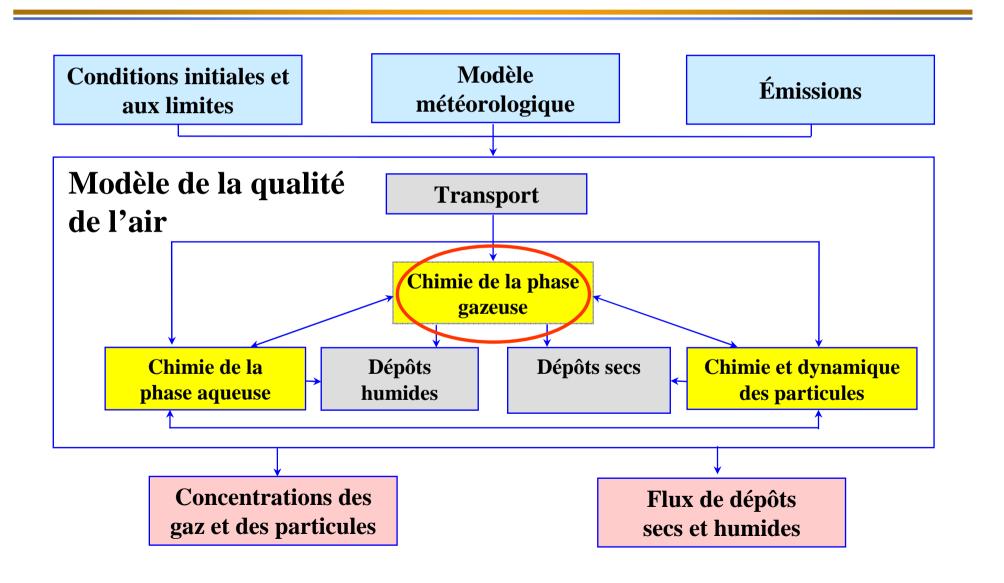


Cours VET « Environnement atmosphérique et qualité de l'air »


Pollution photochimique Chimie de la phase gazeuse

> Christian Seigneur Cerea

Représentation schématique d'un modèle de pollution atmosphérique

Représentation schématique d'un modèle de pollution atmosphérique

Plan

- Chimie de la phase gazeuse : pollution photochimique
 - Généralités sur les espèces chimiques dans l'atmosphère
 - Pouvoir oxydant de l'atmosphère et temps de vie des espèces
 - Solution des équations de cinétique chimique
 - Smog photochimique : Chimie troposphérique de l'ozone
 - Les mécanismes chimiques en modélisation
 - Régimes chimiques de l'ozone et stratégies de politiques publiques

Composition chimique de l'atmosphère

Composition chimique de l'air sec en 2000

Espèce	Symbole	Fraction molaire
Azote	N ₂	780 000 ppmv
Oxygène	O_2	210 000 ppmv
Argon	Ar	9300 ppmv
Dioxyde de carbone	CO_2	365 ppmv
Ozone	O_3	1 ppbv-10 ppmv
Méthane	CH_4	1.8 ppmv
Protoxyde d'azote	N_2O	314 ppbv

1 ppmv = 10^{-6} atm; 1 ppbv = 10^{-9} atm

Différentes phases dans l'atmosphère

- Gaz
 - Principaux (O₂, N₂)
 - Traces (polluants)
- Eau liquide
 - Gouttes de nuage et de brouillard
 - Gouttes de pluie
- Eau solide
 - Glace
 - Neige
- Particules
 - Solides
 - Liquides

Différentes phases dans l'atmosphère

« Corps »	Taille	
Molécule gazeuse	0.1 nm	
Particule ultrafine	1 –100 nm	
Particule fine	$0.1 - 2.5 \ \mu m$	
Particule grossière	$2.5 - 100 \ \mu m$	
Goutte de nuage	10-50 μm	
Goutte de pluie	0.1 mm	

Groupes de polluants

- $NO_x : NO \text{ et } NO_2$
- NO_y: tous les oxydes d'azotes (sauf N₂O), c'est-à-dire NO, NO₂, NO₃, HNO₃, N₂O₅, nitrates organiques
- $NO_z : NO_y NO_x$
- $SO_x : SO_2$, SO_3 et H_2SO_4
- COV : les composés organiques volatils, c'est-à-dire des alcanes, alcènes, aldéhydes, alcools, composés aromatiques, etc.
- HC: hydrocarbures (composés organiques avec C et H)
- NMHC : hydrocarbures non-méthaniques

Polluants primaires et secondaires

- Polluants primaires : ils sont émis directement dans l'atmosphère
 - NO et NO₂ (NO_x), SO₂, COV (par exemple, HCHO, C₆H₆), etc.
- Polluants secondaires : ils sont formés par des réactions chimiques dans l'atmosphère
 - O₃, NO₂, HCHO, H₂SO₄, HNO₃, etc.

Importance de l'ozone atmosphérique

- Propriété radiative dans la haute atmosphère (stratosphère) : problème de la destruction de l'ozone stratosphérique
- Polluant dans les basses couches de l'atmosphère (troposphère) : effets néfastes sur la santé (irritant pulmonaire) et sur la végétation
 - C'est le principal composant du « smog photochimique »
- L'ozone est un précurseur de OH
 - OH est le principal oxydant menant à la formation du « smog photochimique »

Chimie diurne et chimie nocturne

- Chimie diurne:
 - Photolyse => atomes et radicaux => grande réactivité chimique de l'atmosphère
- Chimie nocturne
 - Pas de photolyse => peu de radicaux => faible réactivité de l'atmosphère

