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Abstract. This paper estimates the uncertainty in the outputs of a chemistry-transport
model due to physical parameterizations and numerical approximations. An ensemble
of twenty simulations is generated from a reference simulation in which one key param-
eterization (chemical mechanism, dry deposition parameterization, turbulent closure, etc.)
or one numerical approximation (grid size, splitting method, etc.) is changed at a time.
Intercomparisons of the simulations and comparisons with observations allow us to as-
sess the impact of each parameterization and numerical approximation, and the robust-
ness of the model. An ensemble of sixteen simulations is also generated with multiple
changes in the reference simulation in order to estimate the overall uncertainty. The case
study is a four-month simulation of ozone concentrations over Europe in 2001 performed
using the modeling system Polyphemus. It is shown that there is a high uncertainty due
to the physical parameterizations (notably the turbulence closure and the chemical mech-
anism). The low robustness suggests that ensemble approaches are necessary in most ap-
plications.

1. Introduction

Chemistry-transport models are now widely used in air-
quality applications ranging from impact studies to daily
forecasts. To date, they perform satisfactory simulations,
in both basic cases such as passive tracer tracking [e.g.,
Nodop, 1997] and in complex cases involving photochemical
mechanisms. The reliability of the models is partially as-
sessed through comparisons with measurements and numer-
ous statistical-measures [as those defined in US EPA, 1991].
These comparisons are performed with intensive observation
periods from specific campaigns or with daily measurements
from regular monitoring sites. A large set of comprehen-
sive and reliable 3D Eulerian chemistry-transport models
has been “validated” this way, such as Chimere [Schmidt
et al., 2001], CMAQ [Community Multiscale Air Quality,
Byun and Ching , 1999], DEHM [Danish Eulerian Hemi-
spheric Model, Christensen, 1997], EMEP [European Mon-
itoring and Evaluation Programme, Simpson et al., 2003],
Eurad [European Air Pollution Dispersion, Hass, 1991], Lo-
tos [Long Term Ozone Simulation, Builtjes, 1992], Polair3D
[Boutahar et al., 2004].

These models have usually been “tuned” in order to de-
liver satisfactory model-to-observation statistics. Also while
the “validations” give the error of the simulations, they
do not give information on the uncertainty associated with
these simulations. The origin of the uncertainty is three-
fold: the underlying physical parameterizations (biogenic
emissions, deposition velocities, turbulent closure, chemical
mechanism, etc.), the input data (land use data, emission
inventories, raw meteorological fields, chemical data, etc.)
and the numerical approximations (mesh sizes, time step
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and number of chemical species). The best characterization
of the uncertainty would be the probability density functions
of the simulation errors. Computing a probability density
function (PDF) for given model outputs (such as forecast er-
ror statistics) is in practice a difficult task primarily because
of the computational costs.

There are specific techniques to assess uncertainties. The
first-order derivatives of model outputs with respect to
model inputs can give “local” estimates of uncertainties [e.g.,
Schmidt , 2002]. Monte Carlo simulations based on different
values for given input parameters or fields can provide an
approximation to the probability density functions if the
number of simulations is large enough [Hanna et al., 2001].
An alternative approach, which is now widely used in me-
teorology [Toth and Kalnay , 1993; Houtemaker et al., 1996;
Buizza et al., 1999] and which is a promising method in air
quality modeling (e.g., Delle Monache and Stull [2003] for
photochemistry or Galmarini et al. [2004] for radionuclides),
is the so-called ensemble approach based on a set of models
supposed to account for the range of uncertainties.

This paper uses an ensemble approach to provide esti-
mates of the uncertainty in photochemical forecasts due to
the parameterizations and some data associated with them.
It also deals with numerical issues such as mesh size.

The study is performed with a four-month European-scale
simulation, from May to August 2001. A comparison be-
tween the reference simulation and a similar simulation but
for one change in a parameterization enables us to estimate
the impact of this parameterization. For each modified pa-
rameterization, the reliability of the simulation is checked
with comparisons to measurements, which allows us to as-
sess the robustness of the whole modeling system. The same
experiment is finally performed with a set of simulations
in which several parameterizations may be changed (at the
same time, in the same simulation). It allows us to study
the robustness of the system with respect to cumulated un-
certainties.
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This paper is organized as follows. Section 2 briefly
summarizes the relevant methods to estimate uncertain-
ties, details the specific aims of this paper and describes
the methodology. Section 3 details the model, the reference
simulation and the involved parameterizations. In the last
section, the results are analyzed with intercomparisons of
the simulations and comparisons to observations.

2. Methodology

2.1. Definitions

We define:
• The error. It is the discrepancy between model outputs

and field observations.

• The uncertainty. It is the range of values in which the
model outputs may lie with a high degree of confidence.
In this paper, we only deal with a priori uncertainties, i.e.
uncertainties estimated without taking into account obser-
vations.

• The spread. Hereafter we refer to the variability of an
ensemble as its spread. The spread is a measure of the un-
certainty and it can be quantified by a standard deviation.

• The variability. Herein the variability solely refers to
the spatial or/and temporal variabilities of a concentration
field. For the sake of clarity, the variability of an ensemble
is called a spread.

2.2. Motivation

Assessing the uncertainties in model outputs is a field of
growing interest in environmental forecasting, especially in
meteorology. In meteorology, the dynamics of models have
a “chaotic” behavior. The uncertainties in initial conditions
have therefore a strong impact and the issue is to propagate
these uncertainties through “ensemble forecasts” [Toth and
Kalnay , 1993; Houtemaker et al., 1996; Buizza et al., 1999].
In air quality applications, there is not such a strong de-
pendence on initial conditions. The impact of uncertainties
in the input data (e.g., emissions, meteorological fields), in
the parameterizations (e.g., deposition velocities, turbulence
closure) and in the numerical algorithms is much stronger.

The actual errors of a model, given by comparisons to ob-
servational data, may be low with high uncertainties in the
results. A model may be tuned to fit the observations (and
all models are improved this way), which leads to low errors.
Nevertheless, if this model is used with different parameter-
izations (assumed to be valid physical parameterizations),
other data or alternative numerical schemes, then it could
lead to very different results, including those far from the
measurements, with the magnitude of spread depending on
the actual uncertainty. This is, of course, a strong limitation
of the models, and the uncertainty has to be estimated in
order to assess the “robustness” of the models. One may
refer to Russell and Dennis [2000] for an overview of the
strengths and limitations of photochemical models.

It is impossible to compute the error in all meteorologi-
cal conditions, at every point in a given simulation domain
(even at ground level), for all chemical species, and at every
time. In the absence of observations, an estimation of the
uncertainty is essentially the only means to assess the qual-
ity of the results. In an operational context, the models may
be used for risk assessment. The reliability of the results is
then a crucial issue and, if available, the full PDFs associated
with these results would be highly valuable. For instance, in
prospective or screening studies (e.g., impact studies related
to different emission scenarios), the models may be used
with uncommon input data (e.g., strongly corrected emis-
sions) and without any available observations with which to
tune the models. From the research point of view, an esti-
mate of the uncertainty is necessary for other communities
to assess the feasibility and the relevance of given applica-
tions. For instance, the effect of pollution on health may or

may not be effectively estimated, depending on the accuracy
of the underlying air-quality models. For each model, the
development is also oriented to improve the description in
the parameterizations responsible for the main uncertainty.

