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a b s t r a c t

Ozone is a harmful air pollutant at ground level, and its concentrations are measured with routine
monitoring networks. Due to the heterogeneous nature of ozone fields, the spatial distribution of the
ozone concentration measurements is very important. Therefore, the evaluation of distributed moni-
toring networks is of both theoretical and practical interests. In this study, we assess the efficiency of the
ozone monitoring network over France (BDQA) by investigating a network reduction problem. We
examine how well a subset of the BDQA network can represent the full network. The performance of
a subnetwork is taken to be the root mean square error (RMSE) of the hourly ozone mean concentration
estimations over the whole network given the observations from that subnetwork. Spatial interpolations
are conducted for the ozone estimation taking into account the spatial correlations. Several interpolation
methods, namely ordinary kriging, simple kriging, kriging about the means, and consistent kriging about
the means, are compared for a reliable estimation. Exponential models are employed for the spatial
correlations. It is found that the statistical information about the means improves significantly the
kriging results, and that it is necessary to consider the correlation model to be hourly-varying and daily
stationary. The network reduction problem is solved using a simulated annealing algorithm. Significant
improvements can be obtained through these optimizations. For instance, removing optimally half the
stations leads to an estimation error of the order of the standard observational error (10 mg m�3). The
resulting optimal subnetworks are dense in urban agglomerations around Paris (Île-de-France) and Nice
(Côte d’Azur), where high ozone concentrations and strong heterogeneity are observed. The optimal
subnetworks are probably dense near frontiers because beyond these frontiers there is no observation to
reduce the uncertainty of the ozone field. For large rural regions, the stations are uniformly distributed.
The fractions between urban, suburban and rural stations are rather constant for optimal subnetworks of
larger size (beyond 100 stations). By contrast, for smaller subnetworks, the urban stations dominate.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Ozone is a harmful atmospheric pollutant that, when presents in
the boundary layer, damages human health, crop production and
many materials (Pleijel et al., 2007; Mauzerall et al., 2005). It is
therefore crucial to know its past, present and future concentrations.
To this end, diverse sources of information have to be combined for
a better ozone assessment, such as observations, model simulations,
and statistical inferences. Due to the heterogeneity of the available
information and the intrinsic heterogeneity of ozone fields, the
spatial distribution of the ozone concentrationmeasurements is very
important. Determining the optimal positioning of ozonemonitoring
sites, is referred to as the ozone network design problem.
EA, Joint Laboratory École des

All rights reserved.
Network design has been extensively considered in environmental
science (Fedorov and Hackl, 1994; Müller, 2007). These investigations
differ in the design criterion, the assumption on the underlying
statistics, and the algorithm for the selection of monitoring sites.

One important scientific concern for ozone network design is
that the design criterion should adequately account for the purpose
of the monitoring network. Consequently the network design is
inevitably problem-specific. For example, a sparse network is often
sought to be augmented (Nychka and Saltzman, 1998; Rayner,
2004). Conversely for dense networks, when measuring instru-
ments and their maintenance are expensive, there is a need to
evaluate the efficiency of the network, so that scarce resources can
be optimally allocated (Nychka and Saltzman, 1998; Fuentes et al.,
2007). Examples of criteria are the maximal uncertainty reduc-
tion (computed by the entropy) or the minimal root mean square
error (RMSE) of ozone estimations for the network adjustments.

Almost all the design criteria are related to the estimationof ozone
concentrations. The estimation methods can be roughly catalogued
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into three groups: the observation-free, simulation-free, and
advanced ones. The observation-free methods simulate ozone status
using mathematical models that describe the chemistry-transport
phenomena (Reynolds et al., 1973; Russell and Dennis, 2000). By
contrast, in the simulation-free methods, the ozone concentrations
are estimatedmainly based on in situ ozone observations. In general,
these estimations are made with statistical methods, e.g. regression
estimations (Di Carlo et al., 2007), time series predictions, and kriging
methods in which spatial correlations among observations are used
for a Best Linear Unbiased Estimation (BLUE) (Krige, 1951). The
advanced methods combine the information from both the model
simulations and the statistics of observations, for instance, the data
assimilation algorithms (Wu et al., 2008) and the ensemble forecast
techniques (Mallet et al., 2009).

The optimal deployment of a network is a combinatorial optimi-
zation problem. For dense networks, the search space is quite large.
Usually, frequent evaluations of the design criterion are needed. This
hampers the application of time-consuming estimationmethods, i.e.
the observation-free and advanced methods. Among simpler statis-
tical methods, since spatial data are concerned, the geostatistical
methods, such as kriging, are the most appropriate in this context.

In classical kriging methods, the underlying random field is
often assumed to be spatiotemporally stationary, and there is no
historical data fromwhich the kriging can benefit. However, ozone
fields have complex nonstationary structures, and statistics based
on historical data is appropriate. Hence there are two key issues:
the treatment of non-stationarity and the usage of climatological
statistics. Efforts adapting the classical kriging methods for ozone
estimations can be found in Blond et al. (2003); Wackernagel et al.
(2004); Fuentes et al. (2007).

The objective of this paper is twofold. First, we will examine the
kriging methods, with an emphasis on the non-stationarity hypoth-
esis and on the usage of statistics, applied to the regional dense BDQA
(Base de Données sur la Qualité de l’Air) network. Then, given the
winning kriging method, the efficiency of the BDQA network will be
evaluated by investigating a network reduction problem, in which
the subnetwork best representing the whole network is to be
determined. For network reduction problems, it is not mandatory to
estimate ozone concentrationsat locationsdifferent fromthose of the
network stations. Therefore, the root mean square error for the
estimations of hourly ozone means over the network can be seen as
a simple and objective criterion to evaluate the subnetworks.
Hopefully, the solutions of the network reduction problem will be
helpful to construct practical design rules, such as the removal of
redundant stations and the maintenance of important stations.

Caution is advised when analyzing the reduction results. They
should not be over interpreted, because the reduction experiments
covering longer period should be conducted. Statistics on the
performance of the optimally reduced networks across years should
be gathered and analyzed. Nevertheless, our objective is to illustrate
the methodology of network reduction and to assess, at least a pos-
teriori, the efficiency of the full network and the best subnetworks.

The paper is organized as follows. The network reduction
methodology is detailed in Section 2; it covers the ozone field, the
correlation models, the kriging methods, the design criterion and
the reduction algorithm. Section 3 presents the setupof the network
reduction experiment. We report the kriging comparisons and the
reduction results in Section 4. Conclusions are provided in Section 5.