Pouvoir oxydant de l'atmosphère

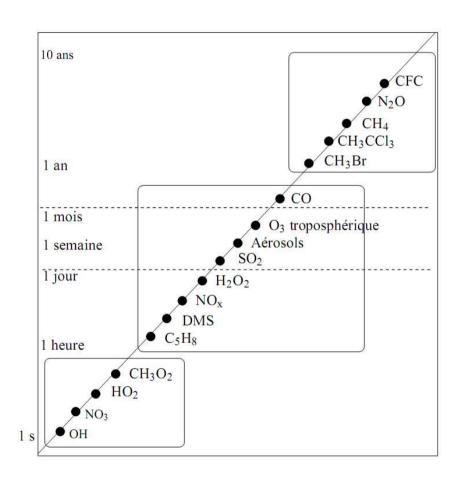
- Le « nettoyage » de l'atmosphère se fait principalement à travers l'oxydation des espèces organiques et minérales
 - Composés organiques => CO₂ et H₂O
 - Composés minéraux => acides, nitrates, sulfates...
- Les trois oxydants principaux sont : OH, O₃ et NO₃
 - OH principalement le jour (produit par la photolyse)
 - O₃ le jour et la nuit
 - NO₃ principalement la nuit (détruit par la photolyse)

Temps de vie chimique d'une espèce

Indicateur de la stabilité chimique de l'espèce

Exemple : Réaction d'oxydation $X_i + OH \xrightarrow{k_{OH,i}} \dots$, avec $k_{OH,i}(T)$ la constante cinétique d'oxydation par OH.

• Terme de consommation $-k_{\mathrm{OH},i}[\mathrm{OH}][\mathrm{X_i}]$, d'où un temps caractéristique


$$au_i \simeq rac{1}{k_{\mathrm{OH},i}[\mathrm{OH}]}$$
.

- Plus X_i est réactive, plus son temps de vie τ_i est faible
- Plus la température augmente, plus X_i est réactive, plus τ_i est faible
- Plus la capacité oxidante de l'atmosphère augmente, plus X_i est réactive, plus τ_i est faible

Ne pas confondre temps de vie et temps de demi-réaction $au_{1/2}$

$$\tau_{1/2} = \tau_i \ln 2 = 0.7 \tau_i$$

Temps de vie des espèces atmosphériques

Certains polluants ont un temps de vie de plusieurs jours et peuvent donc être transportés sur de longues distances par les vents et contribuent à une pollution continentale ou régionale de fond.

La pollution urbaine résulte non seulement d'émissions de polluants de sources locales mais aussi du transport de polluants provenant de sources lointaintes

Temps de vie de quelques COV dans la basse troposphère

	Lifetime	ne Due to Reaction with		
	OH^a	O ₃ ^b	NO ₃ ^c	$h\nu$
<i>n</i> -Butane	5.7 days		2.8 yr	
Propene	6.6 h	1.6 days	4.9 days	
Benzene	12 days	· -	F	
Toluene	2.4 days	x	1.9 yr	
m-Xylene	7.4 h	· · · · · · · · · · · · · · · · · · ·	200 days	,
Formaldehyde	1.5 days		80 days	4 h
Acetaldeyde	11 h	, ,	17 days	5 days
Acetone	66 days			38 days
Isoprene	1.7 h	1.3 days	0.8 h	
α -Pinene	3.4 h	4.6 h	2.0 h	
β -Pinene	2.3 h	1.1 days	4.9 h	
Camphene	3.5 h	18 days	1.5 days	
2-Carene	2.3 h	1.7 h	36 min	
3-Carene	2.1 h	10 h	1.1 h	
d-Limonene	1.1 h	1.9 h	53 min	
Terpinolene	49 min	17 min	7 min	

^a12 hour daytime OH concentration of 1.5×10^6 molecules cm⁻³ (0.06 ppt).

^b24 hour average O_3 concentration of 7×10^{11} molecules cm⁻³ (30 ppb).

^c12 hour average NO₃ concentration of 2.4×10^7 molecules cm⁻³ (1 ppt).

Solution numérique des équations de cinétique chimique

$$dc/dt = -kc$$

Solution numérique avec différence finie :

$$\Delta c = -k c \Delta t$$

$$c_{n+1} = c_n - k c_n (t_{n+1} - t_n)$$

La précision augmente quand Δt diminue

Solution numérique des équations de cinétique chimique

$$dc/dt = -kc$$

Solution numérique avec différence finie (méthode d'Euler) :

$$\Delta c = -k c \Delta t$$

$$c_{n+1} = c_n - k c_n (t_{n+1} - t_n)$$

La pente est la source de l'erreur numérique car elle est calculée avec la valeur initiale (à t_n) de la concentration ; l'erreur pour le pas de temps est alors proportionnelle à Δt^2 et d'ordre Δt pour l'ensemble de l'intégration (erreur accumulée).

Solution numérique des équations de cinétique chimique

Des méthodes ont été développées pour améliorer la précision de la solution numérique en améliorant le calcul de la pente. La méthode de Runge-Kutta permet un calcul qui donne une erreur pour un pas de temps qui est proportionnelle à Δt^5 et d'ordre Δt^4 pour l'ensemble de l'intégration (erreur accumulée)

Cependant, ces méthodes appliquées à la cinétique chimique vont se caler sur le pas de temps nécessaire pour l'espèce la plus réactive, c'est-à-dire celle qui a le temps de vie le plus court. Pour la pollution atmosphérique les échelles de temps de vie couvrent plusieurs ordres de grandeurs.

