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bstract

An optimal control methodology is proposed for plant growth. This methodology is demonstrated by solving a water supply
roblem for optimal sunflower fruit filling. The functional–structural sunflower growth is described by a dynamical system given
oil water conditions. Numerical solutions are obtained through an iterative optimization procedure, in which the gradients of
he objective function, i.e. the sunflower fruit weight, are calculated efficiently either with adjoint modeling or by differentiation
lgorithms. Further improvements in sunflower yield have been found compared to those obtained using genetic algorithms in
ur previous studies. The optimal water supplies adapt to the fruit filling. For instance, during the mid-season growth, the supply
requency condenses and the supply amplitude peaks. By contrast, much less supplies are needed during the early and ending growth
tages. The supply frequency is a determining factor, whereas the sunflower growth is less sensitive to the time and amount of one
pecific irrigation. These optimization results agree with common qualitative agronomic practices. Moreover they provide more
recise quantitative control for sunflower growth.

 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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.  Introduction
Functional–structural plant models (FSPMs [33,34,28]) combine process-based models and architectural models
or better description of plant growth. The process-based models characterize plant mechanisms like photosynthesis
or agronomic applications [24,8]. By contrast, the architectural models were originally developed to analyze botanic
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patterns [14] or topological structures [32]. A typical FSPM can thus simulate not only plant organogenesis, but also
biomass production and partition at organ level (leaf, internode, fruit, etc.). This leads to many FSPM applications,
such as breeding and yield optimization [20,29].

Several FSPMs have been proposed, e.g. GROGRA [17], LIGNUM [27], L-systems variants [26], and GreenLab
[39,7]. An interesting GreenLab characteristic is that it simulates the plant functional–structural growth by a mathe-
matical recursive algorithm formulated as dynamical equations. This growth algorithm is based on a minimal set of
physiological knowledge, such as the empirical rules of plant–environment interactions for biomass acquisition and the
source–sink relations among organs that compete for assimilates. Consequently, the plant morphological plasticity can
be described with a small set of endogenous parameters. The complexity of parameter calibrations is thus reduced [12].
The usability of GreenLab for practical applications has been justified by the resulting stable calibrated parameters
cross phenotypic plasticity [22]. The main challenging issue of FSPMs is the balance between mathematical clarity
and physiological complexity.

The mathematical transparency of GreenLab makes it natural to be formulated as a discrete dynamical
system:

{
x(n) =  F (x(n  −  1),  �,  u(n  −  1)),

x(0) =  ϒ,
(1)

where n  is the time index, F  is a nonlinear operator, x  is the state vector, ϒ  is the initial state at time step n = 0, u  is
the input data or control vector, and �  is the set of model endogenous parameters. The solution of Eq. (1) gives the
trajectory of system state, with which different types of problems can be defined [38]. For example, the calibration
problem is to find optimal � to minimize the discrepancy between model simulations and experimental observations.
The state  estimation  problem is to retrieve the state status by optimizing the phenotype-specific parameters such as the
exogenous input data U  and the initial state ϒ. Whereas the control  problem is to find U, sometimes also �  and ϒ,
to optimize a given objective or criterion, e.g. the yield. These formulations are still not well recognized in the FSPM
community.

The FSPM control problem is a difficult issue because of the nonlinearity of the plant system. In many cases
even discontinuity is involved. This nonlinearity is due to the biological thresholding or saturation effects. It pro-
hibits exact analytical solutions of the control problem. Heuristic searching methods based on GreenLab have been
proposed for numerical solutions [38,29]. These methods are simulation-based; the plant system is treated as a
black-box model. As a result, the advantage of the mathematical transparency of GreenLab unfortunately fades
out. Furthermore, they scale badly with the dimension of the control parameter space and suffer from the curse of
dimensionality.

In this paper, we propose an optimal control methodology for plant functional–structural growth, in which the
gradient of the objective function can be efficiently computed by adjoint modeling [21,19]. This makes it feasible to
solve the plant control problem using classic descent algorithms. Contrary to the heuristic methods, this methodology
scales well with the large-scale systems, e.g. those in atmospheric science of which the dimension of state vector
usually goes beyond a million [30,37].

This optimal control methodology is demonstrated by solving a sunflower water supply problem. This irrigation
problem has been investigated in our previous study using a genetic algorithm in which only four parameters are
controlled [38]. In this study, much more exogenous control parameters will be optimized. Note that we are not aiming
at an operational solution of a practical irrigation problem, but rather an evaluation of the performance of this optimal
control methodology. Yet hopefully some physiological insights could be inferred by examining the resulting optimal
water supplies.