2. Methodology

2.1. Ozone field

From the probabilistic point of view, the ozone concentration is
seen as a spatiotemporal random field
n
ZkðsÞ; s˛D; k˛N

o
; (1)
where k denotes the discrete time index and D3R
d (for two-

dimensional field d ¼ 2). The points in the field domain
D ¼ fs1;.; sng can either be cells of a regular grid or the stations
from an observational network.

It is impossible to compute the probability density function
(PDF) of the underlying random vector, because of the high
dimension ofD and the nonlinearity of the chemical evolution. Two
approaches, leading to approximations, can be used: the mathe-
matical modeling and the spatial statistics. For the former, chem-
istry and transport is discretized into an evolution equation

zkþ1 ¼ Mk

�
zk
�
þ 3kþ1 (2)

where z ¼ fziðsjÞ; i˛I s; j˛Idg is the vector of species concentra-
tions for certain species indices set IS and for spatial indices set
Id ¼ f1;.;ng (often a regular grid), Mk is an operator of advec-
tion-diffusion-reaction type, and 3 is the error vector usually
assumed to be Gaussianwith zero mean and a covariance structure.
For a review of the chemistry-transport models (CTMs), please see
Sportisse (2007).

Spatial statistics or geostatistics (Matheron, 1962; Cressie, 1993;
Wackernagel, 2003), originally developed for mining operations,
aims at spatial predictions, from observed field values, taking into
account the spatial correlation of the random field. If the under-
lying field is temporally stationary, we can drop the time index k in
formulation Eq. (1). The randomvariable ZðsÞ is then assumed to be
of the form

ZðsÞ ¼ mðsÞ þ dðsÞ; s˛D; (3)

where

mðsÞ ¼ E½ZðsÞ� (4)

is the mean function that describes large-scale spatial variation,
and d($) the error field (also called residue) with zero mean that
accounts for the spatial correlation structure. The field d is an
aggregate error field that includes errors from smaller scales and
different sources. This error field is usually assumed to be
stationary so that statistical inferences can be more easily
conducted.

One might consider that if the mean function m takes the
expectation (deterministic part) of the CTMsimulation Eq. (2), and if
the error vector 3 takes the same spatial structure as the error field
d in the spatial estimation Eq. (3), the two approaches would be
identical. Nevertheless the length of the model grid interval might
be tens of kilometers for regional applications, and the subgrid
phenomena can only be approximated by physical parameteriza-
tions. By contrast, the site observations may have much smaller
scales accounting only for local fluctuations of the species around
the sites. The use ofmodel simulations as the expectedmeansmight
be far from satisfactory, although Blond et al. (2003) reported
successful results for a refined horizontal model resolution of
6 km � 6 km. In geostatistics, parametric models are proposed for
the mean function m (Wackernagel et al., 2004).

Temporal ozone predictions are seldom conducted using geo-
statistical methods. The linear combinations of the observations, or
other terms derived from observations, are likely to be insufficient
for temporal prediction (Coman, 2008, ch. 3). This may due to i) the
temporal evolution of the ozone field is highly nonlinear; ii) the
temporal correlation is poorly known; and iii) the future ozone field
is clearly related to more factors than ozone concentrations alone,
e.g. the meteorological conditions, the precursor emissions, and the
deposition parameterization.
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The geostatistical methods are popular in producing analyzed
maps of geophysical fields from the observations that represent the
local information. Thesemethods benefit from the spatial correlation
models for successful spatial predictions. In reality, such spatial
correlations are time-varying. Note that there are no repeatable
experiments in geophysics. The statistical inference has to be based
on only one realization (time series) of the underlying stochastic
process. Hence the ergodic hypothesis is needed, so that the statistics
make sense. Unfortunately the ergodicity implies the temporal sta-
tionarity. Oneartifact is that the timescale for the statisticsmaynotbe
long enough to avoid the ergodicity breaking. Furthermore, the value
of the random field at one site is not only related to other spatial
observations, it can also be connected to other spatial factors, e.g. the
meteorological conditions and the site typology and altitude. The
geostatistical framework can deal with these additional factors, but
the determination of the factor set is a non-trivial issue.

The core of mathematical models is a numerical scheme that
solves Eq. (2) without the error term. Important factors, e.g. the gas-
phase chemistry, the deposition parameterization, the meteorolog-
ical data, and the emissions, are provided tomathematical models to
generate the diurnal cycle of ozone for short-range forecasts. The
ability to predict is valuable. Unfortunately the huge computational
load hampers the numerical optimization for the network reduction.
The information from the CTM could be helpful, but the CTM cannot
be resorted too often, such as inside the optimization iterations.
2.2. Spatial correlation model

The spatial correlation model is essential in spatial prediction,
because it helps to determine how the information from observa-
tions is dispatched in the multi-sites estimator. Considering the
temporally stationary random field Eq. (3), the covariance between
two arbitrary sites si; sj is

cov
�
ZðsiÞ; Z

�
sj
��

¼ E
�
ðZðsiÞ � mðsiÞÞ

�
Z
�
sj
�
� m

�
sj
��	

¼ E
�
dðsiÞd

�
sj
�	
:

(5)

If the covariance has the form

cov
�
ZðsiÞ; Z

�
sj
��

¼ C
�
si � sj

�
; (6)

the function C($) is, by definition, the covariance function model
(referred to as covariance model for short hereafter). Let h ¼ si � sj
be the separation vector, and h ¼ khk the distance. The covariance
model C($) is isotropic, if it depends only on the distance but not the
direction of h. When si and sj coincide where the field admits
variance, one has

varfZðsÞg ¼ covfZðsÞ; ZðsÞg ¼ Cð0Þ: (7)

We use isotropic covariance model in this study.
The covariance model Cð$Þ needs to be a positive-definite

function (see p. 84 in Cressie (1993) for definition). Let T denote the
transpose of vectors or matrices, and let h be the column vector
½.dðsjÞ.�T; j˛Id, the covariance matrix E½hhT� has to be positive
semi-definite.We refer to Balgovind et al. (1983); Gaspari and Cohn
(1999) for the construction of positive-definite functions. One
popular choice is the exponential model

CðhÞ ¼ s2e�
h
L ; (8)

where s2 is the a priori variance of the error field, and L is the
correlation length. For two points with distance much longer than
L, their correlation approaches to zero. However, in our case, the
daily ozone concentrations are correlated at long distance, e.g.
between the Paris region and the urban areas along Mediterranean
coast. The daily insolation seems to produce correlations for ozone
concentrations over all the French territory. We thus use a nested
model

CðhÞ ¼ c0 þ s2e�
h
L ; (9)

where c0 is the background correlation for long distances. The
variance for the field is thus c0þ s2. This nested covariance function
is positive definite if c0 is positive.