Solution numérique des équations de cinétique chimique

Les équations de la cinétique chimique atmosphérique constituent un système d'équations différentielles ordinaires « raides » (« stiff »)

Exemple avec deux réactions :

CH₄ + OH
$$\rightarrow$$
 CH₃ + H₂O $k = 6.2 \times 10^{-15} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1} \text{ à 298 K.}$
Pour [OH] = 5.0 x 10⁵ molec. cm⁻³ $\tau_{\text{CH}_4} = \frac{1}{k \left[\text{OH}^{\cdot} \right]} = 10.2 \text{ ans}$

$$O(^{1}D) + M \rightarrow O + M$$
 $k = 2.6 \times 10^{-11} \text{ cm}^{3} \text{ molec}^{-1} \text{ s}^{-1} \text{ à } 298 \text{ K}$

[M] = [N2] = 1.9 × 10¹⁹ molec. cm⁻³
$$\tau_{O}(^{1}D) = \frac{1}{k[M]} = 2 \times 10^{-9} \text{ s}$$

$$\frac{\tau_{CH_4}}{\tau_{O(^1D)}} = \frac{10.2 \times 365 \times 24 \times 3600}{2 \times 10^{-9}} = 1.61 \times 10^{17}$$
 Il y a 17 ordres de grandeurs entre les échelles de temps de ces deux espèces

échelles de temps de ces deux espèces chimiques

Solution numérique des équations de cinétique chimique : Option 1

Un algorithme numérique devrait avoir les caractéristiques suivantes :

- stabilité (l'erreur ne croît pas avec le temps)
- conservation de la masse
- solution positive (les concentrations ne peuvent pas devenir négatives)
- précision
- efficacité (temps de calcul raisonnable)

L'algorithme de C.W. Gear (1971) fournit une solution précise en utilisant des informations sur les concentrations précédentes pour mieux définir les pentes des cinétiques pour des espèces ayant des échelles de temps très différentes. Des variantes ont été développées pour améliorer son efficacité.

Solution numérique des équations de cinétique chimique : Option 2

Approximation de l'état stationnaire pour les espèces qui ont une durée de vie très courte (atomes, radicaux)

$$d[OH]/dt = 0 \Rightarrow Production (OH) = Destruction (OH)$$

Comme les atomes et radicaux peuvent dépendre les uns des autres, il est possible qu'il n'y ait pas de solution analytique au système d'équations algébriques, auquel cas il faut itérer pour trouver la solution par convergence

Cette approximation permet d'utiliser ensuite sur les autres espèces qui ont un temps de vie long un algorithme numérique « classique » de type Runge-Kutta

Découverte du « smog photochimique »

 Haagen-Schmidt, professeur de biochimie au California Institute of Technology (Caltech), proposa et démontra que la pollution atmosphérique à Los Angeles était due aux réactions d'oxydes d'azote et de composés organiques volatils en présence de rayonnement solaire en 1952.

Haagen-Smit, A.J. Chemistry and Physiology of Los Angeles Smog; *Ind. Eng. Chem.* 44, 1342-1346, 1952.

Arie Haagen-Schmidt (1900-1977)

Les oxydants du smog photochimique

• Radical hydroxyle : OH

$$O_3 + h\nu$$
 => $O(^1D) + O_2$
 $O(^1D) + H_2O$ => $2 OH$
 $H_2O_2 + h\nu$ => $2 OH$
 $HNO_2 + h\nu$ => $NO + OH$

• Ozone : O_3

$$NO_2 + h\nu$$
 => $NO + O$
 $O + O_2$ => O_3

• Radical nitrate : NO₃

$$NO_2 + O_3 = NO_3 + O_2$$

L'état photostationnaire

Formation d'ozone

$$NO_2 + hv => NO + O$$

 $O + O_2 = O_3$

Destruction d'ozone

$$NO + O_3 = NO_2 + O_2$$

Le bilan chimique est nul.

L'état photostationnaire

$$NO_2 + hv$$
 => $NO + O$ k_1
 $O + O_2$ => O_3 k_2
 $NO + O_3$ => $NO_2 + O_2$ k_3

À l'équilibre (état photostationnaire), toutes les vitesses de réactions sont égales:

$$k_1 [NO_2] = k_2 [O] [O_3] = k_3 [NO] [O_3]$$

 k_3

On en déduit :
$$[O_3] = (k_1 [NO_2]) / (k_3 [NO])$$

La concentration d'ozone formée par ce cycle de réactions est faible.

Chaîne d'oxydation du CO

Réactions	de	propagation
-----------	----	-------------

$$\begin{array}{lll} \text{CO} + \text{OH} & => & \text{CO}_2 + \text{H} \\ \text{H} + \text{O}_2 + \text{M} & => & \text{HO}_2 + \text{M} \\ \text{HO}_2 + \text{NO} & => & \text{OH} + \text{NO}_2 \end{array}$$

$$CO + NO + O_2 \implies CO_2 + NO_2$$

Formation d'ozone

$$NO_2 + hv$$
 => $NO + O$
 $O + O_2$ => O_3

Bilan

$$\begin{array}{ccc} & & & & & \\ & & & & \\ \text{CO} & & = > & \text{CO}_2 + \text{O}_3 \end{array}$$

Donc, l'oxydation d'une molécule de monoxyde de carbone mène à une molécule d'ozone supplémentaire

Formation d'ozone Perturbation du cycle photostationnaire

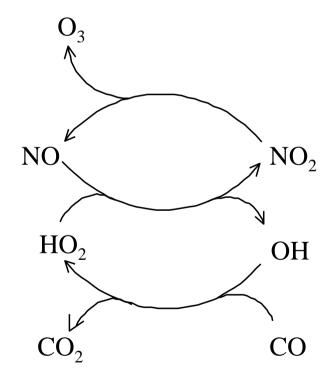
Formation d'ozone

$$NO_2 + hv$$
 => $NO + O$
 $O + O_2$ => O_3

Oxydation de NO en NO₂ avec destruction de O₃

$$O_3 + NO = O_2 + NO_2$$

Oxydation de NO en NO₂ sans destruction de O₃


$$HO_2 + NO => OH + NO_2$$

Bilan des réactions (1), (2) et (4) :

$$HO_2 + O_2 = OH + O_3$$

« Smog » photochimique

L'oxydation de CO perturbe le cycle photostationnaire en convertissant NO en NO₂ sans destruction d'O₃ et mène à la production d'ozone

