
k ]

)

xa
k = 1

r

r∑
α=1

x
a(α)
k

P̃a
k = 1

r−1

r∑
α=1

(
x

a(α)
k − xa

k

) (
x

a(α)
k − xa

k

)T

(19)

where

K̃k = P̃f
kH

T
k

(
HkP̃

f
kH

T
k + Rk

)−1
(20)

Here y
o(α)
k is usually considered as random variables consistent with observa-

tion error covariance Rk (Burgers et al. 1998).
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4 Particle filter

4.1 Theoretical aspects

In addition to the application of covariance matrix approximation for ensemble
Kalman filter, Monte Carlo simulation can also be employed to estimate the
posterior pdf p(xt

k|Yk) for dynamical systems, as is often referred to sequential
Monte Carlo (Liu and Chen 1998; Doucet et al. 2001).

4.1.1 Sequential Importance Sampling (SIS)

High dimensional distributions, say π(x), is usually hard to be achieved. We
can instead draw samples from another appropriate distribution g(x), and
then weight the resulting samples to accommodate π(x). This is the so-called
importance sampling.

Suppose that we are interested in some expectation Eπ(h(x)),

Eπ(h(x)) =
∫

h(x)π(x)dx

=
∫

h(x)
π(x)

g(x)
g(x)dx

= Eg

(
h(x)π(x)

g(x)

)
(21)

Let ω(x) = π(x)
g(x)

, we have

Eπ(h(x)) = Eg(h(x)ω(x)) (22)

The expectation Eπ(h(x)) can then be approximate by samples that taken
from density g : {x(i) ∼ g(x), i = 1, .., r} weighted by important weights

ω(i) = π(x(i))

g(x(i))
,

Eπ (h(x)) = lim
r→∞

∑r
i=1 h(x(i))ω(i)

∑r
i=1 ω(i)

(23)

One can consider π as being approximated by the discrete distribution sup-
ported on the x(i) with probabilities proportional to the weights ω(i). That
is
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π(x) ' 1

A

r∑

i=1

ω(i)δ(x− x(i)) (24)

where A =
∑r

i=1 ω(i) is the normalization parameter.

Remember that in the Bayesian framework, we are interested in the poste-
rior p(xt

k|Yk). Let Xk ≡ {xt
j, j = 0, .., k}. Applying the importance sampling

concept, we draw samples {X(i)
k , i = 1, .., r} from some importance function

g(Xk|Yk). The expectation of posterior p(Xk|Yk) with respect to some inter-
est hk(Xk) can thus be approximated as

Ep(Xk|Yk)(hk) ' 1

A

r∑

i=1

hk

(
X

(i)
k

)
· ω(i)

k (25)

where A =
∑r

i=1 ω(i) is the normalization parameter, and

ω
(i)
k =

p
(
X

(i)
k |Yk

)

g
(
X

(i)
k |Yk

) (26)

In the sequential case when observations are available successively, if we assign
the following factorized form for the importance function,

g (Xk|Yk) = g (xk|Xk−1,Yk) · g (Xk−1|Yk−1) (27)

The samples {X(i)
k } ∼ g (Xk|Yk) are thus composed of previous samples

{X(i)
k−1} ∼ g (Xk−1|Yk−1) and new samples {x(i)

k } ∼ g((xk|Xk−1,Yk).

Accordingly we can factorize posterior p (Xk|Yk) in terms of p (Xk−1|Yk−1) ,
p (yo

k|xt
k) and p (xk|xk−1), the weight update formula thus takes the recursive

form (Arulampalam et al. 2002),

ω
(i)
k = ω

(i)
k−1 ·

p
(
yo

k|x(i)
k

)
· p

(
x

(i)
k |x(i)

k−1

)

g
(
x

(i)
k |X(i)

k−1,Yk

) (28)

In summary, the sequential importance sampling is as follows (Doucet et al.
2000) :

Algorithm: Sequential Importance Sampling (SIS).