2.3. A review of existing methods

There are several methods to estimate the uncertainty
and to identify its sources. As for the uncertainty due to
the input data, one can compute first-order derivatives of
the model outputs with respect to the model inputs [e.g.,
Schmidt , 2002]. This provides “local” sensitivities from
which the uncertainty in the outputs can be derived, taking
into account the uncertainty in the input data.

Ideally one would want to compute the full PDF associ-
ated with the results. It would mean solving the Fokker-
Planck equation [the equation satisfied by the output PDF,
Gardiner , 1996] which is unfeasible. Instead, the Monte
Carlo methods can generate approximations of the PDF.
The idea is to generate a set of N input fields that roughly
describe the PDF associated with the input data. The model
is then run N times, which provides an approximation of the
output PDF. These methods may be well suited but they are
restricted to the uncertainty due to input data or parameters
in parameterizations, that is, due to continuous variables.
A related method, which could be viewed as a Monte Carlo
method too, is the use of a set of N input fields generated
by another model. In practice, the ensemble forecasts from
the meteorological centers may be used as input to the air
quality models. It leads to promising applications but it is
restricted to the meteorological fields [Warner et al., 2002].

Another method is the use of different air quality mod-
els. This technique has already been used but with a fairly
low number of models [e.g., four models in Delle Monache
and Stull , 2003]. It is hard to assemble enough models to
claim a reliable estimate of the uncertainty. Moreover in-
tercomparisons are difficult because the models may not be
operated under the same conditions (e.g. with the same
meteorological fields). Note that this technique involves the
uncertainties of several models and is not suited to assess
the uncertainty of a given model. Moreover the models have
usually been tuned in comparisons to measured data; hence
they do not embrace the whole uncertainty in the physics
and the chemistry.

The method applied in this paper mainly takes advantage
of the multiple parameterizations that should be available in
a well designed modeling system [Mallet et al., 2005]. The
model is run in many configurations with respect to the
available state-of-the-art parameterizations, but also with
respect to changes in the parameters and the base input-
data needed for these parameterizations. The impact of the
numerical approximations is studied as well. This method
allows fair comparisons since the framework is exactly the
same for all simulations. It gives an accurate view of the
uncertainty due to the parameterizations of a given model.
Notice that the method introduces discrete changes, which
is the only means to assess the impact of the parameteriza-
tions. There is no continuous transition between two param-
eterizations or between their base input-data sets. Details
about the method are provided below.

2.4. The multi-configurations approach

The air quality system with which the experiments have
been performed relies on many parameterizations (see Sec-
tion 3.1). There are often several valid parameterizations
to compute the same field. Furthermore most parameteri-
zations depend on input-data sets (including scalar param-
eters). For instance, the deposition velocities depend on the
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land use coverage which may be given by USGS1 data or
by GLCF2 data (see below). The alternatives between the
parameterizations themselves and their input-data sets in-
troduce a finite number of choices. Hence the method deals
with discrete dependencies.

The impact of numerical options are also assessed through
discrete changes, e.g. by changing a numerical scheme.
Nonetheless a few values that belong to a continuous in-
terval are studied as well. They are modified as if they were
discrete variables, i.e. only a few values are allowed for them.
For example, the time step is a continuous variable but it
can be restricted to a set of three values (a reference time
step, a small one and a large one).

For the sake of clarity, the changes in the input data to
the parameterizations will be viewed as changes in the pa-
rameterizations themselves. Since the numerical issues are
treated in the same way as the parameterizations (they are
associated with a finite number of choices), they are also
viewed as parameterizations hereafter.

Assume that the model is written in the form:

y = f(p1, p2, ..., pN ) = f(p) (1)

Every input parameter pi ∈ {0, ..., ni −1} is associated with
a given parameterization that has ni possible values. f is
the model itself. The output y may be the pollutant concen-
trations, deposition fields, evaluation statistics, etc. Notice
that f is already a discretized model.

The reference simulation is associated with a reference
vector assumed to be zero: pref = 0. The idea is to estimate
the uncertainty and the impact of every parameterization
by changing one parameterization at a time, i.e. computing
all f(p) where pi = 0 for all i except for one component.
There are

∑N

i=1
(ni − 1) such simulations. This is only a

small subset of the ΠN
i=1ni possible combinations, but the

computational cost makes it impossible to run all simula-
tions.

This method allows us to estimate the impact of each pa-
rameterization. The impact is estimated with the resulting
changes in the output concentrations. It is analyzed with
the concentration distributions and their spatial and tem-
poral variabilities. In addition, for each change, an evalua-
tion of the output can be performed. It shows whether the
modified parameterization leads to an improved agreement
with the measurements and, therefore, maybe to a better de-
scription of the physics. The fact that not all combinations
(pi)i are available restricts the study: it is hard to decide
whether a parameterization should be discarded because its
drawbacks may be canceled by changes in other parame-
terizations. There are still useful conclusions to draw: for
instance, it may be shown that a given parameterization
limits the variability in the results.

Furthermore, the results are enhanced by combined
changes, but only with a few selected parameterizations to
reduce the computational cost of the study. Four parameter-
izations are selected mainly due to their significant impact
(even if other parameterizations have a similar importance).
The model is then put in the form y = f(p̃) where the vec-
tor p̃ has four components. Each component can take two
values (0 or 1); therefore there are 16 possible combinations.
It provides a rough estimate of the overall uncertainty.

3. The Experiments Setup

3.1. The Modeling System

This study is based on the modeling system Polyphe-
mus (available under the GNU General Public License at
http://www.enpc.fr/cerea/polyphemus/). This system is
divided into four parts:

1. the databases: they incorporate the data needed in the
parameterizations (one may also include the meteorological
fields here).

2. the libraries: they provide (1) facilities to manage the
multidimensional data involved in atmospheric chemistry,
(2) useful functions associated with the physical and chem-
ical fields (e.g. coordinate transformations) and (3) the pa-
rameterizations.

3. a set of programs: these programs make the calls to the
libraries to generate the input data needed by the chemistry-
transport model. Their flexibility is made possible by the
input configuration files that they read.

4. the chemistry-transport model: it is responsible for
the time integration of the chemistry-transport equation. It
therefore computes the output concentrations.

The databases contain the raw data: the land use cover-
age, the anthropogenic emission inventories, chemical con-
stants, etc. The meteorological fields may also be included
even if they strongly depend on the application.

The libraries play a major role in this study since they
provide the basis of the flexibility of the parameterizations.
They first provide the data structures and functions needed
for data processing. They then provide a set of parameter-
izations. Most of the changes to the simulations are made
with a different call to the libraries, specifically to the library
dedicated to physical parameterizations, the C++ library
AtmoData [Mallet and Sportisse, 2005].

The programs of Polyphemus make calls to the libraries
in order to process the raw data. They format the raw data
for the chemistry-transport model, but the primary func-
tion of the programs is to use the parameterizations from
the library AtmoData to compute the needed fields. These
programs read configuration files in which many options are
specified, including which parameterizations are to be used
and with which input data and parameters. Roughly speak-
ing, there exists a set of configuration files for every vector
p (vector defined in Section 2.4). This study therefore relies
heavily on the flexibility characteristic of the programs.