The evolution of ozone concentrations shows a diurnal cycle.We
assume that the ozone field is daily stationary, but time-varying
during the day. The 24 h of a day are partitioned into several bins.
For convenience, we suppose each bin has the same time length. Let
Ib ¼ f1;.;Bg be the bin indices set, where B is the total number of
bins. That is, for hourly bins, B equals to 24. The covariance model is
then

CðhÞ ¼ c0;b þ s2be
� h

Lb ; b˛Ib_ (10)

One simple estimator of the covariance Eq. (5) for a given bin is

~C
�
si; sj

�
¼ 1

Nt

XNt

t¼1

�
ZtðsiÞ � ZðsiÞ

��
Zt
�
sj
�
� Z
�
sj
��
; (11)

with

ZðsiÞ ¼ 1
Ni

XNi

t¼1

ZtðsiÞ; i˛Id; (12)

where Ni is the number of observations along time for site si, Nt is
the number of mutually available observation pairs along time for
site pair ðsi; sjÞ, and ZtðsiÞ denotes the randomvariable for the ozone
field at time index t and site si. The estimator for the covariance
model C($) is then

bCðhÞ ¼ 1
jNðhÞj

X
ðsi;sjÞ˛NðhÞ

~C
�
si; sj

�
; (13)

whereN(h) denotes the set of the site pairs with distance equal to h:

NðhÞ ¼
��

si; sj
�
: h ¼



si � sj


; i; j˛Id

�
; (14)

and jN(h)j is the set cardinality. In practice, the pairs set can be
adapted to:

NT ðhÞ ¼
��

si; sj
�
:


si � sj



˛T ðhÞ
�
; (15)

where T ðhÞ is some tolerance region around h. The tolerance region
is chosen so that jNT ðhÞj is sufficiently large for statistical reasons, e.
g. bigger than 30 pairs.

We remark that the choice of Nt is a balance between the
statistical consideration, for which long time windows are prefer-
able, and the daily stationarity assumption which would be less
relevant in the long term. We consider that one month in the
summer is a proper choice. The hourly covariancemodel can also be
found in Blond et al. (2003). In this study, we will present more
detailed investigations.

The variogram (for the variance of the field increments
ZðsiÞ � ZðsjÞ) is more popular than the covariance model in geo-
statistics. The estimation of the variogram usually requires intrinsic
stationarity Cressie (1993, p. 40), that is, the first two moments
(mean and variance) of the field increments are stationary. Hence
the variogram works for the random field of which the mean and
the variance may not exist. By contrast, the estimation of the
covariance model in geostatistics often imposes second-order sta-
tionarity Cressie (1993, p. 53), that is, the first two moments
(mean and covariance) of the random field are stationary. Note that
for ozone, it is reasonable to assume that the mean and covariance
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are finite. Furthermore, the mean function mðsÞ could be estimated
using statistics on historical ozone data. Therefore the ozone mean
likely bears no spatial stationarity. For these reasons, we use
covariance model instead of variogram. It would be better if
the covariance model is interpreted as an approximation of the
second-order moment (covariance) for the ozone field.
2.3. Spatial interpolation

Following geostatistical methodology, the spatial interpolation
consists in estimating the random field Z at ungauged sites
U ¼ fspþ1; spþ2;.; sng given observations at gauged sites
U ¼ fs1;.; spg. Let us define the vectors of concentrations

yT ¼
�
Zðs1Þ; Zðs2Þ;.; Z

�
sp
�	
; (16)

xT ¼
�
Z
�
spþ1

�
; Z
�
spþ2

�
;.; ZðsnÞ

	
: (17)

Suppose that the statistics on the field are known, e.g. the
following covariance matrices

Sxy ¼ E

h
ðx� EðxÞÞðy � E½y�ÞT

i
; (18)

Syy ¼ E

h
ðy � EðyÞÞðy � E½y�ÞT

i
: (19)

From these statistics, and the observations of Z on G, one wishes to
infer the concentrations x, through an estimator bx.

The best linear unbiased estimator (BLUE) is based on the linear
Ansatz

bx ¼ Ly; (20)

where L is a matrix of Rðn�pÞ�p. The true concentration vector is of
the form x ¼ bx þ e, with e the vector of estimation errors (resi-
dues). The assumption of absence of bias imposes that: E½e� ¼ 0,
that is, E½x� ¼ LE½y�. The errors can thus be written as

e ¼ x� E½x� � Lðy � E½y�Þ: (21)

The estimator is optimal in the sense that the total variance of
the estimation errors TrðeeTÞ is minimal, which leads to

bL ¼ SxyS
�1
yy : (22)

The BLUE estimator (also called simple kriging) and the corre-
sponding minimal error is thus

bx ¼ SxyS
�1
yy y; (23)

e ¼ min
L

E

h
Tr
�
eeT
�i

¼ Tr
�
Sxx � SxyS

�1
yy Syx

�
: (24)
2.3.1. Ordinary kriging
For one simple case, the field expectations on all the sites are

taken to be uniformly null. Consequently, the field values are
considered as large fluctuations. The geostatistical techniques can
be performed directly on the field values. There is no bias and the
BLUE estimator can be applied, so that the formulae above are valid.

Let us define Ip and In�p as the unit vectors in R
p and R

n�p

respectively:

Iq ¼ ð1;1;.;1ÞT; (25)

with q ¼ p or q ¼ n � p. If the average field value is uniform but not
necessarily null, that is, E½x� ¼ cIn�p and E½y� ¼ cIp where c is
a positive constant, then the removal of the bias
E½e� ¼ cIn�p � cLIp, implies that

LIq ¼ In�p: (26)

This can be enforced as a constraint in the minimization of TrðeeTÞ.
Then the best estimator is

bL ¼
 
Sxy �

�
SxyS

�1
yy SyxIp � In�p

�
ITp

ITpS
�1
yy Ip

!
S�1
yy ; (27)

3 ¼ min
L

E

h
Tr
�
eeT
�i

¼ Tr

 
Sxx � SxyS

�1
yy Syx

þ
�
SxyS

�1
yy Ip � In�p

��
ITpS

�1
yy Syx � ITq

�
ITpS

�1
yy Ip

!
: (28)

2.3.2. Kriging about the hourly means
In the previous subsections, we present the classical geo-

statistics results. In this and following subsections, we will adapt
the kriging to the air quality context.