L'oxydation des composés organiques volatils (COV) mène à la production d'ozone de la même façon

Les principaux COV

Les principales catégories de COV sont :

- Les alcanes : hydrocarbures (C et H) avec liaisons C-C simples
- Les alcènes : hydrocarbures (C et H) une ou plusieurs liaisons C=C doubles
- Les composés aromatiques : un noyeau phényl
- Les aldéhydes : un groupe carbonyl (-HC=O)
- Les cétones : un groupe oxo (C=O)
- Les alcools : C-OH
- Les éthers : C-O-C

Chemins d'oxydation des COV

Les chemins d'oxydation des COV sont :

- Photodissociation (pour les aldéhydes principalement)
- Réaction avec OH
- Réaction avec NO₃
- Réaction avec O₃ (pour les alcènes seulement)
- Réaction avec O(³P)

Chaîne d'oxydation du HCHO

$$\begin{array}{lll} \text{HCHO} + hv & \Rightarrow & \text{H} + \text{HCO} \\ \text{H} + \text{O}_2 & \Rightarrow & \text{HO}_2 \\ \text{HCO} + \text{O}_2 & \Rightarrow & \text{HO}_2 + \text{CO} \\ \hline \\ \text{HCHO} + hv & \Rightarrow & 2 \text{ HO}_2 + \text{CO} \\ \hline \\ \text{HCHO} + hv & \Rightarrow & \text{H}_2 + \text{CO} \\ \hline \\ \text{HCHO} + \text{OH} & \Rightarrow & \text{HCO} + \text{H}_2\text{O} \\ \\ \text{HCO} + \text{O}_2 & \Rightarrow & \text{HO}_2 + \text{CO} \\ \hline \end{array}$$

 $HCHO + OH => HO_2 + CO$

Chaîne d'oxydation du CH₃CHO

```
CH_3CHO + hv => CH_3 + HCO

CH_3 + O_2 => CH_3O_2
HCO + O_2 => HO_2 + CO
CH_3CHO + hv => CH_3O_2 + HO_2 + CO
CH_3CHO + hv => CH_4 + CO
CH_3CHO + OH => CH_3CO + H_2O
CH_3CO + O_2 => CH_3C(O)O_2
CH_3C(O)O_2 + NO_2 < => CH_3C(O)O_2NO_2 [peroxyacétyl nitrate ou PAN]
CH_3C(O)O_2 + NO \Rightarrow CH_3C(O)O + NO_2
CH_3C(O)O + O_2 \Rightarrow CH_3O_2 + CO_2
```

Chaîne d'oxydation du HCHO

En moyenne:

$$HCHO + (hv, OH) => HO_2 + CO$$

$$NO + HO_2 => NO_2 + OH$$

$$NO_2 + hv$$
 $\stackrel{(+O2)}{=>} NO + O_3$

$$HCHO + (hv, OH) => O_3 + CO$$

Donc, l'oxydation d'une molécule de formaldéhyde mène à deux molécules d'ozone supplémentaires

Chaîne d'oxydation du CH₄

$$\begin{array}{lll} \text{CH}_4 + \text{OH} & => \text{CH}_3 + \text{H}_2\text{O} \\ \\ \text{CH}_3 + \text{O}_2 & => \text{CH}_3\text{O}_2 \\ \\ \text{CH}_3\text{O}_2 + \text{NO} & => \text{CH}_3\text{O} + \text{NO}_2 \\ \\ \text{CH}_3\text{O} + \text{O}_2 & => \text{HCHO} + \text{HO}_2 \\ \\ \text{CH}_3\text{O}_2 + \text{NO}_2 & <=> \text{CH}_3\text{ONO}_3 \\ \\ \text{NO} + \text{HO}_2 & => \text{NO}_2 + \text{OH} \\ \\ 2 \text{ NO}_2 + hv & => 2 \text{ NO} + 2 \text{ O}_3 \\ \\ \hline \text{CH}_4 + \text{OH} & => 2 \text{ O}_3 + \text{HCHO} + \text{OH} \\ \\ \end{array}$$

Donc, l'oxydation d'une molécule de méthane mène à quatre molécules d'ozone supplémentaires

Oxydation des alcanes par OH

Réactions de propagation

$$RH + OH \longrightarrow R + H_2O,$$

$$R + O_2 + M \longrightarrow RO_2 + M,$$

$$RO_2 + NO \longrightarrow RO + NO_2,$$

$$RO + O_2 \longrightarrow R'CHO + HO_2,$$

$$HO_2 + NO \longrightarrow OH + NO_2.$$

 Bilan (en incluant les réactions pour NO₂ et O₂ du cycle de Chapman)

$$RH \xrightarrow{NO_x} R'CHO + 2O_3$$
.

Réactions de terminaison

$$\mathrm{HO_2} + \mathrm{HO_2} \longrightarrow \mathrm{H_2O_2} + \mathrm{O_2} \,,$$

$$NO_2 + OH + M \longrightarrow HNO_3 + M$$
.

Oxydation des alcènes par OH

Le chemin d'oxydation est différent de celui des alcanes car au lieu d'enlever un atome d'hydrogène, OH s'ajoute sur la liaison double.

