Modélisation des aérosols atmosphériques Master SGE-AQA

Edouard Debry Edouard.Debry@ineris.fr

INERIS - Verneuil en Halatte

Janvier 2010

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Introduction

- 2 Les aérosols dans l'atmosphère
- 3 Modélisation d'une distribution d'aérosols

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

4 Physique des aérosols

Introduction

Dynamique des polluants gazeux

Modèle de Chimie-Transport (CTM)

- Transport : advection (horizontale), diffusion (turbulente) / Dépôt : sec et humide (lessivage)
- Chimie gazeuse : mécanismes d'oxydation par O₃, NOx et OH

Introduction

Dynamique des polluants gazeux avec les aérosols

Les aérosols interagissent avec

- les polluants gazeux (condensation/évaporation, chimie hétérogène)
- rayonnement solaire (absorption, diffusion)

2 Les aérosols dans l'atmosphère Morphologie

Les différentes sources et émissions Granulométrie Composition chimique Dynamique des aérosols

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

Morphologie

Des particules en suspension dans l'air.

• de toutes formes ... modélisées par une sphère .

Un peu de vocabulaire ...

- En anglais et en français "aerosols" peut désigner un mélange gazeux contenant des particules.
- Préférer "particule" ("particle") si ambiguïté.

Les différentes sources/émissions

- Aérosols primaires (émissions directe) : éruption volcanique, embruns, poussière désertique, ...
- Aérosols secondaires (formation indirecte) : nucléation, condensation, chimie hétérogène/aqueuse

	Type d'aéro	sol	Source	Production estimée Tg/an
	Primaire	Biotique	Poussière minérale Sel de mer	1000-3000 1000-6000
Aérosol Inorganique		Volcanique	Sulfates	9-48
	Secondaire	Anthropique	Sulfates Nitrates	69-214 10-19
		Biotique	Sulfates Nitrates	28-118 2-8
Aérosol de			Combustion fossile	6-8
carbone	Primaire	Anthropique et biotique	Feux de biomasse	5-9
élémentaire			Aviation	0.006
	Primaire	Anthropique	Combustion fossile Feux de biomasse	10-30 45-80
Aérosol		Biotique	Débris végétaux, pollens	0-90
organique	Secondaire	Anthropique	Aromatiques (précurseurs)	0.3-1.8
		Biotique	Terpènes (précurseurs)	8-40

Source : IPCC TAR chap 5.2.1 et 5.2.2

Emissions distinguées suivant

- cause : feux de forêt, traffic aérien, ...
- nature : biotique, anthropique, volcanique

Granulométrie

Des particules en suspension dans l'air.

• de quelques nanomètres à plusieurs centaine de micromètres.

	diamètre	nombre	masse
	(μm)	(#.cm ^{−3})	$(\mu g.m^{-3})$
molécules de gaz	0.0005	2.45×10^{19}	1.2×10^{9}
petits aérosols	< 0.2	$10^3 - 10^6$	< 1
moyens aérosols	0.2 - 1.0	$1 - 10^{4}$	< 250
grands aérosols	1.0 - 100	< 1 - 10	< 250
brouilland	10 - 20	1 - 500	$10^4 - 5 \times 10^5$
nuages	10 - 200	< 10 - 100	$< 10^{5} - 5 \times 10^{6}$
goutte de pluie	2000	0.001	$10^{5} - 5 \times 10^{6}$

Données générales sur les aérosols (Jacobson)

Un peu de vocabulaire ...

- Par "distribution", "répartition" ou "population" d'aérosols on entend un mélange de particules de différentes tailles et composition chimique.
- La "distribution en taille" des aérosols renvoie à leur répartition par classe de taille.