The paper is organized as follows. In Section 2, each component in Eq. (1) is explicitly specified for our
plant–soil dynamical system. The optimal control methodology for the sunflower water supply problem is pre-

sented in Section 3, in which is derived the adjoint model of the control system, as well as the practical
calculation of gradients using differential algorithms. The solution of the optimal watering problem is given
with physiological interpretation in Section 4. A general discussion as well as perspectives are given in the last
section.
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Fig. 1. Schematic of plant functional–structural growth [43] under soil water conditions.

.  Dynamics  formulation

In this section, we present how plant growth can be described by discrete dynamical equations. Detailed botanic
oncepts and physiological knowledge can be found in [32,39]. The soil moisture model and its interaction with plant
re treated in the same way as in [38].

.1.  Functional–structural  plant  growth  in  interaction  with  soil  water  conditions

We formulate plant growth at organ level. The functional–structural growth is sketched in Fig. 1. Plant is assumed to
ndergo Growth Cycles (GCs) of a biological clock. During each GC the plant metabolism results in the emergence of

 cohort of new organs. The GC can vary from several days (cottons) to one year (trees of temperate regions). However,
he sum of the daily temperatures during the GC is assumed to be quite constant [31].

At every GC, the plant produces biomass by leaf photosynthesis. If the microclimatic environment conditions around
ach leaf are identical, then Q(n), the biomass produced by the photosynthesis of all the leaves during GC n, can be
alculated by an empirical nonlinear function Ψ  with respect to the environmental conditions, the number of leaves,
he leaf surface areas, and some hidden parameters. In [39], the nonlinear function is chosen as

Q(n) =  Ψ (S,  E,  r1,  r2) =
n∑

a=1

(
Nl(a,  n) · E(n)

(r1/S(a,  n)) +  r2

)
,  (2)

here Nl(a, n) is the number of leaves of Chronological Age a  (CA, counted by GCs) at GC n, S(a, n) is their surface
rea, r1, r2 are hidden parameters to be assessed, E(n) is the average biomass production potential depending on
nvironmental conditions, such as light, temperature and soil water content.

For each organ, we define its demand as its ability to attract biomass. The organ demand do depends on organ CA
 and organ type o (o  = l, e, c, f, m  refers respectively to leaf, internode, layer, female flower and male flower), and is
alculated as

do(j) =  Poφo(j),  (3)

here Po are the organ sink strengths, φo are normalized distribution functions characterizing the evolution of the sink
trengths from CA 1 to CA to with to being the organ lifespan. In this study, φos are chosen to be beta functions with
idden function parameters. The total biomass demand of all plant organs at GC n  is as

D(n) =
∑ to∑

No(a,  n) · do(a), (4)

o a=1

here No(a, n) is the number of o-type organs of CA a  at GC n. The organ numbers can be calculated by automaton
39] or botanic growth grammar [36, Ch. 2].



912 L. Wu et al. / Mathematics and Computers in Simulation 82 (2012) 909–923

The biomass produced by photosynthesis is redistributed among all organs according to the ratio between their
demands do with respect to total plant demand D(n). This instantaneously leads to the calculation of the biomass
increment �qo(a, n) and total cumulated biomass qo(a, n) for any o-type organ of CA a  at the current GC n:

�qo(a,  n) = do(a)

D(n)
·  Q(n  −  1),

qo(a,  n) =
a∑

j=1

�qo(j,  n  −  (a  −  j)) =  Po

a∑
j=1

φo(j) · Q(n  −  (a  −  j) −  1)

D(n  −  (a  −  j))
.

(5)

Given plant geometry configurations (organ shape and size, phyllotaxy), we can thus construct 3D plants through Eq.
(5).