At each time k = 0, 1, 2, ..., for i = 1, .., r,
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• Draw samples x
(i)
k from g (xk|Xk−1,Yk), and form the samples X

(i)
k ≡

{x(i)
k ,X

(i)
k−1 }.

• Compute importance weight ω
(i)
k according to formula (28)

• Normalize the importance weight

ω̃
(i)
k =

ω
(i)
k

r∑
i=1

ω
(i)
k

(29)

4.1.2 Resampling

Kong, Liu and Wong (1994) proved that with importance function taking the
form as (27), the variance of the importance weights increases inevitably over
time (called degeneracy phenomenon). When the weights variance is consid-
erably large, these weights become very skewed. The weights of many samples
are very small, thus they have almost no contributions to the posterior ap-
proximations. In this case the effective sample size Neff will be much less than
r. Kong, Liu and Wong (1994) define Neff as

Neff =
r

1 + v2
k

, (30)

to measure the degeneracy phenomenon. Denoting

ω(Xk) =
p (Xk|Yk)

g (Xk|Yk)
, (31)

then v2
k is the variance of ω(Xk) with respect to g (Xk|Yk),

v2
k = V ARg(Xk|Yk) (ω(Xk)) (32)

An estimation of Neff is

N̂eff =
1

∑
ω̃

(i)
k

(33)

A resampling process is to eliminate samples with small weights and to en-
hance the samples with great weights, hence ”rejuvenate” the sampler to an
effective ensemble that better represents the system evolution. The resampling
process minimizes the ensemble variation, therefore, we have larger effective
sample size Neff and the degeneracy effect is reduced.

Liu and Chen (1998) summarize three resampling methods: random resam-
pling, residual resampling and local Monte Carlo resampling. The random
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resampling is essentially i.i.d sampling from discrete density (24). In SIS al-
gorithm, a new ensemble is generated by drawing r times the samples from
{X(i)

k , i = 1, .., r} according to their probability {ω̃(i)
k }. The weights are set to

1
r

after the sampling.

The residual sampling scheme is as follows:

• Copy ri = brω̃(i)
k c times of sample X

(i)
k into the new ensemble. Let r′ =

r − r∑
1

ri.

• Process r′ i.i.d sampling from {X(i)
k , i = 1, .., r} according to their probabil-

ity {rω̃(i)
k − ri}.

• Set ω
(i)
k to 1.

Liu and Chen (1998) compare the two resampling methods, and suggest to
process residual sampling whenever possible. In local Monte Carlo sampling,
the importance function is chosen to be p (xk|Xk−1,Yk), which is approxi-
mated based on the discrete a priori distribution of Xk−1. The resampling is
thus automatically achieved in SIS process of local Monte Carlo sampling (for
details, see Liu and Chen 1998).

In summary, the sequence importance resampling is as follows (Doucet et al.
2000):

Algorithm: Sequence Importance Resampling (SIR).

At each time k = 0, 1, 2, ..., for i = 1, .., r,

• Draw samples x̃
(i)
k from g (xk|Xk−1,Yk), and form the samples X̃

(i)
k ≡

{x̃(i)
k ,X

(i)
k−1 }.

• Compute importance weight ω
(i)
k according to formula (28)

• Normalize the importance weight

ω̃
(i)
k =

ω
(i)
k

r∑
i=1

ω
(i)
k

(34)

• Evaluate N̂eff according to (33).

• If N̂eff ≥ η, where η is some threshold, then

X
(i)
k = X̃

(i)
k

otherwise resampling is performed to generate X
(i)
k based on X̃

(i)
k (either

random or residual resampling).

In general, resampling process arouses both theoretical and practical prob-
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lematics. The theoretical convergence results to the optimal filter needs to be
investigated in this context. And such resampling procedure of mixing sam-
ples limits the practical parallel implementation of particle filter. When model
dynamics is deterministic or has small errors, the resampling procedure selects
identical samples, as made the resulting ensemble losing diversity (also named
sample impoverishment problem). Remedies for this case can be either sam-
ple perturbation methods (singular vector or bred vector; Miller and Ehret
2002) or kernel methods in which samples are drawn from an approximate
continuous distribution of kernel mixture (Silverman 1986, Pham 2001).