・

Composition chimique

Mesures de composition chimique

- Source : "A European Aerosol Phenomenology" (Putaud et al. 2002)
- ec = elemental carbon = suie, om = organic matter, unacc = unaccounted matter, min dust = mineral dust

Quelques remarques

- Composants inorganiques : sulfate SO₄²⁻, nitrate NO₃⁻, sodium Na⁺, chloride Cl⁻, ammonium NH₄⁺
- 25 à 50% de matière organique
- Composition fonction de la taille : particules fines / grosses
- Trace de métaux : Pb, Cd, Zn, Mn, Fe
- Jusqu'à 25% de matière non déterminée

La dynamique des aérosols

Processus physiques

- Processus "0D" : coagulation, condensation/évaporation, nucléation, chimie aqueuse, chimie hétérogène
- Processus "3D" : dépôt sec, lessivage, activation, chimie aqueuse

Plan

A retenir

- Les différentes sources d'émissions.
- Les principales classes de taille et composants chimiques.

▶ ▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● ○ ○ ○ ○

• La dynamique des aérosols.

1 Introduction

2 Les aérosols dans l'atmosphère
 3 Modélisation d'une distribution d'aérosols

 La granulométrie
 La composition chimique
 Coagulation
 Condensation/évaporation
 Nucléation
 Equation générale de la dynamique des aérosols

La granulométrie

Représentation discrète

- Classe de tailles discrète m^k = k m¹
- m¹ plus petite masse de la distribution
- N^k(t) concentration d'aérosols (#/m³) de masse m^k

Inconvénients

 Si le plus petit diamètre d¹ = 0.001µm, le nombre de classes nécessaires pour couvrir le spectre de tailles [0.001, 10] est :

$$k = \left(\frac{10-d^1}{d^1}\right)^3 = 10^{12} !!$$

Représentation continue

 Densité de concentration suivant la masse m (µg) :

 $m \mapsto n(m, t)$

n(m, t) dm concentration d'aérosols de masse

$$[m, m + dm]$$

Un peu de vocabulaire ...

- Taille d'aérosols : dimension en diamètre, volume ou masse
- Spectre de tailles d'aérosols : l'intervalle entre la plus petite et la plus grande taille d'aérosols
- Classes de tailles d'aérosols : ensemble de différentes tailles d'aérosols (PM₁₀, PM_{2.5})

La granulométrie - Approche modale

Forme multi-modale

La distribution numérique est approchées par une somme de distributions log-normales :

$$n(\ln d_{\rho}, t) = \sum_{j=1}^{3} \frac{N^{j}}{\sqrt{2\pi} \ln \sigma_{g}^{j}} \exp\left[-\frac{1}{2} \left(\frac{\ln d_{\rho} - \ln d_{g}^{j}}{\ln \sigma_{g}^{j}}\right)^{2}\right]$$

Le mode j a pour paramètres :

- N^j nombre total d'aérosols (#.m⁻³).
- d_q^j diamètre moyen géométrique.
- σ_g^j déviation standard géométrique.

3 modes : nuclei, accumulation, coarse

Exemples de paramètres

mode	nucleation	accumulation	coarse
URBAN			
N (#.cm ⁻³)	111572.	31269.	2.33
$r_q (\mu m)$	0.007	0.027	0.43
σ_g	1.8	2.16	2.21

Source : EUROTRAC

Distributions en taille (Seinfeld & Pandis 1998)

Rural

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

Distributions en taille (suite)

◆ロ▶ ◆昂▶ ◆臣▶ ◆臣▶ ●臣 - の々で

La composition chimique

 A chaque composant chimique X_i est associée une masse partielle m_i (μg)

$$\sum_{i} m_{i} = m$$

m₂ m₁ m₃

Représentation discrète

Chaque composant X_i a une concentration
 Q^k_i(t) = m^k_i N^k(t), (μg/m³) par classe de taille

Inconvénient

- A chaque classe de taille correspond une composition chimique et une seule, c'est le "mélange interne"
- Mélange externe : permettre des aérosols de même taille et de composition différente

Représentation continue

• Chaque composant X_i a une densité de

concentration $q_i(m, t) = m_i(m, t) n(m, t)$ par

classe de taille

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

Coagulation

Représentation de la coagulation

Analogie avec la cinétique chimique :

$$(i) + (j) \xrightarrow{\kappa_{ij}} (i+j)$$

K_{ij} noyau de coagulation (m³/s/#aérosols), il est symétrique (K_{ij} = K_{ji})

Gain d'aérosols de taille k

Par coagulation des aérosols de taille (i) et (j)

(i + j = k): $K_{ii} N^i N^j$

• En sommant sur toutes les couples (i,j) tels que i + j = k:

$$\frac{1}{2}\sum_{i+j=k}K_{ij}N^iN^j$$

• La fraction $\frac{1}{2}$ est-elle nécessaire lorsque i = j?