The biomass production potential E  during GC n  is supposed to be linearly proportional to the current soil water
content. The light, temperature, and mineral conditions are assumed to be optimal and the plant suffers from no stress
(for a complete formula, see [36]):

E(n) =

⎧⎪⎪⎨⎪⎪⎩
0 Qw(n) ≤  Qwmn,

κ · Qw(n) −  Qwmn

β(Qwmx −  Qwmn)
Qwmn <  Qw(n) ≤  (1 −  β)Qwmn +  βQwmx,

κ Qw(n) >  (1 −  β)Qwmn +  βQwmx,

(6)

where Qw(n) is the soil water content at GC n, Qwmn corresponds to the wilt point of soil water content beneath
which the plant cannot extract water from soil, Qwmx is the water field capacity above which the water flows away,
and κ is an empirical parameter. Plant suffers from water stress when (Qw(n) −  Qwmn)/(Qwmx −  Qwmn) <  β  with
β = 0.4. The thresholds here make the system strongly nonconvex. The biomass production potential formula Eq.
(6) is a simplified account of the plant–soil system for the test of our optimal control methodology. More complex
descriptions are possible. For instance, precise extinction law could be employed based on adjusted leaf area index
(LAI) to account for plant populational products [12], and realistic water stress model could also be introduced [23].
However, mathematically it does not change much the underlying optimal control problem.

Plants participate in soil water circulation by transpiration. Water is taken from soil by roots and flows through the
plant hydraulic network up to the leaves, where water is transpired to provide necessary energy fluxes for photosynthesis.
The water content in the superior soil layers, named soil moisture, is important for the study of bio-geophysical processes
in agricultural or forestry ecosystems. Soil water balance is achieved when we simplify this complex soil–plant system
by concentrating on plant transpiration, soil evapotranspiration, and water supply from both irrigation and precipitations.
The soil water content in soil per surface unit (Qw) is calculated by the difference equation [38]:

Qw(n) −  Qw(n  −  1) =  −c1(Qw(n  −  1) −  Qwmn)︸ ︷︷  ︸
soil evapotranspiration

+  c2(Qwmx −  Qw(n  −  1))U(n  −  1)︸ ︷︷  ︸
water absorption

−  ρ  ·  Q(n  −  1)︸ ︷︷  ︸
plant transpiration

, (7)

where U(n  − 1) (a scalar) is the water supply during GC n −  1, c1 is an evapotranspiration coefficient, and c2 is an
absorption coefficient. The plant transpiration is assumed to be linearly proportional to biomass production [15], and
ρ is the ratio between plant transpiration and plant biomass production during GC n − 1.

2.2. Dynamical  system

Supposing constant mass per unit area ε, the leaf surface area S(a, n) can be calculated by dividing leaf mass ql(a,
n) by ε. Substituting S(a, n) into Eq. (2), we have a recursive equation for the total biomass produced at GC n  without
explicitly calculating the geometrical sizes of the leaves [39]:
Q(n) =  E(n) ·
tw∑

a=1

Nl(a,  n) ·∑a
j=1

φl(j) · Q(n−(a−j)−1)
D(n−(a−j))

A  +  B  ·∑a
j=1

φl(j) · Q(n−(a−j)−1)
D(n−(a−j))

. (8)
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ere A  = r1ε/Pl, B  = r2, and tw is the leaf functioning period for photosynthesis. Let x(n  −  1), x(n) be the state vector
t GC n  −  1 and n  respectively:

x(n −  1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q(n −  tw)
...

Q(n  −  2)

Q(n  −  1)

Qw(n  −  1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,  x(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q(n −  tw +  1)
...

Q(n  −  1)

Q(n)

Qw(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

e can then rewrite the soil–plant system (6)–(8) in one difference equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xj(n) =  xj+1(n  −  1),  j  =  1,  .  . .  ,  tw −  1,

xtw (n) =  κ  · xtw+1(n) −  Qwmn

β(Qwmx −  Qwmn)

tw∑
a=1

Nl(a,  n) ·∑a
j=1

φl(j) · xtw−a+j(n  −  1)

D(n  −  (a  −  j))

A  +  B  ·∑a
j=1

φl(j) ·  xtw−a+j(n  −  1)

D(n  −  (a  −  j))

,

xtw+1(n) =  (1 −  c1 −  c2 ·  U(n  −  1))xtw+1(n  −  1) +  Qwmnc1 +  Qwmxc2 · U(n  −  1) −  ρ · xtw (n  −  1),

(9)

here the superscripts of x  denote the index of its components, the control vector U(n  −  1) is the water supply at GC
 −  1. The endogenous parameter set �  is composed of hidden parameters r1, r2, Po, φo and soil moisture parameters
1, c2. Note that in system (9), only Pl and φl are used. However, Po and φo are also needed to compute the biomass
f o-type organ. The initial condition is

x(0) =  ϒ  =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

Q0

Qw0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,  (10)

here Q0 is seed biomass, and Qw0 is the initial soil water content. This completes the detailed formulation of dynamical
ystem Eq. (1) for our water supply problem.