Finally, the Eulerian chemistry-transport model Polair3D
computes the output concentrations through the numerical
integration of the transport-chemistry equation. With re-
spect to this study, a strong advantage of Polair3D is its
ability to deal with multiple chemical mechanisms. Details
about Polair3D may be found in Boutahar et al. [2004].
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Figure 1. Domain [40.25◦N, 10.25◦W ] ×
[56.75◦N, 22.25◦E] of the reference simulation.
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Further details about the architecture of the whole system
may be found in Mallet et al. [2005]. A complete description
is not relevant here because not all features of the system
are used in this study. The system is able to handle many
applications (many chemical mechanisms, data assimilation,
Monte Carlo simulations, etc.) and its flexibility enables the
multiple experiments presented in this paper. The next sub-
section describes the base application.

3.2. The Reference Simulation

The impact of the parameterizations is evaluated by the
changes they introduce with respect to the reference simula-
tion. The reference simulation takes place at European scale
during summer 2001 (22 April 2001 to 31 August 2001). A
validation, over the same domain and the same period, sim-
ilar to the reference simulation, may be found in Mallet and
Sportisse [2004].

The domain is [40.25◦N, 10.25◦W ] × [56.75◦N, 22.25◦E]
and is shown in Figure 1. The first layer is located between
0 m and 50 m; the concentrations are thus computed at 25
m. The thickness of the other layers is about 600 m with the
top of the last layer at 3000 m. RACM is the photochemical
mechanism used in this simulation [Stockwell et al., 1997].
Since the best results are obtained for ozone and the num-
ber of ozone measurements is significantly higher than for
other species, this study focuses on ozone. We are notably
concerned with the ozone peaks since they are often of high
interest in forecasts (due to the regulations that mostly limit
the peaks).

Here is a review of the main components of the reference
simulation:

1. meteorological data: the best ECMWF data available
for the period (i.e. 0.36◦ × 0.36◦, the TL511 spectral reso-
lution in the horizontal, 60 levels, time step of 3 hours, 12
hours forecast-cycles starting from analyzed fields);

2. land use coverage: USGS finest land cover map (24
categories, 1 km Lambert);

3. emissions: the EMEP3 inventory, converted according
to Middleton et al. [1990];

4. biogenic emissions: computed as advocated in Simpson
et al. [1999];

5. deposition velocities: the revised parameterization
proposed in Zhang et al. [2003];

6. vertical diffusion: within the boundary layer, the
Troen and Mahrt parameterization as described in Troen
and Mahrt [1986], with the boundary-layer height provided
by the ECMWF; above the boundary layer, the Louis pa-
rameterization [Louis, 1979];

7. boundary conditions: output of the global chemistry-
transport model Mozart 2 [Horowitz et al., 2003] run over a
typical year;

8. numerical schemes: a first-order operator splitting,
the sequence being advection–diffusion–chemistry; a direct
space-time third-order advection scheme with a Koren flux-
limiter [Verwer et al., 1998]; a second-order order Rosen-
brock method for diffusion and chemistry.

The performance of the reference simulation has been
evaluated through a comparison of the forecasted ozone
peaks with the observations from 242 stations distributed
over Europe (in a network with mixed stations: urban, peri-
urban and rural stations). With the first five days excluded
(because of the rough initial conditions), the root mean
square (with all observations put together) is 23.5µg · m−3,
the correlation is 71.4% and the bias −4.5µg ·m−3 (the mean
of observed values being 94.7µg ·m−3) – the statistical mea-
sures are defined in the appendix. The results therefore show
a reasonable agreement with observations [Hass et al., 1997;
Schmidt et al., 2001].

3.3. The Parameterizations

The modified parameterizations were chosen according to
the relevance and the availability of alternative parameteri-
zations. Only state-of-the-art parameterizations or, at least,

widely used parameterizations are involved. The list of the
parameterizations (and the data associated with them) used
in this study is shown in Table 1.

The changes first include prominent processes such as
the chemistry (RADM 2). Several chemical mechanisms
are available in Polair3D but reliable emission inventories
were available only for RACM and for RADM 2. The same
speciation [for volatile organic compounds, Passant , 2002]
was used for the two mechanisms. A drawback is that both
mechanisms are too close to embrace the diversity of the
chemical mechanisms available in air quality modeling. Nev-
ertheless, as shown hereafter, there is a substantial difference
between the two mechanisms.

The sensitivity to the turbulence closure is assessed with
the comparison between the Troen & Mahrt parameteriza-
tion (well suited for models with a low vertical resolution –
which is the case with only five layers) and the Louis param-
eterization. The Louis closure is used above the boundary
layer (for all simulations), in the boundary layer in stable
conditions (simulation 3) and in any condition (simulation
2). One should note that the leading contribution to ground
concentrations comes from the vertical diffusion coefficient
at the top of the first layer. It determines the transfer be-
tween this and the above layer (up to 600m) which roughly
corresponds to the residual layer in the night. The Troen &
Mahrt parameterization and the Louis parameterization are
designed in two different ways: the first one is independent
of the vertical discretization while the second one relies on
finite differences. There is a clear difference in the coeffi-
cients computed by the two parameterizations: the averages
at the top of the first layer are 7.6m2 · s−1 (Troen & Mahrt)
and 5.7m2 · s−1 (Louis). The correlation of 60% also shows
the gap between the two parameterizations for coarse ver-
tical discretizations (the differences decrease as the vertical
mesh is refined).

Another known important process with multiple parame-
terizations is dry deposition. An alternative to the reference
velocities computed as proposed in Zhang et al. [2003] is
based on the method by Wesely [1989] (simulation 4) which
includes a reasonable parameterization and is widely used.
The two parameterizations rely on the same fundamentals
and the differences in the computed deposition velocities
come as much from the input data (resistances, land use de-
scriptions) as from the parameterization itself. As for ozone
deposition velocities, the relative bias between the two pa-
rameterizations is only 3%, the correlation is 96% but the ra-
tio of the standard deviation of the difference and the mean
velocity is high: 0.31. In addition, the surface flux used to
compute the aerodynamic resistance can be the heat flux or
the momentum flux, although the heat flux is usually as-
sumed to be more suitable for a scalar variable such as the
concentration of a pollutant.

The two last physical-parameterizations (simulations 6
and 7) deal with the attenuation coefficients. The reference
option is based on the optical depth, as described in Chang
et al. [1987] and Madronich [1987], estimated with the cloud
liquid water content. The liquid water content is integrated
within the clouds and the cloud fraction is calculated based
on the relative humidity q and its critical value qc:

cloud fraction =
1 − q

1 − qc

(2)

qc = 1 − ασ
a(1 − σ)b

(

1 + β

(

σ − 1

2

))

(3)
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Table 1. Parameterizations, raw input data and numerical choices for the reference simulation and their alternatives. The impact of the parameterizations are assessed in this
study through the use of the alternatives shown in this table.

