Chimie atmosphérique

Bruno Sportisse, sportiss@cerea.enpc.fr

CEREA, Joint Laboratory Ecole des Ponts/EDF R&D INRIA/ENPC CLIME project

2007

Historique

-350	Aristote : l'eau est un composé de l'air.
XV-XVII ^e	Une composante de l'air favorise le feu (L. de Vinci et
	J. Mayow : « <i>fire-air</i> »).
XVIII ^e	Cette composante est isolée. Elle est appelée oxygène
	par A. L. Lavoisier.
	Découverte du CO ₂ vers 1750 (J. Black) puis du N ₂ (D.
	Rutherford).
XIX ^e	Découverte de l'ozone (C. Schönbein, 1840).
	Identification du méthane dans l'air (J. B. Boussingault,
	1862).
fin XIX ^e	Identification de l'argon (Lord Rayleigh, W. Ramsay) puis
	d'autres gaz inertes.
XX ^e	Identification de H ₂ (1900-1920 : J. Dewar, G. Claude
	puis P. Schuftan).
	Identification de N ₂ O (1939, G. Adel).
	Détection de CO (1949, M. Migeotte), de HNO ₃ (1968,
	D. Murcray), etc.
	Présence de CFC dans l'atmosphère (1971, J. Love-
	lock).

TAB.: Quelques étapes de la compréhension de la composition chimique de l'air. Source : [?].

FIG.: Rendement quantique en fonction de la longueur d'onde pour la dissociation de NO₂.

Oxydation des COV

Espèce	oxydation par OH	oxydation par O ₃	oxydation par NO ₃
méthane	1837 j	-	-
éthane	48 j	-	2690 j
butane	4.8 j	-	391 j
éthène	1.4 j	6.7 j	107 j
propène	10.6 h	1.1 j	2.3 j
isoprène	2.8 h	20.2 h	45 min
β -pinène	3.5 h	17.2 h	12 min
limonène	1.6 h	1.3 h	3 min

TAB.: Temps de vie chimiques à 298 K pour quelques COV (*j* pour jour, *h* pour heure et *min* pour minute). On a pris pour valeurs indicatives des concentrations des oxydants : $[OH] = 10^6$ molecule cm⁻³, $[O_3] = 10^{12}$ molecule cm⁻³ (50 ppb) et $[NO_3] = 5.4 \times 10^8$ molecule cm⁻³ (20 ppt). Source : [?].

Temps de vie de l'ozone

Saison	20°N	40°N
été	5 jours	10 jours
hiver	15 jours	100 jours

TAB.: Estimation des temps de vie de l'ozone dans la basse troposphère (à une altitude de 5 kilomètres). En été et sur les tropiques, le temps de vie est plus faible du fait d'un plus grand rayonnement solaire disponible. Source : [?].

Complexité

FIG.: Évolution, en fonction du nombre d'atomes de carbone considéré, du nombre de COV et de réactions chimiques pris en compte dans un mécanisme chimique explicite. Source : [?].

Temps de vie des CFC

Espèce	Symbole	Temps de vie
Chlorofluorocarbures (CFC)		
CFC-11	CCl₃F	45
CFC-12	CCI_2F_2	100
CFC-13	CCIF ₃	640
CFC-113	CCl ₂ FCClF ₂	85
CFC-114	CF ₃ CCIF ₂	300
Hydrochlorofluorocarbures (HCFC)	-	
HCFC-21	CHCl ₂ F	2
HCHC-22	CHCIF ₂	11.9
HCFC-123	CF ₃ CHCl ₂	1.4
Hydrofluorocarbures (HFC)	-	
HFC-23	CHF ₃	260
HFC-32	$CH_2\tilde{F}_2$	5
HFC-41	CH ₃ F	2.6

TAB.: Temps de vie (en années) de quelques CFC, HCFC et HFC. Source : [?].

Trou d'ozone

FIG.: Évolution de la colonne d'ozone mesurée sur la station de Halley Bay (en Dobson), pour le mois d'octobre sur la période 1957-1983. Source : [?] (article originel de Farman *et al*).