Exemple de l'éthène :

$$C_2H_4 + OH$$
 => $HOCH_2CH_2$
 $HOCH_2CH_2 + O_2$ => $HOCH_2CH_2O_2$
 $HOCH_2CH_2O_2 + NO$ => $HOCH_2CH_2O + NO_2$
 $HOCH_2CH_2O$ => $2 HCHO + HO_2$
 $HOCH_2CH_2O$ => $1,4 HCHO + 0,3 HOCH_2CHO + OH + 2 NO_2$

Oxydation des alcanes par NO₃

Seule la première étape d'oxydation diffère de l'oxydation par OH:

$$RH + OH => R + H_2O$$

$$RH + NO_3 => R + HNO_3$$

Oxydation des alcènes par NO₃

Le chemin d'oxydation est différent de celui des alcanes car au lieu d'enlever un atome d'hydrogène, NO₃ s'ajoute sur la liaison double.

$$R_1R_2C=CR_3R_4 + NO_3 = > R_1R_2C(ONO_2)-CR_3R_4$$

$$R_1R_2C(ONO_2)-CR_3R_4+O_2 => R_1R_2C(ONO_2)-C(O_2)R_3R_4$$

$$R_1R_2C(ONO_2)-C(O_2)R_3R_4 + NO => R_1R_2C(ONO_2)-C(O)R_3R_4 + NO_2$$

$$R_1R_2C(ONO_2)-C(O)R_3R_4$$
 => nitrate organique, cétones

Oxydation des alcènes par O₃

L'oxydation par l'ozone est spécifique aux alcènes.

R₁R₂COO => produits stables + radicaux => production d'O₃

Oxydation des composés aromatiques par OH

L'oxydation des composés aromatiques est différent de celui des alcanes car l'enlèvement d'un atome d'hydrogène, par OH (pour former H_2O) est un chemin d'oxydation mineur (<10%). Le principal chemin d'oxydation est l'addition d'OH sur le noyau aromatique pour former un radical aromatique.

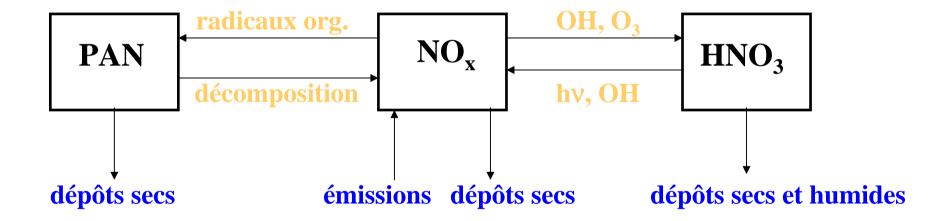
Les produits peuvent (1) conserver le noyau aromatique ou (2) résulter d'une cassure de ce noyau. Exemple du toluène :

(1) Toluène +
$$OH =$$
 crésol

Terminaison des cycles d'oxydation des COV

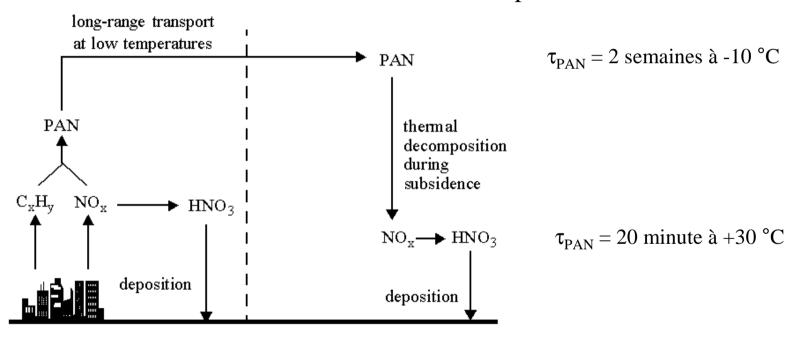
Le cycle est principalement catalysé par l'oxydation de NO en NO₂ et la photolyse de NO₂. Donc, la réaction de NO₂ avec un radical (OH ou radical organique) peut terminer un cycle d'oxydation

Formation d'une espèce puits :


$$NO_2 + OH => HNO_3$$

Formation d'une espèce réservoir

(PAN)


$$NO_2 + CH_3C(O)O_2 < => CH_3C(O)O_2NO_2$$

Oxydes d'azote dans l'atmosphère

Oxydes d'azote dans l'atmosphère

REMOTE ATMOSPHERE

NO_x SOURCE REGION

Les mécanismes de pollution photochimique

Un mécanisme de cinétique chimique doit permettre de simuler les réactions qui ont lieu entre les différentes espèces chimiques et prédire correctement l'évolution des concentrations des principaux polluants atmosphériques.

Le mécanisme de cinétique chimique doit être incorporé dans un modèle de la qualité de l'air qui simule aussi les phénomènes de transport atmosphérique (modèle de chimie transport ou CTM pour « chemical transport model ») ; il faut donc une certaine efficacité dans la solution numérique des équations de cinétique chimique

Les mécanismes de pollution photochimique

- Mécanisme de la chimie minérale (NO_x, SO₂, CO, O₃)
 - Environ 20 espèces et 50 réactions
- Mécanismes détaillés de la chimie organique (COV)
 - Plusieurs centaines d'espèces et plusieurs milliers de réactions
- Mécanismes réduits de la chimie organique
 - 30 à 100 espèces et environ cent à trois cents réactions

Groupement d'espèces chimiques

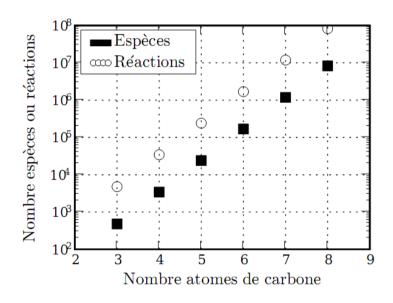


Fig.: Évolution, en fonction du nombre d'atomes de carbone considéré, du nombre de COV et de réactions chimiques pris en compte dans un mécanisme chimique explicite.