. Optimal  control  methodology

.1. An  optimal  control  problem  for  sunflower  water  supply

The sunflower water supply problem is to find optimal irrigation strategies for maximal fruit production under
imited water resource conditions. We chose a 63 GC sunflower growth. The hidden parameters in �  are set according
o calibration results [40,13]. The soil moisture parameters c1, c2 are set to empirical values from previous studies.

Substituting the biomass production Q  by the corresponding component of state vector x, we rewrite the fruit
ccumulated biomass Eq. (5) as follows:

qf (tf ,  N) =
tf∑

�qf (j,  N) =  Pf

tf∑φf (j) · xtw (N  −  (tf −  j) −  1)
,  (11)
j=1 j=1
D(N  −  (tf −  j))

here N  is the number of total sunflower growth GCs, and tf is the fruit CA. In the sunflower simulation, N  = 63 GC,
nd fruit appears at 38 GC thus tf = 63 −  38 = 25 GC.
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For convenience, hereafter the GC numbers are moved to subscript of the vectors, e.g. xn for x(n). If we define a
function l as{

l(xn,  Un) =  �qf (N  −  n,  N),  n  ≥  N  −  tf ,

l(xn,  Un) =  0,  n  <  N  −  tf ,
(12)

then the final fruit biomass production can be formulated as a function:

J(U) =  qf (tf , N) =
N−1∑
n=0

l(xn, Un),  (13)

where U  =  [U0,  .  . .  ,  UN−1]T ∈  R
N is the water supply vector of 63 dimension for all GCs. Here T denotes the transpose

of a vector or a matrix. The maximal fruit biomass production with respect to water supply U  is the solution of the
following optimal control system:{

xn =  F (xn−1,  �,  Un−1),

x0 =  ϒ,

argmax
U∈RN

J(U),
(14)

where F  is a vector function of (tw +  1) dimension. In numerous cases, water resources are limited due to drought or
economic reasons. We thus suppose the water supplies are under the following constraints,⎧⎪⎪⎨⎪⎪⎩

N−1∑
i=0

Ui ≤  Π,

Ui ≥  0,

i  =  0,  . .  . , N  −  1, (15)

where Π  is a given total quantity of water supply during the sunflower growth.

3.2. Descent  algorithms

The numerical solution of the optimal control problem Eq. (14) can be obtained by descent algorithms, in which a
series of points {Uk, k = 0, 1, 2, .  . .} can be constructed by

Uk+1 =  Uk +  αkdk,  (16)

where dk is the direction along which Uk+1 a better objective function value than Uk can be found. The iteration step
αk can be determined by the following unidimensional optimization problem,

αk =  argmax
α

J(Uk +  αdk) (17)

The maximization problem can be converted into a minimization problem by simply inverting the sign of J. In
this case dk is a descent direction. A popular choice of dk is the steepest descent direction which is the negative
gradient of the objective function. More complicated choices are possible, e.g. the quasi-Newton methods [3]. Most
efficient optimization methods are based on gradients [10]. In this study, a descent algorithm, the sequential quadratic
programming (SQP) [2], in which quadratic subproblems are constructed, is used to solve our constrained optimization
problem. The iterations stop when directional derivatives along searching direction dk tend to zero. It is important
to note that, because of the high nonconvexity of the plant model, the convergence of the descent methods is not
guaranteed, and the solutions can be local optima.
3.3. Adjoint  model  for  gradient  calculations

The optimal control methodology provides efficient techniques to compute the gradients of the objective function
by introducing the adjoint model of the original dynamical model [21,19].
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Suppose that Un, xn are p-dimensional and m-dimensional vectors respectively. For our water supply problem,
 = 1 and m  =  tw +  1. The first-order variations in the state vector x  and the objective function J resulting from a
erturbation Û on the control vector U, denoted as x̂ and Ĵ, can be derived as follows⎧⎨⎩ x̂n+1 = ∂F

∂x
(xn,  Un)x̂n + ∂F

∂U
(xn,  Un)Ûn,

x̂0 =  0,
(18)

Ĵ =
N−1∑
n=0

(
∂l

∂x
(xn,  Un)x̂n + ∂l

∂U
(xn, Un)Ûn

)
=

N−1∑
n=0

(
∂l

∂x
(xn,  Un)x̂n

)
+

N−1∑
n=0

(
∂l

∂U
(xn,  Un)Ûn

)
. (19)

q. (18) is the so-called tangent  linear  model. Let M
i×j denote the set of matrices with i rows and j columns, we have

∂F

∂x
= [aij]m×m ∈ M

m×m, x̂n ∈  M
m×1;

∂F

∂U
∈ M

m×p, Ûn ∈  Mp×1;
∂l

∂x
∈ M

1×m,
∂l

∂U
∈ M

1×p.

ere each component aij of the Jacobian matrix ∂F/∂x  is a partial derivative of ith function of F  with respect to jth
omponent of state vector x.