Geostatistics was first developed for the spatial estimation of
geological ore. The true representation to be estimated corresponds
to a single sampling of a random field. In particular, often, no prior
statistics are available on the distribution of the ore. However, in
the context of air quality, a large database of concentration records
may be available. For instance for ozone, hourly measurements are
recorded, so that statistics of hourly means of ozone on each
measurement site can be extracted.

Assume that the average hourly concentrations are accessible on
U and G:

E½x� ¼ mx and E½y� ¼ my : (29)

Then the previous BLUE analysis can be performed on the fluctu-
ations around these mean values. Only these fluctuations are
considered as random: each concentration is the sum of a fluctua-
tion and a deterministic part (the mean). Therefore

bx ¼ mx þ L
�
y � my

�
; (30)

with L given either by Eq. (22) (Simple Kriging about the Means) or
by Eq. (27) (Ordinary Kriging about the Means).

A usual type of kriging is an estimator with the form being the
linear combination of the observations at the gauged sites. This
estimator can also be assumed linearly correlated to not only the
observations, but also other factors (termed as external drift) at the
ungauged sites. In the cases where the statistics at all the sites are
available, one can simply choose the mean statistics as the external
drift, instead of parameterizationmethods e.g. the universal kriging
in Wackernagel et al. (2004).

2.3.3. Consistent kriging about the hourly means
The BLUE analysis around the means is independent from the

actual values of mx and my . If one assumes that the fluctuations are
of the same physical nature as thesemeans, can themeans bemade
consistent with the BLUE analysis? That would imply that the
estimator applied to my would yield mx. If this is so, one can perform
the BLUE analysis on the fluctuations, imposing that

mx ¼ Lmy : (31)

Then the best estimator is
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b � �
SxyS

�1
yy my � mx

�
mT
y� �1
x ¼ Sxy �

mT
yS

�1
yy my

Syy y ; (32)

3 ¼ min
L

E

h
Tr
�
eeT
�i

¼ Tr
�
Sxx � SxyS

�1
yy Syx

þ

�
SxyS

�1
yy my � mx

��
mT
yS

�1
yy Syx � mT

x
�

mT
yS

�1
yy my

�
: (33)

It is also possible to constrain additionally L to satisfy the
ordinary kriging condition LIp ¼ In�p. This leads to new BLUE
estimators (more intricate though). However, we have checked that
it does not significantly improve the spatial interpolation, at least in
the context of ozone estimation. That is why the results are omitted
here.
2.4. Reduction criterion

The network design problem can be described by:

x* ¼ argmin
x

JðxÞ; (34)

where x is a potential network configuration, and J is a certain
scalar criterion. The choice of the criterion is influential (Müller,
2007; Abida et al., 2008). With different criteria, the resulting
optimal networks might be quite different.

Let B be the binary set {0, 1}, x˛Bn is then the vector that
describes the network configuration. The i e th component of the
configuration vector xi is 1 if site si is selected in the subnetwork,
otherwise xi ¼ 0.

Define the complete networkA ¼ fs1; s2;.; sng, let the gauged
set Ghfsi : xiðsiÞ ¼ 1 3Ag , and the ungauged set
Uhfsi : xiðsiÞ ¼ 0 3Ag . The network reduction problem is then

x* ¼ argmin
x˛Bn

 
1
jOj
X
o˛O

�bzo � zo
�2!1

2

; (35)

with the constraint

Xn
i¼1

xi ¼ p ; (36)

where O is the indices set for the observations available at unga-
uged sites U during a given period, jOj is the set cardinality, p is the
size of the gauged subnetwork, bzo is the kriging result for an
ungauged site at a given time step using observations at gauged
sites G, and zo is the observationwhich is observed for the same site
and at the same time step as that of the corresponding bzo.

This criterion is the RMSE for the spatial predictions based on the
selected subnetwork. It is expected that the optimal subnetwork
under this criterion best represents thewhole networkA among all
the subnetworks of size p. Although the criterion Eq. (35) has
a quadratic form, it bears complex nonconvex structures on x. The
search space, with its size being (pn), is colossal even for moderate n
and p.
2.5. Optimization using simulated annealing

The reduction criterion Eq. (35) has multiple minima. One
popular solver for such optimization problem is the simulated
annealing algorithm. This stochasticmethod (Metropolis et al.,1953;
Kirkpatrick et al.,1983) has the ability to escape from localminimum
xðiÞ to a new configuration xðiþ1Þ with an acceptance probability. For
the classical Bolzmann annealing, this probability equals to

P
�
xðiÞ; xðiþ1Þ

; s
�

¼ min

0BB@1; e
�
J
�
xðiþ1Þ

�
�J

�
xðiÞ
�

s

1CCA (37)

where s is a global parameter which is an analog of temperature.
Often s is initially high, and the iterative process probes large-scale
variation of J. When s decreases according to certain cooling
schedule, the iterations search for finer variations. By carefully
choosing the cooling schedule, the global minimum can be
approached to some precision which can be arbitrarily small. For
the geometric cooling schedule,

sðKþ1Þ ¼ asðkÞ ; (38)

where a˛½0;1� is a decreasing factor, and usually k coincides
with i. The procedure that generates new candidate xðiþ1Þshould
favor the configurations similar to the current configurationxðiÞ, so
that much inferior candidates are excluded for a more efficient
search. The new candidates are therefore chosen from the neigh-
borhood of xðiÞ.

The simulated annealing algorithm has been applied in several
network design problems (Banjevic, 2004; Fuentes et al., 2007;
Abida et al., 2008; Saunier et al., 2009). All these applications
adopt Boltzmann annealing and geometric cooling schedule, but
differ in the neighborhood assignment and in the definition of J
and x. In our study, the Boltzmann annealing and the geometric
cooling are also employed. We generate the new configurations
using a swap procedure: keep an array of the indices of n sites;
divide the index array into two parts, that is, p indices for selected
sites and nep indices for the estimation sites; randomly choose one
index from each part, and switch the two indices. By this way, we
randomly choose one estimation site, and randomly replace one
previously selected site with this newly chosen estimation site.
Note that the constraint Eq. (36) is automatically satisfied. In
practice, the tuning of the parameters values, especially for the
initial and final temperatures, is necessary to obtain a satisfactory
solution.
3. Experiment setup

Ozone concentrations peak during summer, which is the most
risky scenario for human health and crop production. The time
window of the experiment is thus set to be from 1st July 2001 at
0100 UTC to 1st August 2001 at 0000 UTC. Note that the time
window does not cover the whole summer season, so that the daily
stationarity assumption likely holds.