Equation de la coagulation pour le nombre

$$\frac{dN^{k}}{dt} = \frac{1}{2} \sum_{i+j=k} K_{ij} N^{i} N^{j} - N^{k}(t) \sum_{j=1}^{\infty} K_{kj} N^{j}$$

Perte d'aérosols de taille k :

Par coagulation des aérosols de taille (k) et (j) :

K_{kj} N^k N^j

 En sommant sur toutes les classes de tailles possibles :

$$\sum_{j=1}^{\infty} K_{kj} N^k N^j$$

Coagulation - Equation sur la masse

Gain de masse en X_n dans la classe k

 Par coagulation des aérosols de taille (i) et (j) (i + j = k):

$$(m_n^i + m_n^j) K_{ij} N^i N^j = K_{ij} (Q_n^i N^j + N^i Q_n^j)$$

• En sommant sur toutes les couples (i,j) tels que i + j = k:

$$\frac{1}{2}\sum_{i+j=k}K_{ij}(\mathsf{Q}_n^i\mathsf{N}^j+\mathsf{N}^j\mathsf{Q}_n^j)=\sum_{i+j=k}K_{ij}\mathsf{Q}_n^j\mathsf{N}^j$$

Perte d'aérosols de taille k :

Par coagulation des aérosols de taille (k) et (j) :

 $m_n^k K_{kj} N^k N^j$

 En sommant sur toutes les classes de tailles possibles :

$$\sum_{j=1}^{\infty} K_{kj} Q_n^k N^j$$

Equation de la coagulation pour la masse en Xa

$$\frac{d\mathsf{Q}_{a}^{k}}{dt} = \sum_{i+j=k} \mathsf{K}_{ij} \mathsf{Q}_{a}^{i} \mathsf{N}^{j} - \mathsf{Q}_{a}^{k}(t) \sum_{j=1}^{\infty} \mathsf{K}_{kj} \mathsf{N}^{j}$$

Equation de la coagulation pour la masse totale

$$Q^{k}(t) = m^{k}N^{k}(t) = \sum_{a}Q^{k}_{a}(t), \quad \frac{dQ^{k}}{dt} = \sum_{i+j=k}K_{ij}Q^{i}N^{j} - Q^{k}(t)\sum_{j=1}^{\infty}K_{kj}N^{k}$$

000

Coagulation - Quelques propriétés

Etat stationnaire?

- Existe-t-il une distribution $(N^k) \neq 0$ telle que $\frac{dN^k}{dt} = 0$?
- Pour les monomères $\frac{dN^1}{dt} = 0 \Rightarrow N^1(t) = 0$
- Par récurrence on montre que

 $N^{l}(t) = 0$, $l < k \Rightarrow N^{k}(t) = 0$

Effet de mélange

Equation sur la masse partielle en espèce Xa

$$\frac{dm_a^k}{dt} = \frac{1}{2} \sum_{i+j=k} \kappa_{ij} \Delta m_a^{i,j,k}(t) N^i N^j$$
$$\Delta m_a^{i,j,k}(t) = m_a^i(t) + m_a^j(t) - m_a^k(t)$$

- Composition uniforme $\Leftrightarrow \frac{dm_a^k}{dt}(t > 0) = 0$
- Tendance à répartir la masse en X_a sur tout le

spectre

Solutions exactes

Oui pour
$$N^k(0) = \delta_{k1} N_0$$
 et $K_{ij} = K_0$ alors

$$N^{k}(t) = N_{0} \frac{\left(\frac{t}{\tau_{c}}\right)^{k-1}}{\left(1 + \frac{t}{\tau_{c}}\right)^{k+1}} , \quad \tau_{c} = \frac{2}{K_{0}N_{0}}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Condensation/évaporation - Equation sur le nombre