# Parameterization Reference Alternative(s) Comment

Physical parameterizations

1.a Chemistry RACM RADM 2 [Stockwell et al., 1990]
2. Vertical diffusion Troen & Mahrt Louis [Louis, 1979]
3. Louis in stable conditions Troen & Mahrt kept in unstable conditions
4. Deposition velocities Zhang [Zhang et al., 2003] Wesely [Wesely, 1989]
5. Surface flux Heat fluxb Momentum fluxb For the aerodynamic resistance (in deposition velocities)
6. Cloud attenuation RADM method [Chang et al., 1987; Madronich, 1987] Esquif (ESQUIF [2001])
7. Critical relative humidity Depends on σ Two layers Used in the RADM method to compute cloud attenuation

Input data

8. Emissions vertical distribution All in the first cell All in the two first cells
9. Land use coverage USGS GLCF For deposition velocitiesc

10. Land use coverage USGS GLCF For biogenic emissionsc

11. Exponent p in Troen & Mahrt 2 3
12. Photolytic constants JPROC Depends on the zenith angle (only)

Numerical issues

13. Time Step 600 s 100 s
14. 1800 sd,e

15. Splitting method First order Strang splitting
16. Horizontal resolution 0.5◦ 0.1◦ e

17. 1.0◦

18. Vertical resolution 5 layers 9 layers The first layer height remains 50 m
19. First layer height 50 m 40 m The top of every other layer does not change

a The reference simulation will be referred to as simulation #0.
b Computed using the Louis formulae.
c The consistency between the land use coverage used for the deposition velocities and for the biogenic emissions is not required. Indeed a large part of the uncertainty lies in the data

associated with the land use categories (e.g. resistances for deposition and emission factors for the biogenic emissions). Moreover a given description may be more suited only for the
emissions (vegetation) or only for the deposition (roughness, etc.).

d The advection is integrated over submultiples of 1800 s so as to satisfy the CFL (Courant-Friedrichs-Lewy) condition.
e The numerical scheme is also slightly modified in this simulation: it uses source splitting. It is used to enforce the stability but has only slight consequences in the results.
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where σ = P
Ps

, P is the pressure, Ps is the surface pressure,

α = 1.1, β =
√

1.3, a = 0 and b = 1.1. In an alternative
simulation (#7), the critical relative humidity is simply con-
stant over two distinct layers: qc = 0.75 below 700hPa and
qc = 0.95 above.

Another set of simulations is derived from changes in
the input data. The land use coverage is described by the
USGS data (24 categories, 1 km Lambert) or by the GLCF
data (14 categories, 0.0083◦). The GLCF data contain less
categories worldwide but they involve more categories over
Europe than the USGS data do. The impact of the land
use description is assessed through the deposition velocities
(simulation 9) and the biogenic emissions (simulation 10)
independently.

In the Troen & Mahrt parameterization, the vertical dif-
fusion coefficients depend on several parameters, particu-
larly an exponent p [see Troen and Mahrt , 1986] which de-
termines the shape of the vertical profile. Since it is a free
parameter (with p = 2 or p = 3 recommended), the expo-
nent is set to 2 in the reference simulation and also set to 3
as an alternative (which increases the diffusion coefficients
– simulation 11).

The emission inventories are a concern of most modelers,
especially the time and spatial distributions associated with
them. The time distribution is known to have a slight im-
pact at continental scale [Tao et al., 2004]. The horizontal
distribution is given with the EMEP inventory. Meanwhile
the vertical distribution is not well known and is chosen by
the modeler. In the reference simulation, all emissions are
released in the first layer (therefore below 50 m). In an
alternative simulation (#8), the emissions from industrial
combustion (sectors 1 and 3 in the EMEP inventory) and
from the waste treatment (sector 9 in the EMEP inventory)
are released in the second layer. The emissions due to the
combustion of non-industrial plants (sector 2 in the EMEP
inventory) are released in both layers (one half in each).

Finally the impact of the database for the photolytic con-
stants is estimated. The reference simulation takes advan-
tage of the photolytic constants computed by JPROC [part
of CMAQ, Byun and Ching , 1999] that are a function of
the latitude, the altitude, the day in the year and the hour
angle. The alternative simulation uses a coarser description
with a single dependence on the zenith angle derived from
the values given in Stockwell et al. [1997].

The last set of simulations involves changes in the numer-
ical approximations. The time step is set to 100 s (simula-
tion 13) and 1800 s (simulation 14) instead of 600 s (ref-
erence simulation). In the reference simulation, the split-
ting method is a first-order method (advection–diffusion–
chemistry). An alternative simulation (#15) takes advan-
tage of the Strang splitting method (advection–chemistry–
diffusion over ∆t

2
and then diffusion–chemistry–advection

still over ∆t
2

), Sportisse [2000]. Finally the spatial discretiza-
tion is changed horizontally (simulations 16 and 17) and ver-
tically (simulation 18 and 19). When the spatial discretiza-
tion changes, the raw meteorological fields (ECMWF fields)
are interpolated on the new grid.

The nineteen alternative simulations address a reason-
able range of the choices that can be made in a forecasting
system, in the parameterizations, their input data and the
numerical options.

4. Results and discussion

Due to the coarse initial conditions, the five first days of
the simulations are excluded in the following comparisons.
The comparison is limited to hourly ozone concentrations in
the first layer. Moreover the comparisons between the com-
puted fields (not with the observations) are not performed in

all cells to avoid the influence of the boundary conditions.
A three-cell band at the domain borders is excluded from
the comparisons in Subsections 4.1, 4.2 and 7.

The first subsection compares all simulations in order to
estimate the spread due to the parameterizations (and nu-
merical choices). The second subsection focuses on the im-
pact of each parameterization. The comparisons are relative
to the reference simulation. In the third subsection, a com-
parison with the observations evaluates the impact of the
parameterizations on the forecasts. In the last section, the
impact of combined changes in the parameterizations is per-
formed to give an estimate of the overall uncertainty.

Table 2. Means and standard deviations of the hourly ozone
concentrations (µg · m

−3) of the twenty simulations. The ref-
erence simulation is indexed by 0 and the other simulations are
indexed as in Table 1. On the left, the simulations are sorted
by their mean; on the right, they are sorted by their stan-
dard deviation. The relative standard deviation of the means
is 5.5%, and the relative standard deviation of the standard
deviations is 10.4%.

Sorted by mean Sorted by standard deviation
# Mean Standard # Mean Standard

deviation deviation

15 90.30 25.73 2 68.94 34.23
18 89.15 24.27 3 79.15 28.83
14 87.49 26.14 11 84.14 26.22
7 85.92 25.16 16 83.27 26.20
6 85.92 24.75 4 85.18 26.19
4 85.18 26.19 14 87.49 26.14
17 85.15 24.74 15 90.30 25.73
0 84.92 25.11 19 82.62 25.22
13 84.73 24.99 7 85.92 25.16
8 84.23 21.81 0 84.92 25.11
11 84.14 26.22 12 84.00 25.06
12 84.00 25.06 13 84.73 24.99
9 83.96 24.39 5 81.38 24.87
16 83.27 26.20 6 85.92 24.75
19 82.62 25.22 17 85.15 24.74
5 81.38 24.87 9 83.96 24.39
10 81.30 22.88 18 89.15 24.27
3 79.15 28.83 10 81.30 22.88
1 77.11 21.14 8 84.23 21.81
2 68.94 34.23 1 77.11 21.14

Table 3. Percentiles of ozone concentrations (µg · m
−3),

sorted by the mean of the percentiles.