If we define a vector of adjoint variables xn that are governed by the following adjoint  model⎧⎪⎨⎪⎩xn =
[
∂F

∂x
(xn,  Un)

]T

xn+1 +
[

∂l

∂x
(xn,  Un)

]T

,

xN =  0,

n  =  N  −  1,  .  .  . ,  0,  (20)

hen the gradient ∇J with respect to U  can be calculated as

∇J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[
∂F

∂U
(x0,  U0)

]T

x1 +
[

∂l

∂U
(x0,  U0)

]T

...[
∂F

∂U
(xN−1,  UN−1)

]T

xN +
[

∂l

∂U
(xN−1, UN−1)

]T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

he detailed derivation of the gradient formula (21) is presented in Appendix A. This gradient formula is for the general
ase, in which the function l in system (14) depends on both xn and Un. For our specific case, the function l in Eq. (12)
oes not depend on U  explicitly, therefore ∂l/∂U  equals zero. Note that the adjoint variable x  is zero at n  = N: xN =  0.
onsequently the gradient formula becomes:

∇J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
∂F

∂U
(x0, U0)

]T

x1

...[
∂F

∂U
(xN−2, UN−2)

]T

xN−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

The optimality  system  is defined as the aggregation of the dynamical model and objective function (14), the adjoint
odel (20), and the gradient formula (21) (see [18] for more discussions on the optimality system).

.4. Differentiation  algorithm  to  generate  the  adjoint  code  for  gradient  calculations
The main difficulty is to implement the adjoint model. In most cases, the derivation of the adjoint model and its
mplementation, as presented in the previous section, are time-consuming and error-prone especially for complex
ynamical models. Nowadays, almost all the complex models are implemented as computer programs. An alternative
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approach is to obtain directly the code of adjoint models based on the code of original dynamical models. This can be
carried out either following some coding conventions [35] or using an automatic differentiation software [11].

Now we show how a systematic approach can be conducted to obtain the adjoint  code  for our water supply problem.
Let

Jn =
n−1∑
i=0

l(xi, Ui),  (23)

and let Xn = [U, xn, Jn]T be the augmented state vector of N + m  + 1 dimension, we have the following dynamical
system:

Xn =  Mn(Xn−1),  n  =  1,  . . .  ,  N,  (24)

where Mn is the function that maps Xn−1 to Xn according to the plant dynamics Eq. (14) and the fruit accumulation
Eq. (23). The initial condition of this system is: X0 = [U, x0, J0]T.

Applying (24) from GC 1 to N  successively, we get

XN =  MN (MN−1(·  ·  ·M1(X0)·  · ·)).  (25)

Perturbing U  by Û, the tangent linear model of direct model (24) can be obtained:

X̂n =  AnX̂n−1,  n  =  1,  .  . .  ,  N,  (26)

where An is the linearized form of Mn. Denoting P  =  [IN 0]T ∈ M
(N+m+1)×N , where 0  is zero matrix, and IN stands

for N-by-N  identity matrix, we have X̂0 =  PÛ. Repeatedly applying tangent linear model (26) from GC 1 to N  leads
to:

X̂N =  ANAN−1· · ·A1PÛ.  (27)

Denote Q  =  [0  1] ∈  M
1×(N+m+1), and note that J =  JN , we have:

Ĵ =  QX̂N =  〈QT, X̂N〉RN+m+1 ,  (28)

where 〈〉RN+m+1 is the inner product in Euclidean space R
N+m+1.

Let us define the adjoint operator A* of a linear operator A  by

〈x, Ay〉E =  〈A∗x,  y〉F, (29)

where x  ∈  E, y  ∈  F. Here E, F are Euclidean spaces equipped with inner products 〈 〉E,  〈 〉F. The linear operator in this
case usually takes the form of a matrix, and the adjoint operator A* is simply the transpose of matrix A.