4.1.3 Importance function

One crucial concern for sequential Monte Carlo methods is the determina-
tion of the appropriate importance function g

(
xk|X(i)

k−1,Yk

)
(Kong, Liu and

Wong 1994). One nature selection of importance function is the posterior

p
(
xk|X(i)

k−1,Yk

)
, with the weight update formula as

ω
(i)
k = ω

(i)
k−1 · p

(
yo

k|X(i)
k−1,Yk−1

)
(35)

The posterior importance function is optimal in the sense of variance mini-
mization for importance weights, as limits the degeneracy phenomenon. For
simple cases, p

(
xk|X(i)

k−1,Yk

)
= p

(
xk|x(i)

k−1,y
o
k

)
, and the importance weights

are updated by ω
(i)
k = ω

(i)
k−1 · p

(
yo

k|x(i)
k−1

)
. However, for practical applications

it is usually the case that there is no analytical evaluations of importance
function p (xk|Xk−1,Yk) and marginal likelihood p

(
yo

k|X(i)
k−1,Yk−1

)
. In this

case, one usually resorts to simple prior importance function p
(
xk|x(i)

k−1

)
if

the model possesses Markovian feature (bootstrap filter, Gordon, Salmond
and Smith 1993; Kitagawa 1996). The corresponding weight update formula
is

ω
(i)
k = ω

(i)
k−1 · p

(
yo

k|x(i)
k

)
. (36)

We have simpler forms for importance function and weight update formula.
The main drawback of the prior importance function is that no information
from latest observation yo

k is considered. The new ensemble is thus less repre-
sentative to the system evolutions and has large variations, when parts of the
samples are drawn from the the prior distribution tails, where the posterior
possibly has spikes because of large likelihood. That is why a resampling step
is obligatory.

It is a nature concept to design the importance function based on not only
prior information but also the accumulated observations. The difficulty of an-
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alytical evaluations for importance function g
(
xk|X(i)

k−1,Yk

)
can be partially

alleviated by approximation methods which profit from either previous result-
ing samples or empirical information (knowledge). In this case, the importance

function can be denoted by some parametric form g
(
xk|θ(X(i)

k−1,Yk)
)
, where θ

is a deterministic mapping from {X(i)
k−1,Yk} to some parameter set Θ. In a typ-

ical exampleposterior Gaussian is employed as importance function (Doucet
et al. 2000). The Gaussian mean and variances are parameters derived by
linearizations of model dynamics and optimal importance function.

Another example is the auxiliary particle filter (Pitt and Shephard 2001). Here
the importance function is chosen to be some joint distribution q (xk, i|Yk),
which is an approximation of p (xk, i|Yk). The auxiliary variable i is the index
of samples at time k − 1. Essentially it differs from bootstrap approach in
that not only prior information but also current observations are considered
in the importance function of auxiliary particle filter. The prior in this case
is the discrete distribution of sample mixture. Whereas in the parametric
resampling filter (Kim et al. 2003), the prior distribution is represented by
a mixture Gaussian. A parametric distribution P (xk; λ, Λ) approximates the
posterior. Note that in this approach, the observations are processed in a
manner similar to ensemble Kalman filter. The Bayes rule is applied to update
the parameter λ, Λ given current observations, and no sequential importance
sampling (weighting) scheme is employed.

4.2 Particle filter applications in data assimilation

The first attempt of particle filter in data assimilation community is per-
haps the work of van Leeuwen and Evensen (1996). The posterior is approx-
imated by importance sampling, in which the importance function is chosen
to be prior (or forecast) p(xk|xk−1). However, there is no explicit formula-
tion of sequential importance sampling, and resampling process is omitted. It
is therefore not surprising that this preliminary attempt suffers from severe
degeneracy phenomenon. Approximately 10,000 samples are needed for satis-
factory estimation of posterior in this direct ensemble approach for a two-layer
quasi-geostrophic ocean model.