# 10th 20th 30th 40th 50th 60th 70th 80th 90th

15 58 69 77 84 91 97 104 111 122
18 60 69 76 83 88 94 101 109 120
14 55 66 74 81 87 94 101 109 121
6 55 66 74 80 86 92 98 106 117
7 55 66 73 80 86 92 98 106 117
4 53 64 72 79 85 91 98 107 118
17 55 65 72 79 85 91 97 105 117
0 54 65 72 79 85 91 97 105 116
13 54 65 72 79 84 90 97 105 116
8 57 66 73 79 84 89 95 102 111
9 54 65 72 78 84 90 96 104 114
11 52 63 71 77 84 90 97 105 117
12 53 64 71 78 84 90 96 104 115
16 52 63 71 77 83 89 96 104 115
19 51 63 70 77 83 89 95 103 114
10 52 63 70 76 82 88 94 100 110
5 50 61 69 75 81 87 94 101 112
3 41 55 65 73 80 87 95 103 115
1 50 61 68 73 78 84 89 95 102
2 28 40 50 58 67 75 85 96 111
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4.1. Intercomparison between the Simulations

The distribution of the spatio-temporal means and stan-
dard deviations of the fields is shown in Table 2. The means
and the standard deviations are well spread considering that
the simulations differ only at most in two parameterizations.
The mean is particularly affected by the splitting method,
the number of layers, the time step (1800 s), the chemical
mechanism and the vertical diffusion. The standard devi-
ation increases due to the turbulent closure and decreases
with RADM 2, the vertically distributed emissions and the
land use coverage used to compute the biogenic emissions.
From these comparisons, it appears that the turbulent clo-
sure and the chemical mechanism have a strong impact on
the output ozone concentrations. Even the use of the Louis
closure only in stable conditions modifies both the mean
and the standard deviation. The numerical issues also have
a clear impact on the ozone mean. Finally the emissions
can modify the standard deviation of the output concentra-
tions. These conclusions may already be known issues, but
this study shows the prominent impacts.

Notice that the standard deviation has a greater spread
than the mean. The relative standard deviation4 of the
means and of the standard deviations shown in Table 2 are
5.5% and 10.4% respectively.

More details are provided by the distribution of each
ozone field. The percentiles associated with the simulations
are shown in Table 3. In addition, Figure 2 shows the rela-
tive frequency distributions of:

1. simulation 15 (splitting order) which provides the high-
est concentrations (highest mean and highest percentiles)
with a standard deviation close to the reference simulation;

2. simulation 2 (Louis turbulence closure) which has the
lowest concentrations and the highest standard deviation;

3. simulation 1 (chemical mechanism RADM 2) which is
associated with the lowest standard deviation.

These three simulations exhibit the most extreme behav-
ior and therefore give a good idea of the uncertainty due to
the changes in the parameterizations.

The comparisons deal with the concentrations computed
over the whole (restricted) domain and at all time steps. A
finer analysis of the variability deals with the spatial and
temporal variabilities.

The spatial variability is estimated from the time average
of the spatial standard deviations (the standard deviations
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Figure 2. Relative frequency distributions of ozone con-
centrations (µg · m−3) for the simulations 15, 2 and 1
which show the most extreme behavior (in terms of mean
and standard deviation).

Table 4. Means and standard deviations of the ozone daily
maxima (µg · m

−3) of the twenty simulations. On the left,
the simulations are sorted by their mean; on the right, they
are sorted by their standard deviation. The relative standard
deviation of the means is 3.6%, and the relative standard de-
viation of the standard deviations is 13.5%.

Sorted by mean Sorted by standard deviation
# Mean Standard # Mean Standard

deviation deviation

15 108.79 22.62 2 95.71 33.50
14 104.40 23.87 16 101.39 24.35
18 104.11 22.87 11 101.04 23.98
4 102.39 23.38 14 104.40 23.87
7 102.03 22.58 4 102.39 23.38
6 101.71 22.05 3 99.73 23.17
16 101.39 24.35 12 99.59 22.94
11 101.04 23.98 18 104.11 22.87
0 100.92 22.62 0 100.92 22.62
17 100.62 22.49 15 108.79 22.62
13 100.52 22.57 7 102.03 22.58
9 99.77 21.68 13 100.52 22.57
3 99.73 23.17 17 100.62 22.49
12 99.59 22.94 19 98.96 22.25
19 98.96 22.25 6 101.71 22.05
5 98.34 21.61 9 99.77 21.68
8 97.90 20.10 5 98.34 21.61
10 96.31 19.32 8 97.90 20.10
2 95.71 33.50 10 96.31 19.32
1 91.49 16.75 1 91.49 16.75

computed with the concentrations in all cells and at a given
time step). It appears that the spatial variability and the
standard deviation on the whole field at once lead to the
same conclusions. The correlation between the spatial vari-
ability and the global standard deviation of all simulations
can be as high as 98.7%.

The temporal variability is estimated from the spatial av-
erage of the temporal standard deviations (computed with
all concentrations in a given cell). The correlation of this

0 2 4 6 8 10 12 14 16 18

Simulation

15

20

25

30

3�

m·
g�

Spatial variability
Temporal variability
Global variability

Figure 3. Spatial, temporal and global variabilities
(µg · m−3) of ozone daily maxima for the twenty simula-
tions. The spatial variability is estimated with the time
average of the spatial standard deviations (the standard
deviations computed with the peaks in all cells, for a
given day). The temporal variability is estimated with
the spatial average of the temporal standard deviations
(computed with all daily maxima in a given cell). The
global variability is measured by the standard deviation
of all daily maxima.
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(a) All simulations.
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(b) Physical parameterizations.
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(c) Input data. The lowest concentrations are reached by simu-
lation 10 (GLCF land use coverage for biogenic emissions).
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(d) Numerical approximations. The highest concentrations are
reached by simulation 15 (Strang splitting).

Figure 4. Ozone daily profile for the twenty simulations and for the three groups related to (b) the
physical parameterizations, (c) the input data and (d) the numerical approximations. The dots represent
the reference simulation (#0), the squares represent simulation 2 (Louis closure), the triangles represent
simulation 3 (Louis closure in stable conditions) and the diamonds represent simulation 1 (RADM 2).

temporal variability with the global standard deviations is
still above 98%. The variability can also be estimated daily
and then averaged over the days. In this case, the corre-
lation with the global standard deviation is 94%, which is
still high. Hence the parameterizations that introduce some
variability increase both the temporal and the spatial vari-
abilities. In Section 7, the most strongly impacted regions
are identified.

A key point in ozone forecasts is the daily maximum.
Table 4 shows the distribution of the means and the stan-
dard deviations of the ozone daily peaks. The behavior of
the daily maxima differs from the field averages previously
analyzed.

While the means of the maxima are less widely spread,
the standard deviations are strongly spread and range from
16.75µg · m−3 (simulation 1, RADM 2) to 33.50µg · m−3

(simulation 2, Louis parameterization). On one hand, the
highest standard deviation is reached with the Louis closure.
Notice that if the Louis closure is only used in stable condi-
tions (simulation 3), the impact on the daily maxima is much
lower, which means that the nighttime concentrations have
a small influence on the peaks. On the other hand, the low-

est standard deviation comes from the chemical mechanism
RADM 2. It is also associated with the lowest concentra-
tions, which is consistent with Gross and Stockwell [2003].