Trou d'ozone

FIG.: Évolution de 1979 à 1994 du minimum de la colonne d'ozone (en Dobson) et de l'extension horizontale du « trou d'ozone » (en 10⁶ km²). Région antarctique (80°-90°). Mois de septembre, octobre et novembre. Source : données NASA, Goddard Space Flight Center.

Trou d'ozone

FIG.: Fractions de mélange typiques de l'ozone et de CIO au pôle Sud : à gauche en août, à droite en septembre.

Émissions

FIG.: Évolution théorique des émissions de CO et de CO_2 dans les gaz d'échappement pour un carburant $CH_{1.75}$ (similaire à une essence classique). Source : [?].

Émissions

Emissions CO, COV oxydes d'azote Richesse 0.9 1

FIG.: Évolution typique des émissions de NO, de CO et d'hydrocarbures imbrûlés (sous forme de COV) en fonction de la richesse du mélange. Source : [?].

Régimes chimique de l'ozone troposphérique

FIG.: Régimes chimiques pour l'ozone. *Isopleths* d'ozone (isovaleurs, typiquement de concentration maximale horaire) en fonction des concentrations de NO_x et de COV. On parle généralement de modèle EKMA (pour *empirical kinetic modeling approach*). Le ratio [COV]/(NO_x] \simeq 8 est indicatif de la situation américaine.

Évaluation des stratégies de réduction de l'ozone

FIG.: Réduction (en %) des émissions de COV à appliquer en fonction du pic d'ozone pour atteindre la cible NAAQS (*National Ambient Air Quality Standard*) de 160 μ g m⁻³ (recommandation de l'US EPA, 1971). Source : [?].

« To substantially reduce O_3 concentrations [...] the control of NO_x emissions will probably be necessary in addition to, or instead of, the control of VOCs. » (NRC, 1991).

B. Sportisse

Régimes en Europe

FIG.: Différence moyenne (en μ g m⁻³), pour l'été 2001, des impacts sur la concentration d'ozone d'une réduction de 35 % des émissions de NO_x et d'une réduction similaire pour les COV. Une valeur positive (respectivement négative) indique un régime NO_x-limité (respectivement COV-limité). Simulation avec le système POLYPHEMUS. Crédit : Yelva Roustan, CEREA.

Biocarburants

Espèce	E85 versus Essence	Signe
COV (total)	[+34, +95] %	+
Méthane	[+43, +340] %	+
Formaldéhyde (HCHO)	[+7, +228] %	+
Acétaldéhyde (CH ₃ CHO)	[+1250, +4340] %	+
Monoxyde de carbone (CO)	[-38, +320] %	?
NO _x	[-59, +17] %	-
PM en masse	+ 31 %	+
PM en nombre	+100 %	+

TAB.: Évolution des émissions d'un véhicule lors du passage d'un carburant essence classique à un biocarburant type E85 (éthanol). *PM* désigne les particules (*particulate matter*). Source : [?].

Pollution photochimique régionale

FIG.: Développement des épisodes de pollution photochimique sur la région Île-de-France : transport continental, production d'ozone et titration.

Évolution des émissions de NO

FIG.: Évolution sur la période 1994-2006 des concentrations mesurées de NO sur les stations « trafic » de la région parisienne. Source : Airparif (réseau de mesure de la qualité de l'air sur l'Île-de-France).

Île-de-France

FIG.: Corrélation entre les pics de concentrations d'ozone (pris à 15 heures) au cours de l'année 2005 pour une station parisienne (Châtelet-Les Halles) et : à gauche, une station rurale au nord-est de Paris (Montgé-en-Goële), à droite, une station rurale au sud-ouest de Paris (Rambouillet). Source : Airparif.

FIG.: Évolution sur la période 1992-2005 des concentrations mesurées d'ozone et de monoxyde d'azote sur la région parisienne. Les concentrations sont moyennées sur les parcs de stations de mesures représentatives des conditions « rurales » et urbaines (parcs constants sur la période). Le pic d'ozone pour l'année 2003 est lié à la vague de chaleur de l'été 2003. Source : Airparif.