- Mécanismes chimiques réels comportent des milliers de réactions
- Dans les modèles, on ne peut pas prendre en compte tous les COV
- ⇒ espèces modèles représentent un ensemble d'espèces réelles avec des fonctions chimiques ou des réactivités similaires par rapport à OH

Groupement d'espèces chimiques

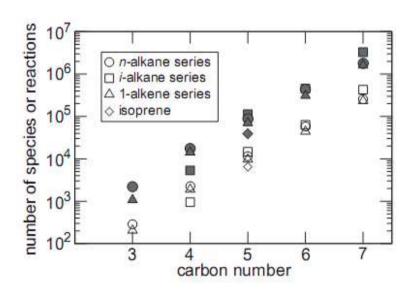


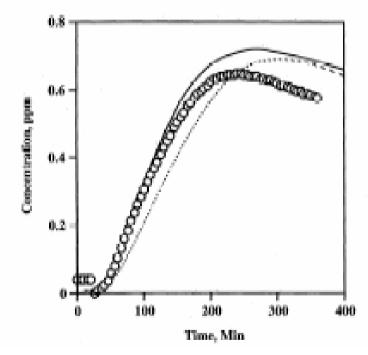
Fig. 4. Number of species (open symbols) and reactions (grey symbols) created by the generator for various series (using a 5% threshold for selecting reactions).

Les mécanismes de pollution photochimique

- Deux grandes catégories de mécanismes pour les COV
- Mécanisme avec espèces moléculaires suppléantes : SAPRC99, RACM, RACM2, MELCHIOR, CACM
- Mécanismes avec décomposition des espèces en groupes fonctionnels (« carbon-bond ») : CBIV, CB05

Les mécanismes avec espèces suppléantes

Exemple de RACM2:


- n-butane : HC3 (alcanes, alcools, esters et alcynes avec une constante cinétique avec OH < 3,4 x 10⁻¹² cm³ s⁻¹)
- 1-hexène : OLT (alcènes terminaux)
- propionaldéhyde : ALD (aldéhydes avec 3 carbones ou plus)

Les mécanismes de type « carbon-bond »

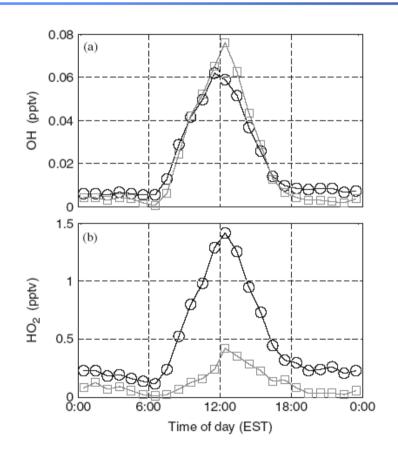
Exemple de CB05:

- n-butane : 4 PAR (atome de carbone avec des liaisons simples)
- 1-hexène : 4 PAR + 1 OLE (2 carbones avec une liaison double)
- propionaldéhyde : 1 PAR + 1 ALDX (acétaldéhyde)

Les mécanismes de pollution photochimique

Stockwell et al., *J. Geophys. Res.*, **102**, 25847-25879 (1997)

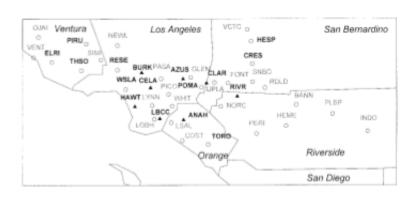
Évaluation de mécanismes de pollution photochimique avec des données expérimentales obtenues dans une chambre de simulation

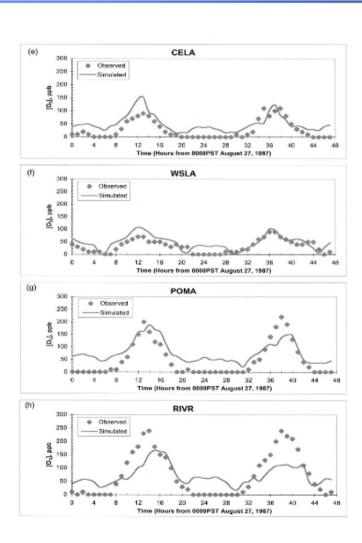

000 données expérimentales

— RACM simulation

---- RADM2 simulation

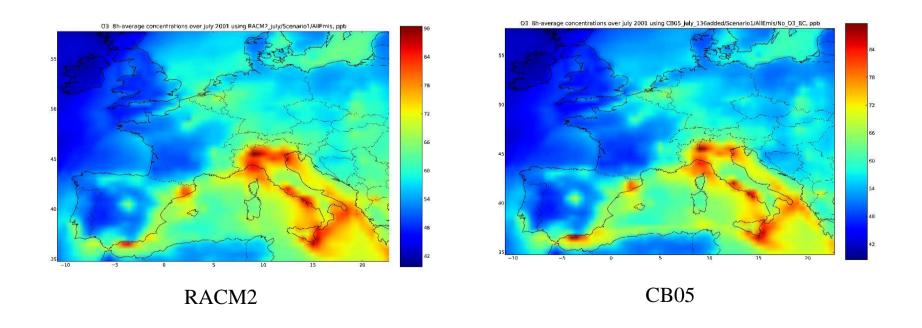
Chimie des radicaux oxydants OH and HO₂


- Les mesures des radicaux OH et HO₂ dans l'atmosphère montrent que les concentrations sont maximales vers midi quand le rayonnement photochimique est le plus intense
 - OH est assez bien simulé par le mécanisme chimique (RACM)
 - HO₂ est, par contre, sousestimé dans la simulation

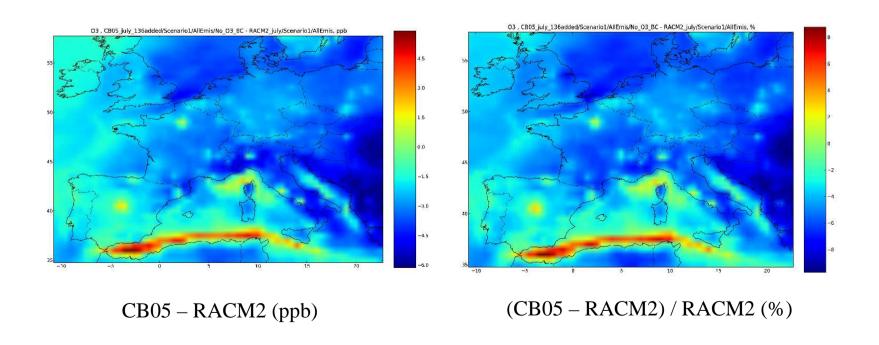

Ren et al., AE., 40, S252-S263 (2006)