The sites A ¼ GWU are taken to be stations from the BDQA
network (information available at http://www.atmonet.org). There
are 678 BDQA stations within the domain that covers French
territory ([41.75� N, 5.25� W] � [52.5� N, 9.25�E]). These stations
(see Fig.1) are located in typologically different areas, such as urban
districts and regional areas of cities, industry sites, and traffic lines.
The isotropic hypothesis might be regarded as too idealized for this
case. However, there is a practical concern to evaluate the network
as a whole. Furthermore, Blond et al. (2003) show that anisotropic
considerations bring a positive impact, but the improvements are
not significant (see Fig. 7 in that paper). The improvements are
especially less significant for daily ozone peaks.

Hourly (averaged) ozone observations are collected during July
2001. There are only 351 stations having observations within this

http://www.atmonet.org


Fig. 1. Map of the BDQA Network. The circles indicate the locations of the stations, and
the points show the POLAIR3D model grid-cell centers.

Fig. 2. The covariance cloud at 1500 UTC. The unit for covariance is in (mg m�3)2.
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period. These stations may not always have observations
throughout the experiment. No specific techniques are considered
for the treatment of missing values. We simply do not conduct the
spatial interpolation for a certain station at a given date, when there
is no observation for this station at that date. The observational
error is approximately 10 mg m�3 (Flemming et al., 2003).

We use the POLYPHEMUS/POLAIR3D air quality model, which has
been validated in Sartelet et al. (2007). The simulations are per-
formed with an integration time step of 5 min. The hourly ozone
simulation results are used when necessary. The RMSE for the hourly
ozone simulations over all the BDQA stations for July 2001 is
27.7 mg m�3. Note that this error includes the error arising from the
interpolations of ozone concentrations between themodel grid and
BDQA sites. The domain has a 58� 43 grid, and themodel mesh has
a 0.25� horizontal resolution (see Fig. 1). Blond et al. (2003)
investigate a much finer resolution of 6 km, which is a proper
scale compared with that of the physical phenomena represented
by the hourly averaged observations from the stations. For regional
applications, such refined resolution is not practical, since, in
general, the meteorological data and the emissions have much
coarser resolutions.

The POLYPHEMUS/POLAIR3D simulations are used to test the sensi-
bility of kriging performance with respect to covariance models
(Section 4.2.1) and mean statistics (Section 4.2.2).
Fig. 3. The regionalized covariance and fitted 1 h covariance model for four repre-
sentative hours. The fitted covariance models are in thinner dash line. The unit for
covariance is in (mg m�3)2. Note that the correlations beyond 600 km are not taken into
account for calibration.
4. Results and discussions

4.1. Covariance model

We investigate the diurnal covariance model by dividing a day
into several contiguous bins. Each bin has the same time length. In
order to evaluate the impact of the bin length, we set the length
value to 24 h, 12 h, 6 h, 4 h, 3 h, 2 h, and 1 h respectively. Hence
accordingly, we have 1, 2, 4, 6, 8, 12, and 24 bins for the corre-
sponding bin lengths. For each bin, one can calculate the covariance
value bCðhÞ according to Eq. (13). With h taking all the possible
distances of the station pairs in the site pair set N(h) (defined by Eq.
(14)), a cloud of covariance values can be obtained. We plot such
a covariance cloud at 1500 UTC in Fig. 2. Note that the ozone
observations used in the calculation of these cloud points are those
during July 2001.

Nowwe examine the covariancewithin the tolerance regions. The
length of the tolerance region (hereafter denoted LT ) is set to 30 km,
so that there are enough site pairs for each tolerance region. The
covariance clouds are averaged within contiguous tolerance regions
T ðhiÞ ¼ ½hi � LT =2;hi þ LT =2�, for hi ¼ i� LT � LT =2; i˛N. By this
way, the curves of the regionalized covariances can be obtained (see
Fig. 3). The covariances beyond 600 km (about half the domain size)
are considered as spurious correlations. They are discarded in
accordance with usual geostatistical recommendations.

LetQ¼ [c0, b, sb2, Lb] be the vector of unknownparameters for the
nested covariance function C($) in Eq. (10). The parameter Q is
determined by solving the ordinary least-square fitting problem

Q* ¼ argmin
Q

XNh

i¼1

bC�ðhiÞ � CðhiÞ
�2

(39)

where Nh is the total number of the tolerance regions, and hi is the
center of the i e th region on which the regionalized covariance isbCðhiÞ. For each bin, the parameter vector Q is calibrated using the
LevenbergeMarquardt algorithm. These regionalized covariances
are fitted from observations over all the available BDQA stations for
July 2001. The fitting results for 1 h bins are shown in Figs. 3 and 4.
The value C0;b þ s2b is the spatially stationary variance for the error
field dð,Þ. The correlation length Lb is smaller at night than at



Fig. 4. The calibrated parameter values with respect to bin indices for 1 h bins. The
unit for c0, s2 is in (mg m�3)2, and the unit for L is in km.
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daytime, and peaks at noon and in the afternoon. The covariances
are lower at night than during the day. This is probably due to
a much more developed photochemistry during daytime (insola-
tion, heavy traffic emissions at rush hours, etc.). Moreover, the
ozone field during night is much more spatially heterogeneous.

4.2. Kriging validation

The kriging performance is of great importance for the network
reduction problem Eq. (35). In this section, we investigate the
sensitivity of the kriging performance to the covariance model, the
ozone mean statistics, and the kriging type. The kriging perfor-
mance is evaluated by the RMSE in mgm�3 between the observed and
kriged ozone hourly means at ungauged stations. The size of the
subnetwork is thus the number of gauged stations. In the sequel,
the unit of the RMSE is omitted for convenience.

4.2.1. Sensitivity to the covariance model
The impact of the diurnal covariance model on the performance of

simple kriging about themeans is shown in Fig. 5. Both the covariance
model calibration and the kriging validation are performed during July
Fig. 5. The performance of simple kriging about the means during July 2001 with
respect to different diurnal covariance models. The error bar indicates the standard
deviation of RMSE for 10 randomly chosen networks with the corresponding network
size.
2001, except for an empirical covariancemodel based on the following
Balgovind parameterization (Wu et al., 2008): c0 ¼ 0, s ¼ 20 mg m�3

and L ¼ 100 km, the parameters of the covariance models are cali-
brated as in Section 4.1 (over all the available BDQA stations for July
2001). Each of these covariancemodels has been tested on each of the
following subnetwork sizes: 20, 60, 100, 140, 180, 220, 260 and 300
stations. Moreover, for each of these experiments, the result is the
average on a set of ten randomly sampled subnetworks, so as to
guarantee the robustness of the results.