Contrary to the concentration averages, the daily max-
ima are more variable in space than in time, as shown in
Figure 3. The simulation with RADM 2 is essentially the
only simulation for which the temporal variability is similar
to the spatial variability. The impact of the parameteriza-
tions is also greater on the spatial variability than on the
temporal variability: their relative standard deviations are
15.1% and 9.5% respectively.

4.2. Comparisons with the Reference Simulation

Now that the global variability has been analyzed, com-
parisons with the reference simulation allow us to give de-
tails about the impact of each change in the parameteriza-
tions or in the numerical choices.

First examined are the bias, the standard deviation of the
distance to the reference simulation (namely the difference
with the reference simulation) and the correlation with the
reference simulation. These values are shown in Table 5.

The changes in the turbulence closure (simulation 2 and
3) lead to the largest differences. The chemical mechanism
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RADM 2 (simulation 1) also has an impact but not as strong
as what was seen in the previous subsection with respect to
the variability. On the contrary, the fine resolution (0.1◦,
simulation 16) leads to strong differences with the reference
simulation, even if this was not obvious from the previous
analyses. It is noteworthy that simulation 17, with a 1.0◦

resolution, has a lower but still significant impact.
The other main changes are due to the splitting method

(simulation 15), the vertical resolution (nine levels, simu-
lation 18), the emission vertical distribution (simulation 8)
and the land use coverage used for the biogenic emissions
(simulation 10).

For each change in the model, there is an explanation for
its low or high impact on the output concentrations. We do
not provide such explanations due to the number of simula-
tions and because the purpose of the paper is to describe the

Table 5. Biases and standard deviations of the distance to
the reference simulation (µg · m

−3) for the nineteen simula-
tions. On the left, the simulations are sorted by their bias; on
the right, they are sorted by their standard deviation.

Sorted by bias Sorted by standard deviation
# Bias Standard # Bias Standard Correlation

deviation deviation

15 5.39 6.65 2 -15.97 18.60 0.85
18 4.23 5.10 3 -5.77 10.40 0.93
14 2.57 3.60 16 -1.64 8.95 0.94
7 1.00 1.32 1 -7.81 7.55 0.96
6 1.00 2.63 15 5.39 6.65 0.97
4 0.26 2.69 8 -0.69 5.62 0.98
17 0.24 5.07 18 4.23 5.10 0.98
13 -0.18 0.98 17 0.24 5.07 0.98
8 -0.69 5.62 10 -3.62 5.04 0.98
11 -0.78 2.81 5 -3.54 3.69 0.99
12 -0.92 2.48 14 2.57 3.60 0.99
9 -0.96 2.30 11 -0.78 2.81 0.99
16 -1.64 8.95 4 0.26 2.69 1.00
19 -2.30 2.34 6 1.00 2.63 0.99
5 -3.54 3.69 12 -0.92 2.48 1.00
10 -3.62 5.04 19 -2.30 2.34 1.00
3 -5.77 10.40 9 -0.96 2.30 1.00
1 -7.81 7.55 7 1.00 1.32 1.00
2 -15.97 18.60 13 -0.18 0.98 1.00
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Figure 5. Relative frequency distribution f([O3]) of the
ozone concentrations (µg · m−3) of the reference simula-
tion and the functions f([O3])±σf ([O3]) where σf ([O3])
is the standard deviation of f([O3]) computed from all
simulations.

global uncertainty due to the parameterizations and the nu-
merical choices. What should be emphasized instead is that
the results are sensitive to the physical parameterizations,
the input data sets and the numerical issues.

The relative frequency distribution of all concentrations
of the reference simulation is shown in Figure 5 with its un-
certainty due to the parameterizations. The concentration
distribution is sensitive to the parameterizations. The un-
certainty (estimated with the relative standard deviation)
in the relative frequency distribution is about 25%–30% for
concentrations in [30µg · m−3, 170µg · m−3]. This high un-

Table 6. The amount of negative biases among the daily bi-
ases, the daytime biases, the nocturnal biases and the spatial
biases. The simulations are sorted by their standard deviation.

# Standard Daily Daytime Nocturnal Spatial
deviation negative negative negative negative

bias bias bias bias
(µg · m

−3) (%) (%) (%) (%)

2 18.60 100 100 100 98
3 10.40 100 100 100 100
16 8.95 100 100 100 79
1 7.55 100 100 100 100
15 6.65 0 0 6 1
8 5.62 70 84 44 64
18 5.10 0 0 0 0
17 5.07 27 25 33 44
10 5.04 100 100 100 100
5 3.69 100 100 100 100
14 3.60 0 13 0 0
11 2.81 88 84 90 76
4 2.69 35 30 60 33
6 2.63 15 17 15 1
12 2.48 81 90 71 91
19 2.34 100 100 100 100
9 2.30 85 85 83 79
7 1.32 0 0 0 0
13 0.98 61 42 95 82

Table 7. Percentages of stations that meet the most-
restrictive EPA recommendations on hourly concentrations
(cutoff of 80µg · m

−3) for the mean bias, the mean gross error
and the unpaired (in time, paired in space) peak prediction;
the root mean square (µg ·m

−3), the correlation and the over-
all bias (µg · m

−3) for the ozone daily peaks (all stations put
together).

# MNBE MNGE UPA RMS Correlation Bias
(%) (%) (%) (peaks) (peaks) (peaks)

0 43 100 61 23.54 0.71 -4.47
1 7 97 21 29.22 0.65 -14.19
2 13 85 39 24.86 0.73 -8.26
3 32 98 59 23.54 0.72 -5.27
4 52 100 69 22.73 0.73 -2.33
5 24 99 48 24.47 0.71 -7.25
6 45 100 61 24.03 0.69 -3.36
7 48 100 64 23.67 0.70 -3.18
8 35 100 52 25.03 0.69 -6.29
9 36 99 56 24.02 0.71 -5.50
10 21 99 36 26.40 0.67 -9.65
11 43 99 62 23.02 0.73 -4.38
12 29 99 45 24.59 0.70 -6.75
13 41 100 55 23.85 0.71 -4.99
14 57 100 76 22.26 0.74 0.01
15 47 100 64 25.11 0.67 5.39
16 62 100 75 22.83 0.72 -0.39
17 33 99 51 24.12 0.71 -6.60
18 38 98 52 24.48 0.68 -2.70
19 46 100 58 23.72 0.71 -4.67
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certainty is consistent with the uncertainty roughly shown
in Figure 2.

In Figure 4, the mean of the daily evolution for ozone
over the whole domain and all days is shown for all sim-
ulations. This daily evolution is also shown independently
for the ensembles generated with changes (1) in the physical
parameterizations, (2) in the input data and (3) in the nu-
merical approximations. From these figures, the prominent
changes are the turbulence closure and the chemical mecha-
nism. The profile is less sensitive to the input data, but this
is an average profile that can hide spatial or temporal vari-
abilities (which are analyzed below). The spread (estimated
with the relative standard deviation) is 4% on the peak and
6% for the whole profile. It reaches 9% at 0400 UT, which
is high since the impacts are not cumulative (see Section 7
for the cumulative effects).