Pham (2001) brings particle filter back to focus by furnishing a resampling
step whenever great discrepancies among importance weights are observed.
The importance weight discrepancy is evaluated according to entropy differ-
ence between two discrete distributions represented by different sets of im-
portance weights. The importance function is still the prior. Kernel methods
(Silverman 1986) are employed to approximate the discrete posterior distribu-
tion by the continuous distribution, such that the diversity within ensemble
preserves when the model dynamics is deterministic or the system noise is

16



small. The state of chaotic Lorenz system is tracked back by particle filter
based on observations of part of the states. Approximately 10-50 samples are
needed for satisfactory assimilation results. Kivman (2003) enriches the re-
sults by comparing EnKF and particle filter with the conclusion that particle
filter is superior to EnKF especially when observation is sparse for stochastic
Lorenz system.

van Leeuwen (2003) realizes the importance of resampling, and extends the
preliminary attempt (van Leeuwen and Evensen 1996) by introducing residual
resampling for the realistic large-scale (2 × 105 dimension) quasi-geostrophic
ocean model. There are no special treatments (say kernel methods) for the
maintenances of ensemble diversity because of large errors of model dynamics.
The importance function in this case is still the prior, and the ensemble size
is 495. It is perhaps the first successful realistic application of particle filter in
data assimilation community. Several challenging issues remain, for example
particle filtering with smaller ensemble size (< 100), and the ensemble collapse
problem.

5 Recent directions for efficient particle filter design in data as-
similation

5.1 Information point of view of data assimilation

Two fundamental questions for data assimilation systems are how to repre-
sent the information from observations, and how such information propagates
during the assimilation process. In linear case, we can define the observability
or information matrix (Zupanski et al 2004). In the nonlinear context, it is a
difficult problem that has no satisfactory answer. Once we know better this
information propagation process, it would lead to efficient DA schemes that
particle filter can benefit from. We notice that the latest work of Eyink and
Kim follows this idea by defining relative entropy function for the resampling
process. It is usually related to variational formulation (Eyink 2001; Eyink
et al. 2002). One possible approach is to pay more attention to information
representation related to the work of Eyink and Kim Note that such similar
idea has been introduced by Pham (2002) for a mutual information approach
to blind sources separation.
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5.2 Efficient generation of ensemble

For ensemble data assimilation, efficient generation of samples has been in-
tensively investigated. It is usually based on subspace concept of reduction
methods, say singular vectors, breeding methods and empirical orthogonal
functions. Adaptive, hierarchical, and multiscale ensemble data assimilation
schemes have been introduced. One question is thus how to apply these sample
generation techniques in particle filter. The work of Xiong and Navon follows
this idea. But they come back to Gaussian posterior assumption. Singular vec-
tor decomposition is employed to represent only the samples with significant
weight. It is conceptually similar to SEIK (Pham 2001), where 3 samples are
found to be sufficient to track back the state evolution of the stochastic Lorenz
system.

In recent work of van Leeuwen (2005), the ensemble size has been reduced
to 32 by Guided Sequential Importance Resampling (GSIR) algorithm for
the realistic quasi-geostrophic ocean model. The ensemble in this algorithm is
resampled before the current observations arrive, and therefore guided towards
the current observation. It is not clear at the moment the relationship between
the GSIR algorithm and auxiliary particle filter (Pitt and Shephard 2001).

5.3 Parallelism consideration

Particle filtering is essentially parallel. For parallel implementation of Kalman
filter and its variants, we refer to the thesis of Nerger (2004) and references
therein. In particle filter case, the main difficulty is that the resampling tech-
niques impede the parallelism.

6 Brief summary of data assimilation application for chemical at-
mospheric transport models

Data Assimilation for chemical atmospheric transport models There are appli-
cations of variational DA (Elbern and Schmidt 2001, Qulo 2004) and Kalman
filter (Segers 2002). Particle filter for DA of air quality demands both practical
implementations and theoretical investigations.
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