The kriging performance increases when augmenting the
network size, since there is more data from gauged sites. The slight
oscillation of the kriging performance for large subnetworks is due to
the fact that the marginal information gain through increasing the
subnetwork size is less important than the accumulation of kriging
errors. Kriging with the calibrated 24 h covariance model shows
evident improvement against that with the empirical covariance
model for small subnetworks. This is normal, since, when less
observations are available for kriging, precise correlation will
contribute to a more accurate estimation. When more observations
are available, the kriging error and the gain using a precisely cali-
brated covariancemodel are rather comparable. The consideration of
diurnal cycle of the covariance models significantly improves the
kriging performance. The 1 h covariance model is the best, probably
because it best characterizes the diurnal cycle as detailed in Fig. 4.

The worst kriging RMSE for calibrated isotropic covariance model
in Fig. 5 is about 19 mg m�3 for subnetworks of 20 stations. This is
better than the hourly RMSE of the POLYPHEMUS/POLAIR3D simulations
(27.7 mg m�3). The kriging performance justifies that the isotropic
correlation is a reasonable assumption for ozone estimation in our
application.

In principle, the observations for covariance model calibrations
and for kriging should be independent from each other. Now we
conduct 1 h covariance model calibrations based on the observa-
tions from two years, 2000 and 2001. A smaller network (referred
to as the synchronous network hereafter) with 311 stations avail-
able for both years is used instead of the complete network with
351 available stations. Consequently slightly less observations are
available for the kriging validation, e.g. about 30e40 less observa-
tions at given time dates.

We conduct 1 h diurnal covariance model calibrations with
different observation sets. The observations for calibrations are
taken from the synchronous network for four different periods of
the years 2000 and 2001. The time periods for these observation
sets differ in their durations and in their starting and ending dates,
but all cover the month of July. We also consider the POLAIR3D
simulations at the regular model grid during July 2001 for cali-
bration purpose. Note that the parameters of the covariance model
fitted with the synchronous network are slightly different from
those with the complete network (1.5% relative difference on
average for the observation set during July 2001).

The simple kriging about the means is performed for July 2001
with the 1 h covariance models calibrated above. The validation
results are shown in Fig. 6. The kriging performance is quite stable
with different calibrated covariance models. This is true even for
the covariance model fitted to the POLAIR3D simulations. With this
desirable result, we conclude that the assumption of daily statio-
narity for covariance models is favorable in the context of spatial
ozone estimation. The correlation for the summer scenario, e.g. the
high insolation levels and the heavy emissions, can be determined
through statistics in a very robust manner.

4.2.2. Sensitivity to the mean statistics
For the kriging about the means introduced in Section 2.3.2, the

mean statistics is considered as a factor to which the ozone esti-
mations are linearly correlated. In this section, we examine the



Fig. 6. The performance of simple kriging about the means during July 2001 with
respect to 1 h diurnal covariance models calibrated based on different observations
sets. The error bar indicates the standard deviation of RMSE for 10 randomly chosen
networks.
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sensitivity of the kriging performance to different sets of mean
statistics. The observations are taken from four different periods of
the years 2000 and 2001, which are exactly the same as those in
Section 4.2.1. The POLAIR3D means are computed based on the
bilinear interpolations of the POLAIR3D simulations from model grid
points to site locations.

Ordinary kriging about the means is used, since it is popular in
geostatistical applications. For the ordinary kriging presented in
Section 2.3.1, the ozone field is assumed to be uniformly distrib-
uted, but the exact value of the constant a priori mean is not
needed. The kriging validation is conducted with the synchronous
network. The 1 h diurnal covariance model is adopted with its
parameter values calibrated based on the observations during July
2001.

The performance of ordinary kriging about the means with
respect to different mean statistics is shown in Fig. 7. The POLAIR3D
means bear no positive impact against the case of constant mean.
This is probably due to the over smoothed mean surface generated
by the POLAIR3D simulations which do not capture the smaller
spatial scales near the observation sites. By contrast, significant
Fig. 7. The performance of ordinary kriging about the means during July 2001 with
respect to different settings for the mean statistics. The error bar indicates the standard
deviation of RMSE.
improvements over the case of constant mean are obtained for the
kriging with the mean statistics calculated from different sets of
observations. This is even true with the mean statistics during
summertime in 2000. The classical geostatistical method (constant
mean case) has poor performance, because it makes no use of the
a priori information implicitly inferred throughmean statistics. The
mean statistics can be considered as an aggregate factor, which
synthesizes the influence of the site-related information say the
site altitude, and of the seasonal patterns, e.g. the meteorological
data and emissions.

4.2.3. Sensitivity to the kriging type
Apart from the optimality condition of minimum variance,

additional conditions can be taken into account in the kriging, e.g.
the de-biasing constraints detailed in Section 2. In this section, we
investigate the sensitivity of the kriging performance to different
kriging types, e.g. the simple kriging about the means (SKM), the
ordinary kriging about the means (OKM) with the constraint Eq.
(26), and the consistent kriging about the means (CKM) with the
constraint Eq. (31).

The comparison results are shown in Fig. 8. The site means are
computed from the observations of July 2001. The results of the
classical ordinary kriging are plotted for comparison purpose. The
constraint of constant mean introduced in OKM brings almost no
impact in RMSE against that of SKM. In the kriging about the means,
the fluctuations around the means are corrected instead of the
ozone concentrations. These fluctuations are expected to have zero
means, therefore the constraint of constant mean is automatically
satisfied and almost has no impact. By contrast, the de-biasing
constraint imposing on the sitemeans in CKM slightly improves the
kriging performance. Such constraint might be more important for
the cases in which factors other than site means are introduced as
external drifts.

4.3. Network reduction

4.3.1. Reduction results with a reference algorithmic setting
In Fig. 5, one can observe that different subnetworks of the same

size may have different performances. It is desirable to compare the
optimal solution of the network reduction problem Eq. (35) with
a set of randomly distributed subnetworks. If the improvement
through optimal network reduction is small against the best
random trials, it would imply that the ozone field might be
Fig. 8. The kriging performance during July 2001 with respect to kriging types. The
error bar indicates the standard deviation of RMSE.



Fig. 10. Histogram of the leave-one-out validation for all the 351 subnetworks.
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homogeneous and stationary, and that there is no need for math-
ematical optimization since a few random tests fulfill the objective.