One question about the nature of the variability intro-
duced by each change lies in the bias and its nocturnal and
diurnal evolutions. The standard deviation of the difference
with the reference simulation does not provide this informa-
tion since it may be low even with systematic biases in the
night or in the daytime. In the same way, systematic biases
may appear in given regions. In Table 6, the amount of
negative biases (concentrations less that the reference con-
centrations) are reported for:

1. the daily biases: the biases (mean over all grid cells of
the difference) computed for each day;

2. the daytime biases: the biases computed for each day
but only during the daytime (from 0400 UT to 1800 UT);

3. the nocturnal biases: the biases computed for each day
but only during the night;

4. the spatial biases: the biases (mean over all time steps
of the difference) computed for each grid cell.

It first indicates that the simulations with the largest bi-
ases are characterized by a clear trend: they are either above
or below the reference simulation at nearly all hours. It
also demonstrates that the biases at night and during the
daytime can strongly differ. This is true for simulation 8
(emission vertical distribution) due to the fact that the pol-
lutants emitted at night and in the second layer barely in-
fluence the ground concentrations. During the daytime, the
emissions are mixed in the boundary layer which decreases
the impact of the vertical location of the pollutants at re-
lease time. In simulation 4 (Wesely’s parameterization), the
nocturnal concentrations are often below the reference con-
centrations but only slightly below since the total amount of
negative biases is very close to the amount associated with
the daytime. The last simulation that shows such differences
is simulation 13 (100 s as a time step) for unclear reasons.
The active chemical reactions are not the same at night as
in the daytime, which may explain why the numerical time
step has a different impact.

Another point lies in the spatial and temporal differences.
The day-by-day bias may hide spatial inhomogeneities of the
bias. Simulations 16 and 17 (0.1◦ and 1.0◦ horizontal res-
olution respectively) are good examples. Loosely speaking,
choices in the simulation setup may impact the spatial dis-
tributions independently from their temporal effects.

4.3. Comparisons with Observations

The results of the simulations are compared to ozone
peaks which are usually a major concern of forecasting sys-
tems. The comparisons are performed with 242 stations over
Europe. Each selected station has a reasonable amount of
measurements (at least 30 peak measurements during the
126 days of the comparison period). There are 27,000 peak
observations and 620,000 hourly observations.

Following US EPA [1991], we first evaluate the results
with the normalized bias (MNBE), the mean normalized
gross error (MNGE) and the daily unpaired (in time, paired

in space) peak prediction (UPA). A cutoff level of 80µg ·m−3

is used and the errors are evaluated as “computed minus ob-
served” (a positive bias represents overestimation). A simu-
lation is assessed through the amount of stations that match
the most-restrictive EPA suggested performances: ±5% for
the normalized bias, ±30% for the normalized gross error
and ±15% for the unpaired peak prediction accuracy. The
root mean square (RMS), the correlation and the overall
bias of all daily ozone peaks are also reported in Table 7.

The mean normalized gross error is within the EPA lim-
its at almost all stations for all simulations except for the
simulation 2 with the Louis closure: for this simulation, the
underestimation is indeed too high (−8.26µg · m−3 on the
peaks). Simulations 1 and 10 also have a strong bias on the
daily peaks, but they do not underestimate all concentra-
tions above 80µg · m−3 as much as simulation 2. In this
case, the MNGE does not distinguish the simulations, even
if other indicators give a wide spread. One might consider
that the uncertainty due to the parameterizations is below
the error that the EPA limit on the MNGE can detect. This

Table 8. The 16 simulations set up with the four alternative
parameterizations.

# Emissions Deposition Turbulence Chemistry

a Ground Zhang Troen & Mahrt RACM
b Ground Zhang Troen & Mahrt RADM 2
c Ground Zhang Louis RACM
d Ground Zhang Louis RADM 2
e Ground Wesely Troen & Mahrt RACM
f Ground Wesely Troen & Mahrt RADM 2
g Ground Wesely Louis RACM
h Ground Wesely Louis RADM 2
i Two layers Zhang Troen & Mahrt RACM
j Two layers Zhang Troen & Mahrt RADM 2
k Two layers Zhang Louis RACM
l Two layers Zhang Louis RADM 2
m Two layers Wesely Troen & Mahrt RACM
n Two layers Wesely Troen & Mahrt RADM 2
o Two layers Wesely Louis RACM
p Two layers Wesely Louis RADM 2

Table 9. Means and standard deviations of the ozone con-
centrations (µg · m

−3) and their daily peaks for the sixteen
simulations. As for the whole concentrations, the relative stan-
dard deviation of the means is 15%, and the relative standard
deviation of the standard deviations is 20%. As for the daily
maxima, the relative standard deviations are 8% and 28% re-
spectively.

All concentrations Daily maxima
# Mean Standard # Mean Standard

deviation deviation

g 69.26 35.71 g 97.58 35.03
c 68.94 34.23 c 95.71 33.50
o 70.14 31.94 o 95.32 31.39
k 69.73 30.52 k 93.29 30.17
h 56.17 27.08 e 102.39 23.38
e 85.18 26.19 a 100.92 22.62
d 56.26 26.07 h 80.91 21.75
a 84.92 25.11 m 99.36 20.70
p 58.47 24.49 d 79.80 20.67
l 58.41 23.46 i 97.90 20.10
m 84.49 22.84 p 80.67 19.82
f 77.27 21.96 l 79.29 18.96
i 84.23 21.81 f 92.72 17.12
b 77.11 21.14 b 91.49 16.75
n 77.51 19.30 n 90.85 15.73
j 77.34 18.50 j 89.61 15.50
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is rather speculative since only single changes were intro-
duced in the simulations and, in the next subsection, it is
shown that the amount of stations below the MNGE limit
can increase if several changes are introduced at the same
time.

Meanwhile, there is a high uncertainty in the concentra-
tions above 80µg · m−3 according to the normalized bias
statistics. The amount of stations whose bias is acceptable
(±5%) ranges from 7% to 62%. In the opposite way as for
the MNGE, the MNBE test may be questionable precisely
because of its variability. A conclusion may be that this test
is too severe to be relevant: a good percentage of acceptable
stations would come mainly from a favorable configuration
of the model. The uncertainty in the model is too high to
grant a reasonable validity for this test.

The UPA statistics are also well spread but they show
a lower variability: their relative standard deviation is 9%
against 37% for the MNBE. In comparison, the RMS and
the correlations vary slightly with 6% and 3% respectively of
relative standard deviation among the simulations. There-
fore the correlations do not provide substantial information.
Moreover the correlation between RMS and 1 - UPA reaches
90%, which means that it is essentially useless to compute
both.

Finally there is a rather high uncertainty in the peak lev-
els: almost 20µg · m−3 of bias between simulations 1 and
15, with mean observed-peaks at 103µg ·m−3. Nevertheless
the standard deviation of the biases is only 4µg ·m−3. This
means that an overall bias is not detailed enough to show
the uncertainty.

Even if these results can only barely be generalized, defin-
ing indicators adequately related to the uncertainty in the
models is not an easy task. They are supposed to distinguish
simulations and, at the same time, to be robust enough to
changes (within the uncertainty range) in the models. None
of the previous indicators seem to be balanced enough for
this purpose.