Equation continue de la c/e

Bilan du nombre d'aérosols N(t) entre m_1 et m_2 durant

 $[\mathit{t}_1, \mathit{t}_2]$: la variation du nombre d'aérosols est égale à ce

qui rentre moins ce qui sort

Variation du nombre d'aérosols

$$N(t_2) - N(t_1) = \int_{m_1}^{m_2} n(m, t_2) \, dm - \int_{m_1}^{m_2} n(m, t_1) \, dm$$
(1)

$$= \int_{m_1}^{m_2} \int_{t_1}^{t_2} \frac{\partial n}{\partial t} dt dm$$
 (2)

Flux d'aérosol φ

Le flux d'aérosols est égal au produit de la concentration d'aérosols par la vitesse de grossissement d'un aérosol :

$$\varphi(m,t) = I_0(m,t)n(m,t)$$

 I_0 s'exprime en $\mu g.s^{-1}$, < 0 si évaporation

Ce qui rentre moins ce qui sort

$$N(t_2) - N(t_1) = \int_{t_1}^{t_2} \varphi(m_1, t) dt - \int_{t_1}^{t_2} \varphi(m_2, t) dt$$
(3)

$$= -\int_{t_1}^{t_2} \int_{m_1}^{m_2} \frac{\partial \varphi}{\partial m} \, dm \, dt \tag{4}$$

Equation de la c/e pour le nombre

Par égalité entre (1) et (3) on obtient

$$\frac{\partial n}{\partial t} + \frac{\partial (l_0 n)}{\partial m} = 0$$

équation d'advection non-linéaire sur le spectre d'aérosols

Condensation/évaporation - Equation sur la masse

$\begin{array}{c|c} e & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$

Equation continue de la c/e

Bilan de masse en X_i : la variation du nombre d'aérosols

est égale à ce qui rentre moins ce qui sort plus ce qui

condense moins ce qui se transforme

Condensation/évaporation en X_i

Terme source de condensation I_i ($\mu g/s$) en X_i tel que

$$\sum_{i} I_i = I_0$$

négatif si évaporation

Equation de c/e pour la masse en X_i

$$\frac{\partial q_i}{\partial t} + \frac{\partial (l_0 q_i)}{\partial m} = (l_i + \chi_i)n$$

Transformation chimique

Terme source/puits en X_i dû aux réactions chimiques dans l'aérosol : χ_i ($\mu g/s$).

$$\sum_{i} \chi_{i} = 0$$

par conservation de la masse

Lumping de la chimie interne

Rassembler les espèces chimiques X_i en famille : $ESO_4 = H_2SO_4 + HSO_4^- + SO_4^{2-}$. Pour $X_i = ESO_4$

$$\frac{\partial q_i}{\partial t} + \frac{\partial (l_0 q_i)}{\partial m} = l_i n \,, \ \sum_i \chi_i = 0 \,, \ l_{\mathrm{HSO}_4^-} = l_{\mathrm{SO}_4^{--}} = 0$$

C

Condensation/évaporation - Quelques propriétés

Effets de la c/e sur la distribution d'aérosols

- Advection constante : décalage vers la gauche ou la droite
- Advection non constante : rétrécissement ou élargissement
- Terme source : grossissement ou diminution

Conservation de la masse en X_i

Conservation avec la concentration gazeuse $c_i^g(t)$ en X_i :

$$c_i^g(t) + \int_{m_0}^{\infty} q_i(m, t) \, dm = K_i$$

Equation d'évolution de l'espèce semi-volatile X_i :

$$\frac{dc_i^g}{dt} = -\int_{m_0}^{\infty} (l_i n)(m, t) \, dm$$

• Le terme source *I*: en *X*: est appelé "taux de transfert" (mass tranfer rate)

Nucléation

- La nucléation intervient comme un terme source J₀(t) en un point donné du spectre d'aérosol m₀ (plus petite masse d'aérosol)
- Le flux d'aérosols J₀(t) s'exprime en #aérosols/m³/s
- Deux formulations sont possibles.