In this section, we perform the network reductionwith the same
algorithmic setting as that in Fig. 5. In summary, simple kriging
about the means and the 1 h nested covariance model are
employed; the ozone observations during July 2001 are used for
both means calculations and covariance model calibrations; the
complete BDQA network is covered; and the geometric cooling
schedule is adopted with the decreasing factor a set to 0.99.

The kriging performance of optimal subnetworks of different
size is shown in Fig. 9. The relative improvements in kriging RMSE for
optimal subnetworks are from 12% to 58% with respect to the
random subnetworks. It is striking that an optimal subnetwork of
half the BDQA network, guarantees an average error of about
10 mg m�3 (5 ppb) for the hourly ozone means on the ungauged
sites. Since this is much lower than the average model simulation
error and of the same order as the observational error, this result
validates the interest of the optimization technique. The improve-
ment increases with respect to the network size. Themain reason is
probably that, with more stations included in the subnetworks, the
heterogeneous ozone field can be better represented based on
heterogeneous station observations.

The size of the largest subnetworks is 350. In this case, only one
station is excluded from the full network, and the RMSE between
kriged and observed concentrations is computed for this excluded
station (also called leave-one-out validation). In Fig. 9, the last
(biggest) error bar shows the standard deviation of RMSE for all the
351 possible subnetworks in the leave-one-out validation.
The optimal subnetwork has theminimal RMSE. The histogram of the
leave-one-out RMSE is shown in Fig. 10. The distribution is roughly
log-normal, which demonstrates the heterogeneous nature of the
network reduction problem.

One may argue that the optimal reduction results might be
misleading, since heterogeneity arises whereas our ozone estima-
tion is based on the hypothesis of isotropic correlation. In this
regard, we would like to recall that our isotropic kriging method
has been justified by the cross validation results (19 mg m�3 for the
worst case). The anisotropic considerations slightly improve the
kriging results Blond et al. (2003). In our sensitivity studies, it has
been shown that the kriging results are much more sensitive to the
historical mean statistics (Fig. 7) than to the correlation model
(Fig. 6). The network reduction methodology assembles a set of
tools, e.g. the spatial non-stationarity in historical mean statistics
Fig. 9. The kriging performance of subnetworks with different sizes. The optimal
subnetworks are obtained with the reference algorithmic setting for network reduc-
tion, and the random subnetworks are the same as those for 1 h covariance model
cases in Fig. 5.
and station observations, and the station selection procedure. The
spatial interpolation is only part of the methodology. The ozone
heterogeneity produced by the entire reduction methodology is
a reasonable result. Yet it is noted that better anisotropic correla-
tion models could improve the kriging performance and deserve
further investigations.

The maps of the optimal subnetworks with different sizes are
shown in Fig. 11. The stations of the optimal subnetworks are
heterogeneously distributed. Redundant stations in the urban
agglomerations around Paris (Île-de-France) and Nice (Côte d’Azur)
are removed. However, the network remains dense within these
regions as compared to the rest of France. More stations are
selected in the frontier regions. For the large rural regions, the
stations are uniformly distributed. More stations are selected in the
large urban agglomerations where the ozone field is more
heterogeneous. The network remains dense near the frontiers
because beyond these frontiers, no observations are available and
the ozone field is uncertain. The ozone concentrations could be
heterogeneous near Belgium and over Alsace regions. The optimi-
zation results are consistent with the intuition that the stations in
the regions where the ozone field is uncertain should be selected in
the optimal subnetworks. This is also proposed in Fuentes et al.
(2007).

The fractions of several types of stations present in the optimal
subnetworks are shown in Fig. 12. There is no saturation in any of
the station types, as the subnetwork’s size increases. Most of the
stations in the smallest optimal subnetworks are urban stations.
This may be due to the high concentrations and strong heteroge-
neity in urban areas. With a limited number of stations, the
subnetworks have to be representative of these urban areas. When
the size of the subnetworks increases, the fraction of suburban and
rural stations increases, whereas the fraction of urban stations
decreases. Indeed, once a few stations are placed in the main high
concentrations urban areas, the estimation errors in rural areas will
play a more important role, and the need for background stations
increases. For subnetworks with size bigger than 100, the fractions
between the urban, suburban and rural stations remain stable.
About half of the stations in optimal subnetworks are urban
stations. There are always more suburban stations than rural
stations, and their percentages vary from about 10% to 30%.

The criterion is evaluated a posteriori in this algorithmic setting,
since both the statistics and the network optimization are based on
the observations during July 2001. Therefore, the optimal subnet-
works best represent the whole network for July 2001, but the
findings might not be optimal for the subsequent years.



Fig. 11. The maps of the optimal subnetworks with different sizes. The circles are stations included in the optimal subnetworks, and the plus signs show the excluded stations.
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Nevertheless, we hope that the constructive rules derived from the
optimization results remain helpful to conduct the network
reduction. This is certainly true if the evolution of the ozone field
shows similar pattern and magnitude in summer time through the
years. Beyond several years, climatological and mitigation policy
effects will undoubtedly impact the photochemistry analysis, so
that the optimality of the chosen network will have to be ques-
tioned again.

Our reduction criterion is defined as the kriging performance
over the BDQA network. Other criteria could also be defined on
a uniform coverage (e.g. a regular grid). For example, the kriging
performance on a 0.25� � 0.25� grid over France (Fig. 1), might be
expected to be another proper reduction criterion. Unfortunately,
this criterion is not practical due to the following facts: i) in general,
there are no observations at grid points to evaluate the kriging
performance; and ii) the uncertainty of the kriging results over
France is an entangled issue. Nevertheless, a simplified criterion of
this kind to evaluate a subnetwork could be the RMSE between the
kriging results over Francewith this subnetwork and thosewith the
complete BDQA network.

In Fig. 13, we evaluate this new criterion with respect to the
optimal subnetworks (obtained under the original reduction
criterion) and the random subnetworks in Fig. 9. It seems that the
optimal subnetworks remain quite optimal under this new crite-
rion. This is reasonable since the BDQA network is dense for
regional applications, and since the stations in optimal subnet-
works are located more likely in the area where the ozone
concentrations are high and uncertain.

4.3.2. Sensitivity of reduction results to algorithmic settings
The rationale of the network reduction problem is that the

optimal subnetworks should represent well the heterogeneous
ozone field. Since this heterogeneity is formulated and estimated
implicitly by the statistics based on observations during summer
time, it would be crucial to evaluate the sensitivity of the reduction
results to the statistical inference methodology. In addition, the
setting for the optimization algorithm may also have impacts on
the reduction results.