Substitute (27) into (28) and apply the definition of adjoint operator, we have

Ĵ = 〈QT, X̂N〉RN+m+1 =  〈QT,  ANAN−1· ·  ·A1PÛ〉RN+m+1 =  〈PTAT
1 · ·  ·AT

N−1AT
NQT, Û〉RN . (30)

Note that Ĵ = 〈∇J, Û〉RN , one obtains

∇J =  PTAT
1 ·  · ·AT

N−1AT
NQT (31)

If we define an adjoint model:{
Xn−1 =  AT

nXn,

XN =  QT,
n  =  N,  . .  .  ,  1,  (32)

a backward integration of adjoint model (32) from GC N  to 1 provides the gradient:

∇J =  PTX0 =  U. (33)
In practice, the linear operator Ai is implemented by lines of computer code, which are a series of elementary
statements of linear operations. Each statement can be considered as an elementary matrix imposed on intermediate
variables, that is Ai =  A1

i A2
i ·  · ·. The transpose of Ai is · · ·A2,T

i A1,T
i . The adjoint code can thus be generated systemat-

ically as follows: (i) set the control variable (in our case the water supply vector U); (ii) carry out and differentiate the
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ig. 2. Curve of the gradient validation function ϕ(α) with a random perturbation direction h. For α ranging from 2−19 to 2−42(≈ [10−6, 10−13]),
(α) approaches to 1 with errors within 10−4. For large α values (left of the curve), we have truncation errors since the perturbation αh is not
ignificantly small compared with U. For extremely small α values (right of the curve), the oscillation arises due to the floating-point roundoff errors.

irect code with respect to control variables with safeguards of intermediate variables that depend on control variables;
iii) associate these intermediate variables with adjoint variables; (iv) calculate these adjoint variables in a reverse man-
er starting from the end of the direct code by transposing differentiated (linearized) elementary statements. According
o the gradient formula (33), the final value of adjoint variable U  equals to the gradient of the objective function J.

We have derived the adjoint code line-by-line from the original GreenLab code (a simplified version that implements
he recursive algorithm (8)). More details can be found in [36, Ch. 4]. We also refer to [42,9] on practical adjoint coding.

. Results

.1.  Validation  of  gradient  calculations

Consider the Taylor expansion of J(U),

J(U +  αh) =  J(U) +  α〈∇J,  h〉  +  o(α|h|) (34)

here h  is the direction of perturbations. We can check the function

ϕ(α) = J(U +  αh) −  J(U)

α〈∇J,  h〉 (35)

or gradient validation [5]. This function essentially compares the gradient ∇J (calculated using either adjoint model
r adjoint code) with the approximate gradient obtained using finite difference. When α →  0, according to Taylor
xpansion Eq. (34), ϕ(α) tends to 1 for the correct gradient. We randomly choose h, and vary α  from 20 to 2−50. Then
e plot in Fig. 2 the curve of ϕ(α) with ∇J set to the gradient obtained using adjoint code. One observes that ϕ(α)

pproaches to 1 perfectly, therefore the correctness of our adjoint code for gradient calculations can be assumed.
The gradient obtained using the adjoint model (20), in which the Jacobian matrices are approximated using finite

ifference, has negligible difference compared with that obtained using the adjoint code. The two approaches are also
omputationally comparable (adjoint code is faster). Therefore, we report only the optimization results using the adjoint
ode for gradient calculations.

.2.  Optimal  water  supplies  and  physiological  discussions
The optimization is performed for three random initial water supplies. The corresponding iterations of the SQP
escent algorithm are shown in Fig. 3 and 4. For all the three cases, the objective function values seem to converge to
ocal optima, and the directional derivatives tend to be zero.
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Fig. 3. Sunflower fruit biomass with respect to iteration number during optimization for three random initial water supply strategies (a–c). There
are very slight differences of the objective function values after 400 iterations.