4.4. Combined Changes

In this section, we try to estimate the impact of com-
bined changes: several parameterizations are changed at the
same time. All combinations of the parameterizations and
the numerical choices introduced in Table 1 cannot be ap-
plied because of the computational costs (there would be
184,320 simulations). Hence only four alternatives are kept:
the Louis closure, the RADM 2 mechanism, the deposition
velocities as computed in Wesely [1989] and the vertically
distributed emissions. The first two parameterizations are
included due to their strong impact, the third one due its
improvements in the results as compared to the observations
and the fourth one because of its low variability. Refer to
Table 8 for the list of the simulations.

Table 9 shows the spread on ozone peaks for the new set
of simulations. It should be compared to Tables 2 and 4.
The spread is clearly higher in the new set of simulations.
As a consequence, the whole uncertainty due to the param-
eterizations cannot be easily assessed on the basis of single
changes in the parameterizations. The results from the pre-
vious sections cannot claim more than an estimate of a lower
bound on the uncertainty.

The same is true about the error statistics. Even the
MNGE limitation (±30%) is not satisfied by more than 90%
of the stations for 6 simulations of the 16. Five simulations
have a root mean square above 30µg · m−3 whereas none
of the previous twenty simulations reaches such a RMS (see
Table 7). It is obviously due to the combination of changes
that individually contribute to decrease the concentrations:
the underestimation is then worsened.

The “cumulative underestimations” can be seen in Fig-
ure 6 (to be compared to Figure 4). For instance, the sim-
ulation that combines the Louis closure and the chemical
mechanism RADM 2 shows low concentrations. The non-
linearity even increases this effect. In Figure 7 we compare
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Figure 6. Ozone daily profile for the sixteen simulations.
The dots represent the reference simulation (#a), the di-
amonds represent simulation b (RADM 2), the squares
represent simulation c (Louis closure) and the triangles
represent simulation d that combines the Louis closure
and RADM 2.
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Louis and RADM 2
Louis + RADM 2 - reference
Reference

Figure 7. Ozone daily profile of the reference simulation
a, simulation d (Louis closure and RADM 2) and the lin-
ear combination “#c + #b - #a” that adds linearly the
effects of simulations b (RADM 2) and c (Louis closure).
The non-linearity increases the impact of the parameter-
izations and the concentrations of simulation d are closer
to the reference concentrations than the concentrations
of the linear combination. It is especially true for the
peak.

the simulation d (Louis closure and RADM 2) and the lin-
ear combination “#c + #b - #a”. Both should be equal
if the dependences were linear. The concentrations of the
simulation d are even lower than the concentrations of the
linear combination. This means that the uncertainty is not
additive.

The mean spread (relative standard deviation of the
ensemble) of the daily-profile concentrations reaches 16%
(against 6% with single changes). The highest spread is
reached at 0400 UT with 23%. The spread on the peak is
9%. Notice that this spread is a measure of the uncertainty.
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Another measure is the relative standard deviation of
all concentrations, not of the mean profile. The rela-
tive standard deviation is computed for concentrations in
[40µg · m−3, 130µg · m−3] to include only the main concen-
trations (refer to the relative frequency distribution shown
in Figure 5). Figure 8 shows the relative standard deviation
versus ozone concentrations. The average of the relative
standard deviation on this interval is 17%. The lowest con-
centrations have the largest uncertainty. It means that the
processes at night are sensitive to the available parameteri-
zations. The turbulence closure plays an important role at
night when the values of the vertical diffusion coefficients are
hard to estimate in stable conditions and at the top of the
first layer. As for the daily peaks, the relative standard de-
viation, computed over the whole domain and with all days,
reaches 11%. It is difficult to determine the reason why the
peaks have a low uncertainty as compared to the other con-
centrations (Figure 8): it may be due to less uncertainty in
all parameterizations, or the peaks may be sensitive only to
a few leading processes. For instance, the turbulence may
be less determinant in well mixed conditions whereas the
photochemical activity is strong at the same time.

The ensemble is not equally spread everywhere in the do-
main as shown in Figure 9. The uncertainty measured by the
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Figure 8. Relative standard deviation of the ensemble
versus ozone concentrations. The average standard devi-
ation is 17%.

Figure 9. Relative standard deviation of the ensemble
for concentrations in [40µg ·m−3, 130µg ·m−3]. The aver-
age standard deviation is 17%. The uncertainty is notably
high along the coasts.

standard deviation (for concentrations in [40µg ·m−3, 130µg ·
m−3]) is high around the coasts and it tends to be high in
polluted regions (Southern regions and, due to the emissions,
in Great Britain and Poland). In Northern Italy, the Alps
are also associated with a high uncertainty. The uncertainty
on the peaks has the same spatial distribution. The turbu-
lence closure may notably explain these uncertainties, and
the chemical mechanism has probably a strong impact close
to the emission locations. However a more detailed study
of each process is necessary to properly analyze the spatial
inhomogeneities due to each process.

5. Conclusion

It has been shown that a chemistry-transport model is
sensitive to its physical parameterizations, to the associated
input data and to the numerical approximations. The tur-
bulent closure and the chemical mechanism introduce the
highest uncertainty. The overall uncertainty, measured with
the relative standard deviation of an ensemble of sixteen
simulations, is estimated at 17% for the common concentra-
tion levels and at 11% for the daily peaks. It has been
shown that this uncertainty was notably high along the
coasts. The uncertainty is too high to let any configuration
of the chemistry-transport model fully satisfy the common
requirements in comparisons with observations. This low
robustness suggests that ensemble approaches are necessary
in most applications.

A remaining question is whether these conclusions are
limited to the Polyphemus system, even if this system in-
cludes commonly used parameterizations. Moreover, this
work should be extended to aerosol modeling for which
many physical parameterizations and numerical algorithms
are also available (hybrid models, nucleation laws, etc.). An-
other extension deals with the uncertainty due to the input
fields to the model such as the meteorological fields or the
emissions.

In a next step, one may want to take advantage of the en-
semble to provide improved forecasts. The point is to find
(actually to forecast) the best combination of the models, as
an improvement of the ensemble-mean or ensemble-median
approaches.
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Notes

1. U.S. Geological survey.

2. Global Land Cover Facility.
3. Co-operative Programme for Monitoring and Evaluation of the

Long-range Transmission of Air Pollutants in Europe.
4. The relative standard deviation is the standard deviation di-

vided by the mean.

References

Boutahar, J., S. Lacour, V. Mallet, D. Quélo, Y. Roustan, and
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Statistical measures

Notations: Let y be the vector of model outputs and
let o be the vector of the corresponding observations. These
vectors both have n components. Their means are ȳ and ō.

Relative standard deviation:
√

1

n

∑n

i=1
(yi − ȳ)2

ȳ
(A1)

Bias:

Bias =
1

n

n
∑

i=1

(yi − oi) (A2)

Root mean square error (RMS):

RMS =

√

√

√

√

1

n

n
∑

i=1

(yi − oi)
2 (A3)

Correlation:

correlation =

∑n

i=1
(yi − ȳ) (oi − ō)

√

∑n

i=1
(yi − ȳ)2

∑n

i=1
(oi − ō)2

(A4)

Mean normalized bias error (MNBE):

MNBE =
1

n

n
∑

i=1

yi − oi

oi

(A5)
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Mean normalized gross error (MNGE):

MNGE =
1

n

n
∑

i=1

|yi − oi|
oi

(A6)

Unpaired peak prediction accuracy (UPA): For one
day:

UPAday =
ymax − omax

omax
(A7)

The UPA is then averaged over all days.