In this section, we perform network reductions under different
algorithmic settings shown in Table 1. These different settingsmake
alternative choices, as compared to the reference algorithmic
setting in Section 4.3.1, in one or several following configurations:
the mean statistics, the covariance model, the kriging type, and the
annealing schedule.



a

c

b

Fig. 12. Statistics on the reduction results: (a) the number of stations of given types in the optimal subnetworks; (b) the fraction of stations of given types with respect to stations of
all the six types in the optimal subnetworks; and (c) the fraction of stations of a given type in the optimal subnetworks with respect to all the stations of that type in the full
network. Other types of stations, e.g. traffic and industrial ones, have much smaller portions in the optimal subnetwork. Their statistics are therefore not shown in this figure.
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The alternative configurations are the 1 h covariance model
calibratedwith observations from June to August in 2000, themean
statistics based on observations from June to August in 2000, the
consistent kriging about the means, and a fast annealing schedule
(decreasing factor a set to 0.7).

The synchronous network in Section 4.2.1 is employed to
examine the sensitivity of the reduction results. For simplicity, the
size of the subnetworks is set to 120. The kriging performance of
the optimal subnetworks with respect to different algorithmic
settings is shown in the last column in Table 1. Themean statistics is
the most influential factor. Other factors, e.g. the kriging type and
Fig. 13. The performance of the simplified criterion (RMSE between the kriging results
on the regular grid over France using the complete BDQA network and the subnet-
works) defined on a uniform coverage with respect to the optimal and random
subnetworks in Fig. 9.
the annealing schedule, have little impact on the RMSE for the
resulting optimal subnetworks. The consistent kriging about the
best mean statistics (setting c in Table 1) has the best kriging
performance. These findings are consistent with the results in
Section 4.2. Note that the kriging is performed with optimal
subnetworks in this section, whereas in Section 4.2, random
subnetworks are employed.

The statistics on the selected stations are shown in Table 2. It is
found that the optimal subnetworks are robust to algorithmic
changes. The distribution of the optimal subnetworks is very
similar, and many stations are even identical in different optimal
subnetworks (only about 20e30% difference). The fraction between
urban, suburban and rural stations remains almost unchanged. The
robustness of the reduction results justifies the applicability of
these results for practical contexts. The optimal reduction is mainly
determined by the problem itself, e.g. the summer scenario say the
emissions and meteorological conditions.
Table 1
Different algorithmic settings under which the network reductions are performed.
Each row defines an algorithmic setting different from the reference one in Section
4.3.1. The plus marks in each row indicates that the marked configurations are
alternated for the algorithmic setting defined by that row. The unmarked configu-
rations in that row are the same as those corresponding configurations for the
reference algorithmic setting (ref.). The kriging performance of the optimal
subnetworks of size 120 with respect to different algorithmic settings is listed in the
last column.

Mean Covariance model Kriging Annealing RMSE

(ref.) 11.333
(a) þ 12.424
(b) þ 11.375
(c) þ 11.065
(d) þ 11.338
(e) þ þ þ 12.235



Table 2
The statistics on the stations included in the optimal subnetworks which are
obtained under the alternative algorithmic settings defined in Table 1. These
subnetworks are of size 120. The row labeled as “difference” shows the number of
stations which are selected in those alternative optimal subnetworks but are
excluded in the optimal subnetwork obtained under the reference algorithmic
setting. The last three rows show the difference between the total number of
stations of the corresponding station type (i.e. urban, suburban and rural) included
in these alternative optimal subnetworks and that counted with the reference
optimal subnetwork.

Algorithmic setting (a) (b) (c) (d) (e)

*Difference 32 20 33 21 36
(27%) (17%) (28%) (18%) (30%)

Urban 2 �3 1 0 1
Suburban �1 4 0 1 1
Rural �3 �1 �3 �4 �3
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5. Conclusion

As a first step towards a consistent and useful definition of the
network reduction problem, we have examined and developed
a geostatistical methodology, inwhich the ozone field is assumed to
be daily stationary and isotropic. This methodology also benefits
from the statistics on the ozone historical data. The kriging
methods have been tested for ozone estimation based on the
observations of the BDQA network over France. It has been shown
that the mean statistics and the diurnal covariance model have
significant impact on the geostatistical estimation performance.
Considering additional de-biasing constraints slightly improves the
kriging performance.

The ozone heterogeneity can be accounted for by our network
reduction methodology (ozone kriging and station selection
procedure using simulated annealing). We have evaluated the
efficiency of the BDQA network by investigating a network reduc-
tion problem, inwhich the optimal subnetwork of a given size with
the best estimation performance has been determined. It has been
found that the gain of the optimal subnetwork against non-opti-
mized subnetworks is significant. Optimally keeping half of the
BDQA network leads to an average error of about 10 mg m�3 (5 ppb)
in hourly ozone concentrations, which is commensurate with
model simulation error and standard observational error.

The optimal subnetworks are dense in the large urban areas and
near the country borders. This finding is also consistent with the
intuition that stations in areas where observed ozone concentra-
tions are high and present strong spatial heterogeneity (because of
high precursor emissions), should be included in the optimal
subnetworks.

More efficient networks can thus be constructed by reducing the
network size with minimal decrease in the estimation performance.
Simple rules canbederived fromthe reduction results for theguidance
of the practical network construction. For example, potential redun-
dant stations should be removed, and the network should remain
dense in those regions with high and heterogeneous ozone values.

The typology of stations has been studied as the optimal
subnetwork size is increased. Beyond 100 stations, the fractions
between urban, suburban and rural stations are rather constant. For
smaller subnetworks, the urban stations playamore significant role.

It has been found that the network reduction results are very
robust to the algorithmic setting for the kriging and the combina-
torial optimization. This finding favors the application of the
reduction results in practical context. Nevertheless, it is important
to notice that, for practically applicable rules, one has to validate
the reduction results for the observations over several years. The
effect of missing observations has to be assessed. In addition, the
kriging and reduction results have their proper spatiotemporal
context. These results might not be the same when the spatio-
temporal scales change, e.g. from regional to local spatial scale, or
from hourly to daily or weekly temporal scale. Therefore, further
investigations are needed for these reduction results of immediate
and practical use.

Other issues are also worth investigating, for instance, the
extension of this work to the case of multiple pollutants, e.g. the
network design for both ozone and nitrogen dioxide. The optimal
redistribution of the stations of the reduced network is a natural
follow-up of the reduction problem. It is different in that the ozone
field is to be estimated at locations where no observations are
available. Such locations could be a regular grid over France.
Simulations of chemistry-transport models could provide infor-
mation at these locations.
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