The optimal water supplies resulting from the three different initial water supplies are plotted in Fig. 5. All the three
optimal supplies demonstrate a similar irrigation pattern. For the early growth stage from beginning to approximately
GC 15–20, the irrigation frequency and amplitude are very low but with a tendency of densification as sunflower grows.
Much more water is needed for mid-season growth, especially after fruit appears at GC 38, during which presents a
rough irrigation frequency of two GCs. This growth period is characterized by prominent evapotranspiration, and
the corresponding optimal water supplies peak. For the end of growth after GC 58, all the optimal supply strategies
indicate that there is no need of irrigation. It seems that the irrigation frequency is the determining factor, whereas the
sunflower growth is less sensitive to the time and amount of one specific irrigation. Indeed, the maximal difference in
fruit biomass weight under the three optimal water supplies is 9 g, which is rather small, but the irrigation amount for
a given GC could differ drastically for these optimal supply strategies. The optimal water supply strategies above are
compatible with common agronomic practices [4]. Moreover, they provide precise quantitative control for sunflower
growth.
In our previous study [38], we formulated this sunflower water supply problem as a mixed integer nonlinear
programming problem (MINLP). A heuristic method using genetic algorithm was adapted to solve that MINLP
problem. However, there were only four controlled parameters, namely two continuous parameters on the form of

Fig. 4. Directional derivatives �k with respect to iteration number (k) during optimization for three random initial water supply strategies (a–c).
Here |�k| = |∇J(Uk)Tdk|, where Uk, dk are the water supplies and the searching direction at iteration k.
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Fig. 5. Optimal water supply strategies obtained by solving the optimal control system with three random initial water supply strategies.

Fig. 6. Different water supply strategies and their resulting sunflower growths. Strategy (a) is linear. Strategy (b) follows a regular curve of beta
function. Strategy (c) is the optimal water supply obtained using the optimal control methodology (Fig. 5b). The sunflower height is denoted by H,
and fruit biomass weight by I.
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supply distribution and two discrete parameters on supply frequency. The searching space was thus limited. In this
paper, thanks to the optimal control methodology, totally 63 parameters, that is, water supplies for all GCs, can be
optimized. This new searching space thus includes arbitrary form of water supply distribution. In addition, no global
frequency is imposed for optimization. The new optimal supplies in this paper show much richer patterns adapted to
the growth stages of sunflower. A relative gain of 2% in fruit biomass weight can be obtained for the new optimal water
supplies compared to the previous optimal supplies reported in [38].

For comparison purpose, in Fig. 6 we plot a linear supply strategy, a regular supply strategy, and the best opti-
mal supply strategy, as well as their resulting 3D sunflower growths. The sunflower under the regular strategy
is shorter, but with a much heavier fruit, than that under the linear strategy. In the latter one, the abundance of
water supply at the early growth stages favors the internode growth, and the absence of water supply at mid-
season growth penalizes fruit biomass accumulation. The optimal strategy best adapts to the sunflower growth
and outperforms others in both fruit weight and sunflower height. Its fruit is 20% heavier, and its height is 13%
higher than those under the regular strategy. This crucial difference again indicates that the irrigation frequency
plays an important role, since the optimal strategy and the regular strategy are rather qualitatively comparable.
Both conduct dominant irrigations during mid-season growth and light irrigations for the early and ending growth
stages.

5. Conclusion

An optimal control methodology has been introduced for the plant functional–structural growth. This methodology
has been assessed by solving a sunflower water supply problem. The adjoint model and its practical implemen-
tation using differential algorithms have been developed for efficient calculation of gradients. It has been shown
that this methodology scales well to control all the water supplies (totally 63 parameters) during the sunflower
growth.

It has been found that the irrigation frequency and total supply amount for different growth stages are important
for fruit filling. For the resulting optimal supply strategies, the supply frequency condenses and the supply ampli-
tude peaks during the mid-season growth, when fruit appears (at 38 GC) and the optimal water conditions favor the
fruit biomass accumulation. By contrast, much less water is needed during the early and ending growth stages. The
sunflower growth has been found to be less sensitive to the time and amount of one specific irrigation. These find-
ings are compatible with agronomic practices. Moreover they provide more precise quantitative control of sunflower
growth.

This optimal control methodology scales well with the dimension and the complexity of underlying dynamical
systems. This has been experienced in atmospheric science [30,37]. Theoretically speaking, this methodology can be
extended for increasingly complex FSPMs without additional difficulties. The adjoint model or the adjoint code need to
be revised accordingly, but the procedure remains the same as that in this paper. Desirable developments considering the
new FSPM features are, for example, more realistic photosynthesis formula for biomass production [12], microclimate
considerations at organ level [6], and interactions between architecture and functioning [25]. The optimization under
uncertainties [16] would be a difficult issue related to stochastic optimal control. Further in-depth investigations are
needed to apply this methodology in the real practice for operational irrigation instructions.