Terme source

$$\frac{\partial n}{\partial t}(m, t) = \delta(m_0, m)J_0(t)$$
$$\frac{\partial q_i}{\partial t}(m, t) = \delta(m_0, m)m_i(m_0, t)J_0(t)$$

 δ est le symbole de Krönecker : 1 si $m = m_0$, 0 sinon.

m_i(m₀, t) est la composition de l'aérosol nucléé.

Conditions aux limites de la c/e

$$\frac{\partial n}{\partial t} + \frac{\partial (l_0 n)}{\partial m} = 0, \quad (l_0 n)(m_0, t) = J_0(t)$$
$$\frac{\partial q_i}{\partial t} + \frac{\partial (l_0 q_i)}{\partial m} = l_i n, \quad (l_0 q_i)(m_0, t) = m_i(m_0, t)J_0(t)$$

Permet d'évaluer la concentration en m_0 : $n(m_0,t) = \frac{J_0(t)}{l_0}$

- Les paramètres $J_0(t)$, $m_0(t)$ et $m_i(m_0, t)$ sont donnés par la théorie de la nucléation
- Les deux formulations sont équivalentes, la seconde est mieux posée, mais la première est de loin la plus répandue.

Equation générale de la dynamique (GDE) des aérosols

GDE pour la masse

$$\frac{\partial q_i}{\partial t} = \underbrace{\int_{m_0}^{m-m_0} K(u, m-u) q_i(u, t) n(m-u, t) du}_{\text{gain de coagulation}}$$

$$-\underbrace{q_i(m, t) \int_{m_0}^{\infty} K(m, u) n(u, t) du}_{\text{perte de coagulation}}$$

$$-\underbrace{\frac{\partial (l_0 q_i)}{\partial m}}_{\text{advection par c/e}} + \underbrace{(l_i n)(m, t)}_{\text{source/puits par c/e}}$$

$$+\underbrace{\delta(m_0, m) J_0(t)}_{\text{gain de nucléation}}$$

Mais ...

Il faut aussi résoudre la chimie interne ($\forall X_i, \chi_i = 0$), c'est la thermodynamique.

Les noyaux de coagulation (K) et condensation (I₀) dépendent de la taille et de la composition des aérosols.

 \implies Pour trouver une expression de K, I_0 et J_0 il faut regarder la micro-physique de chaque processus

Plan

A retenir

- Les distributions multi-modales.
- Composition chimique : mélange interne/externe.
- L'équation générale de la dynamique des aérosols.

1 Introduction

2 Les aérosols dans l'atmosphère

Modélisation d'une distribution d'aérosols
 Les différents régimes
 Coagulation
 Condensation/évaporation
 Nucléation
 Thermodynamique des aérosols

Les différents régimes

Les différents régimes

- Il existe différents régimes suivant la façon dont l'aérosol "voit" le milieu dans lequel il se trouve.
- Libre parcours moyen des molécules dans l'air, λ_{air} = 0.0651μm (CNTP)
- Nombre de Knudsen : $K_n = \frac{2\lambda_{\text{air}}}{d_0}$

Régime continu, $K_n \ll 1$

Mécanique des milieux

continus

Coefficient de diffusion :

 $D_a^c = \frac{k_b T}{3\pi\mu_{\rm air} d_p}$

• En pratique pour $K_n \leq 0.1$

soit $d_p \ge 1 \mu m$

Régime transitoire $K_n \sim 1$

- Coefficient de correction C_u (Cunningham) $D_a^t = D_a^c C_u$
- Méthode empirique (Millikan) $C_u = 1 + K_n \left(a + be^{-\frac{Q}{K_n}} \right)$ gouttes d'huile a = 1.234,
 - b = 0.414, Q = 0.876
- Méthode théorique $C_u = \frac{1}{1+\beta K_n} + \frac{9}{4\alpha} K_n$ courtes d'huile $\beta = 0.420$

gouttes d'huile $\beta = 0.42$,

$$\alpha = 1.35$$

Régime moléculaire libre, $K_n \gg 1$

- Théorie cinétique des gaz
- Coefficient de diffusion :

$$D_a^m = \frac{3}{2\alpha\sqrt{2\pi}} \frac{k_b T}{P d_p^2}$$

• En pratique pour $K_n \ge 10$ soit

 $d_p \leq 0.01 \mu m$

Coagulation - Les différents moteurs

Le mouvement brownien

Les aérosols submicroniques ont un comportement similaire aux particules de gaz, avec des propriétés équivalentes :

vitesse moyenne $\bar{c}_{\rho} = \sqrt{\frac{8k_{b}T}{\pi m_{\rho}}}$ et libre parcours moyen $\lambda_{\rho} = \frac{16}{3\pi} \frac{D}{c_{\rho}}$