Simulation de l'ozone en milieu urbain

- Simulation de l'ozone dans le bassin de Los Angeles
- Les critères de performance d'un modèle comparé aux mesures sont généralement :
 - biais $\leq \pm 15\%$
 - erreur ≤ 30%



Zhang et al., JGR., 109 (2004)


Les mécanismes de pollution photochimique

Comparaison de RACM2 et CB05 sur l'Europe : Simulation de l'ozone pour juillet 2001 : moyennes mensuelles des concentrations journalières maximales (moyennées sur 8 heures) en ppb.

Les mécanismes de pollution photochimique

Comparaison de CB05 et RACM2 sur l'Europe : Différences absolue (ppb) et relative (%) pour le mois de juillet 2001 entre les deux mécanismes

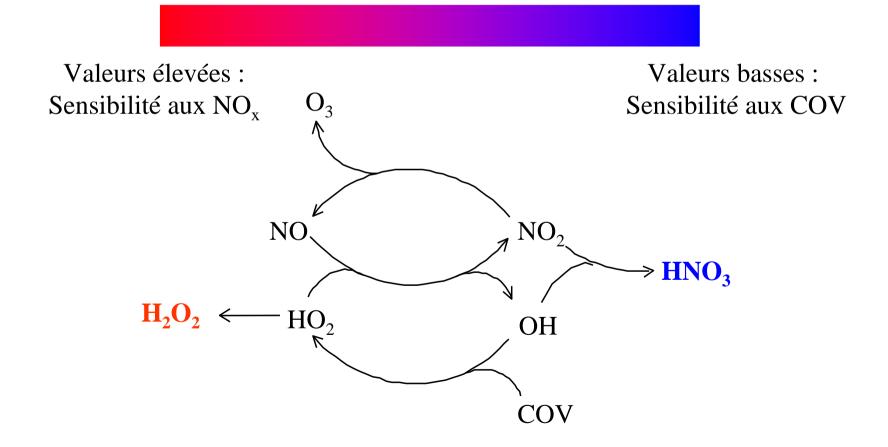
Régimes chimiques : NO_x limité / COV limité

Régime high NO_x: capacité à regénérer les oxidants (OH, HO₂)

$$HO_2 + NO \longrightarrow OH + NO_2$$
,

(réaction utilisée dans les chaînes d'oxidation précédemment étudiées)

$$NO_2 + OH \longrightarrow HNO_3$$
,


Régime low NO_x: la réaction dominante est

$$HO_2 + HO_2 \longrightarrow H_2O_2 + O_2$$

- Compétition entre les 2 réactions : Dépend du rapport [COV]/[NO_x]
 - High NOx COV limité : Diminution des COV est favorable
 - Low NOx NOx limité : Diminution des NOx est favorable

Exemple d'« indicateur » : Sensibilité de l'O₃ aux COV & NO_x

• H_2O_2 / (HNO₃ + nitrate) comme indicateur

Chimie troposphérique de l'ozone

Deux régimes chimiques :

- Milieu pauvre en NOx
 Emission de COV ⇒ Destruction d'ozone

 Emission de NOx ⇒ Formation d'ozone
- Milieu riche en NOx
 Emission de COV ⇒ Formation d'ozone
 Emission de NOx ⇒ Destruction d'ozone
 Situation classique du pic d'ozone lors d'un épisode de pollution urbaine

Régimes chimiques : NO_x limité / COV limité

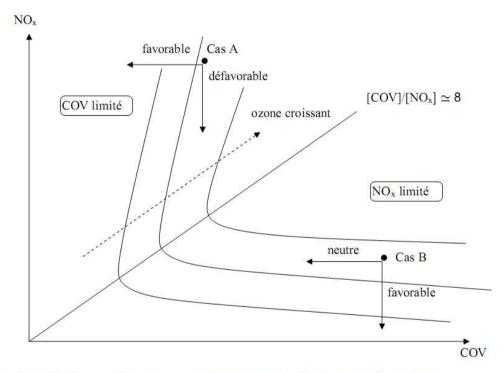
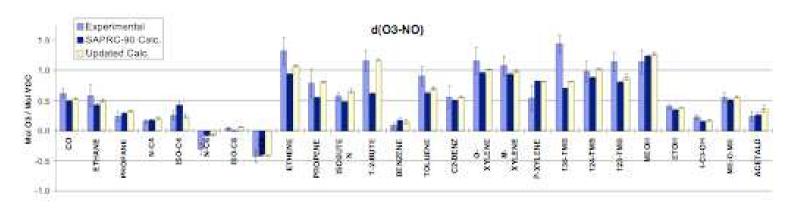



Fig.: Régimes chimiques pour l'ozone. *Isopleths* d'ozone (isovaleurs, typiquement de concentration maximale horaire) en fonction des concentrations de NO_x et de COV. $[COV]/[NO_x] \simeq 8$: situation américaine.