We have demonstrated that our optimal control methodology is effective in solving the control problems for plant
growth. This methodology can also be applied to the parameter calibration and the state estimation problems. One
may regret that only numerical solutions are obtained for our sunflower water supply problem. Analytical solutions are
absent; rigorous analyses, e.g. the existence and uniqueness of the solution, have not been attacked. However, most of the
practical complex control systems in biology and engineering bear no analytical solutions. Indeed, further investigations
are needed when dealing with discontinuity [41,1] or if one wants to escape from local optima. Regularization methods
may be resorted to for the latter case.
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ppendix  A.  Derivation  of  the  gradient  calculation  formula

Evaluating the scalar product
∑N

n=0[xn]Tx̂n in space R
m ×  ·  · ·  ×  R

m︸  ︷︷  ︸
N+1

by applying tangent linear model (18), we

ave
N∑

n=0

[xn]Tx̂n =  [x0]Tx̂0 +
N−1∑
n=0

[xn+1]T
[
∂F

∂x
(xn, Un)x̂n + ∂F

∂U
(xn,  Un)Ûn

]
=  [x0]Tx̂0

+
N−1∑
n=0

⎧⎨⎩
[[

∂F

∂x
(xn, Un)

]T

xn+1

]T

x̂n

⎫⎬⎭+
N−1∑
n=0

⎧⎨⎩
[[

∂F

∂U
(xn,  Un)

]T

xn+1

]T

Ûn

⎫⎬⎭ .  (A.1)

This equals to:

[xN ]Tx̂N +
N−1∑
n=0

[xn]Tx̂n =  [x0]Tx̂0 +
N−1∑
n=0

⎧⎨⎩
[[

∂F

∂x
(xn,  Un)

]T

xn+1

]T

x̂n

⎫⎬⎭
+

N−1∑
n=0

⎧⎨⎩
[[

∂F

∂U
(xn,  Un)

]T

xn+1

]T

Ûn

⎫⎬⎭+
N−1∑
n=0

{[
∂l

∂x
(xn,  Un)

]
x̂n

}
−

N−1∑
n=0

{[
∂l

∂x
(xn, Un)

]
x̂n

}
. (A.2)

Recall that in tangent linear model (18) and adjoint model (20), xN =  0, and x̂0 =  0, arranging the items in (A.2) we
ave

N−1∑
n=0

{[
∂l

∂x
(xn,  Un)

]
x̂n

}
=

N−1∑
n=0

[
−xn +

[
∂F

∂x
(xn, Un)

]T

xn+1 +
[

∂l

∂x
(xn,  Un)

]T
]T

x̂n

+
N−1∑
n=0

⎧⎨⎩
[[

∂F

∂U
(xn,  Un)

]T

xn+1

]T

Ûn

⎫⎬⎭ . (A.3)

Recall the definition of the adjoint model (20), we get
N−1∑
n=0

{[
∂l

∂x
(xn,  Un)

]
x̂n

}
=

N−1∑
n=0

⎧⎨⎩
[[

∂F

∂U
(xn,  Un)

]T

xn+1

]T

Ûn

⎫⎬⎭ . (A.4)

he first-order variation Ĵ resulting from the perturbation Û can be evaluated by the directional derivative which is
he projection of the gradient on the chosen direction Û. Substitute (A.4) into (19), and let 〈 〉 be the inner product in
uclidean space R

N , we have

Ĵ =  〈∇J, Û〉 =
N−1∑
n=0

⎧⎨⎩
[[

∂F

∂U
(xn, Un)

]T

xn+1

]T

Ûn

⎫⎬⎭+
N−1∑
n=0

(
∂l

∂U
(xn,  Un)Ûn

)

=
N−1∑
n=0

⎧⎨⎩
⎧⎨⎩
[[

∂F

∂U
(xn,  Un)

]T

xn+1

]T

+ ∂l

∂U
(xn,  Un)

⎫⎬⎭ Ûn

⎫⎬⎭

=
〈
⎡⎢⎢⎢⎢⎢⎢⎢

[
∂F

∂U
(x0,  U0)

]T

x1 +
[

∂l

∂U
(x0, U0)

]T

...[ ]T [ ]T

⎤⎥⎥⎥⎥⎥⎥⎥ ,

⎡⎢⎢⎣
Û0

...

⎤⎥⎥⎦
〉

. (A.5)
⎣ ∂F

∂U
(xN−1, UN−1) xN + ∂l

∂U
(xN−1, UN−1)

⎦ ÛN−1

herefore the gradient ∇J can be calculated as formula (21).
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