Régime continu

$$K_{12}^{B_{rc}} = 2\pi (D_1 + D_2)(d_{P_1} + d_{P_2})$$

fonction du rapport des diamètres

$$K_{12}^{B_{rc}} = \frac{2k_b T}{3\mu_{air}} \left(2 + \frac{d_{p_1}}{d_{p_2}} + \frac{d_{p_2}}{d_{p_1}}\right)$$

Constante brownienne $\frac{8k_bT}{3\mu_{air}} \simeq 6.4 \ 10^{-16} m^3 . s^{-1}$

Régime moléculaire libre

$$K_{12}^{B_{ml}} = \frac{\pi}{4} (d_{p_1} + d_{p_2})^2 \sqrt{\bar{c}_1^2 + \bar{c}_2^2}$$

fonction de la section efficace

Coagulation - Les différents moteurs (suite)

Mouvement turbulent

$$K_{12}^{T} = \left(\frac{\pi\varepsilon_{k}}{120\nu}\right)^{\frac{1}{2}} \frac{6}{\pi} \left[\left(v_{1}\right)^{\frac{1}{3}} + \left(v_{2}\right)^{\frac{1}{3}}\right]^{3}$$

fonction du volume

- ν viscosité cinématique.
- ε_k taux de dissipation de l'énergie cinétique par unité de masse
- v_i volume de l'aérosol i.

Dépôt gravitationnel

Pour $v_1 \ge v_2$:

$$K_{12}^{G} = (\frac{1}{36\pi})^{\frac{1}{3}} \frac{\rho_{\rho}g}{\mu_{\text{air}}} [(v_{1})^{\frac{2}{3}} - (v_{2})^{\frac{2}{3}}] (v_{2})^{\frac{2}{3}}$$

fonction de la section efficace

- *ρ*_p masse volumique.
- g la gravité.
- v_i volume de l'aérosol i.

Coagulation - Quelques propriétés

Propriétés

- Symétrie : K₁₂ = K₂₁
- Dilatation : $K(\lambda v_1, \lambda v_2) = \lambda^{\alpha} K(v_1, v_2)$
 - Le coefficient α vaut
 - 0 pour le mouvement brownien en régime continu.
 - 1/6 pour le mouvement brownien en régime moléculaire libre.
 - 1 pour l'écoulement turbulent.
 - 4/3 pour le dépôt gravitationnel.

Autres moteurs

- Forces de Van Der Waals (dipôles)
- Forces de Coulomb (particules chargées)
- Forces de viscosité

Mais la correction est du second ordre dans la plupart des cas.

Compétition

- Mouvement brownien dominant
- Mouvement turbulent non négligeable pour les

grosses particules (poussières,...)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

En pratique

Seul le mouvement brownien est retenu.

Condensation/évaporation - La diffusion gazeuse

Principal responsable : le gradient de concentration entre la phase gaz et la surface de l'aérosol. La diffusion gazeuse

est "l'étape limitante" qui donne l'expression du flux.

Régime continu

$$I_i^{rc} = 2\pi D_i d_p \left(c_i^g - \eta(d_p) c_i^s
ight)$$

D_i coeffcient de diffusion du gaz X_i.

η effet Kelvin.

Régime transitoire

Coefficient de correction

$$I_i^{rt} = \beta I_i^{rc} , \quad \beta = \frac{1 + K_{n_i}}{1 + 2K_{n_i}(1 + K_{n_i})/\alpha_i}$$

• $K_{n_i} = \frac{2\lambda_i}{d_p}$ nombre de Knudsen par rapport à l'espèce X_i .