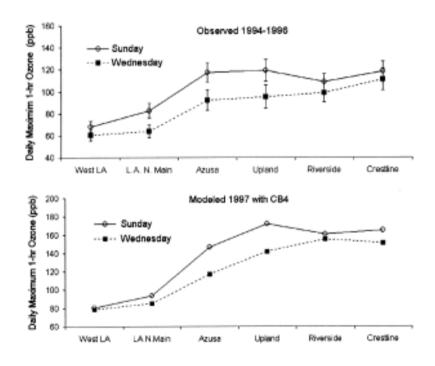
Réactivité des COV

La chimie de la formation de l'ozone est un système non-linéaire : la contribution d'une espèce chimique à la formation de l'ozone dépend donc des conditions (composition chimique initiale, rayonnement, durée de l'étude). Certains COV sont plus réactifs que d'autres, on peut donc définir des échelles de réactivité pour les COV.

Échelle de réactivité pour des COV fondée sur le protocole de « Maximum incremental reactivity » (MIR). Le MIR peut être mesuré dans le laboratoire (chambre de simulation) ou calculé avec un mécanisme de cinétique chimique (Source: WPL Carter, Univ. de Californie à Riverside)

Évolution des concentrations d'ozone : L'effet du week-end

Évolution des concentrations d'ozone au cours de la semaine


Les différences entre les émissions des véhicules en semaine (essence et diesel) et pendant les week-end (peu de diesel, donc moins de NO_x et un plus grand rapport COV/NO_x) mènent à des régimes chimiques différents et, par conséquent, à des concentrations d'ozone différentes selon les villes

Source: Pun et al.,

J. Air Waste Manage. Assoc., 53, 789, 2003

L'effet du week-end en pollution atmosphérique

- Le changement du rapport COV/NO_x entre les jours de semaine et les jours de week-end affecte la formation d'O₃
- Le modèle peut reproduire l'effet observé dans les mesures à Los Angeles

Comparaison des concentrations d'ozone pendant la semaine et pendant le week-end à Los Angeles, Californie : en haut, les mesures ; en bas, la simulation

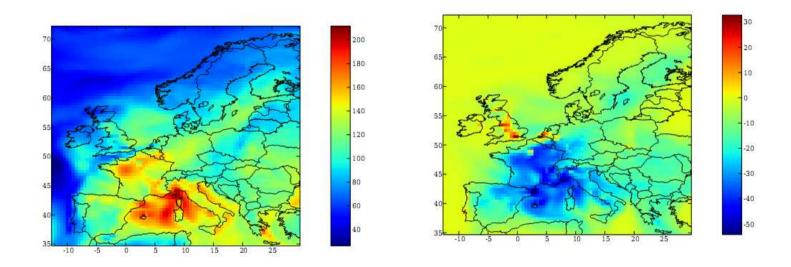
Yarwood et al., *J. Air Waste Manage. Assoc..*, **53**, 864-875 (2003)

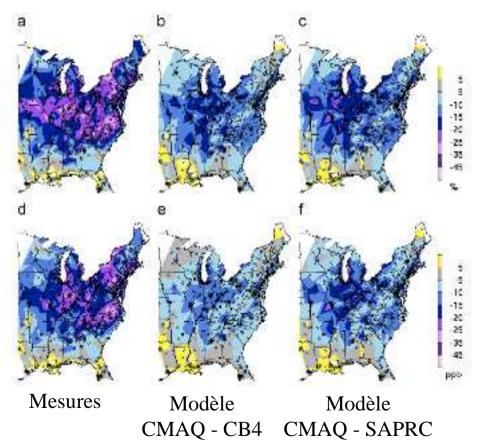
Stratégie de réduction des précurseurs d'ozone

- Complexe car le régime chimique varie spatiallement et temporellement
- Exemple : Pics d'ozone dans certaines grandes villes le week-end (Toronto, Bruxelles, ...) car réduction des émissions de NOx
- En général :
 - Régime COV-limité sur les grandes zones urbaines polluées
 - Régime NOx limité à l'échelle régionale, e.g. sur la partie sud de l'Europe où il y a de fortes émissions biogéniques

Stratégie de réduction des précurseurs d'ozone

Simulation de l'ozone avec le modèle du CEREA (Polyphemus)

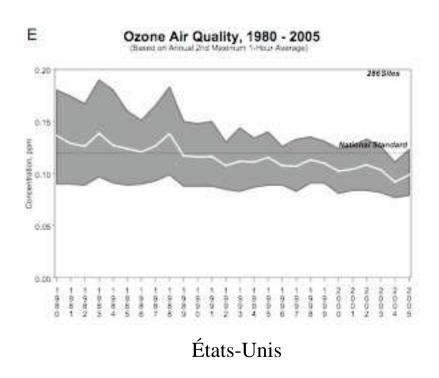


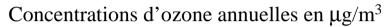

Fig.: Simulation pour le 26 juillet 2001. Fig.: Effet de la suppression du trafic routier.

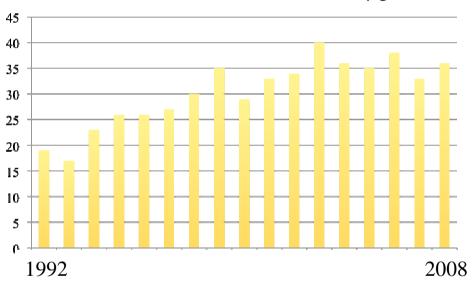
Le rôle du transport transcontinental

- Temps de vie de l'ozone dans la troposphère : 1 à 2 semaines ⇒
 Transport transpacifique et transatlantique
- Certaines études estiment
 - 5 à 10ppb l'augmentation de l'ozone de surface en Californie du fait des émissions asiatiques (avril et mai)
 - 3 à 5ppb la contribution de l'Amérique du Nord à l'ozone de surface en Europe en été
- Enjeu : vérifier que des baisses locales d'émission ne sont pas compensées par le transport longue distance

Évolution des concentrations d'ozone


Effet d'une réduction des émissions de NO_x des centrales électriques à charbon de l'est des États Unis entre 2002 et 2004


Source : Gilliland et al.,


Atmos. Environ., 42, 5110, 2008

Évolution des concentrations d'ozone

Évolution des concentrations d'ozone

Île de France