Régime moléculaire libre

$$I_{i}^{rml} = \alpha_{i} \frac{v_{i}^{qm}}{4} \pi d_{p}^{2} \left(c_{i} - \eta(d_{p}) c_{i}^{s} \right)$$

- $0 < \alpha_i \ge 1$ coefficient d'accomodation, très variable.
- v^{qm}_i vitesse quadratique moyenne de la molécule X_i.

Condensation/évaporation - Les phénomènes de surface

Effet Kelvin

$$\eta(d_p) = \exp\left(\frac{4\sigma v_p}{R_g T d_p}\right)$$

- $R_g = 8.314$ constante des gaz parfaits.
- v_p le volume molaire de la particule.
- σ tension de surface ($N.m^{-1}$).

En pratique négligeable au dessus de $0.05 \mu m$, mais frein

à la condensation sur les nano-particules.

Absorption

La molécule de X_i pénétre dans l'aérosol et interagit avec tout le volume.

Dissolution

La molécule de X_i est hydratée et se dissocie dans la phase aqueuse.

Réactions hétérogènes

La molécule de X_i réagit avec un ou plusieurs composants

à la surface de l'aérosol, ex : polymérisations de COV.

Adsorption

Les molécules de X_i forment une couche limite autour de

l'aérosol qui interagit avec sa surface.

Phénomènes complexes, rapides, mal connus.

Condensation/évaporation

En pratique

Diffusion gazeuse en X_i :

$$I_{i} = 2\pi D_{i} d_{p} \beta(K_{n_{i}}, \alpha_{i}) \left(c_{i}^{g} - \eta(d_{p})c_{i}^{s}\right)$$

- Phénomène de surface : aBsorption
 - très rapides (~ 1μs).
 - détermine la concentration de surface
 - c_i^s : c'est la Thermodynamique.
- Le flux s'étend sur plusieurs ordres de grandeur : source de raideur

Flux de condensation/évaporation suivant le diamètre

Paramètres physiques

espece gazeuse	v_i^{qm} (m.s ⁻¹)	D _i (m ² .s ⁻¹)
sulfate	254.58	1.07E-05
ammonium	611.24	2.17E-05
nitrate	317.51	1.47E-05
chlorate	417.15	1.72E-05

Nucléation

Un peu de vocabulaire

La nucléation peut être

- homogène
- hétérogène : catalysée par une surface
- homo-moléculaire : un seul composant chimique
- hétéro-moléculaire : plusieurs composants

chimique ("nucléation binaire", "ternaire")

Energie libre

Compétition entre la thermodynamique (sursaturation S^*) et effet Kelvin (tension de surface σ)

$$\Delta G^* = \frac{4}{3}\pi (r^*)^3 \sigma$$

r* rayon critique

$$r^* = \frac{32\pi (v^*)^2 \sigma^3}{3(k_b T \ln S^*)^3}$$

Taux de nucléation

Le nombre de particules nuclées par seconde :

$$J_0(t) = C \exp\left(-\frac{\Delta G^*}{k_b T}\right)$$

- C constante de normalisation
- \Delta G^{*} variation d'énergie libre de Gibbs

Nucléation

Dans l'atmosphère

Nucléation hétérogène plus favorable que la nucléation homogène.

Nucléation homogène non négligeable du sulfate :

- Nucléation binaire H₂SO₄-H₂O
- Nucléation ternaire H₂SO₄-H₂O-NH₃

Nucléation ternaire plus favorable que binaire.

En pratique

Paramétrisations de la nucléation :

- binaire : Vehkamäki et al, Journal of Geophysical Research 2002
- ternaire : Napari et al, Journal of Geophysical Research 2002

obtenues à partir d'expériences en chambre.

Attention au domaine de validité!

Thermodynamique des aérosols

Rappels

- Chimie interne lumpée $\forall X_i$, $\chi_i = 0$
- Aérosol en équilibre avec la fine couche de gaz
 - qui l'entoure : $c_i^s = c_i^{eq}$

Espèce lumpée ENH₃

$$\begin{split} q_{\text{ENH}_3} &= q_{\text{NH}_3} + \frac{\textit{M}_{\text{NH}_3}}{\textit{M}_{\text{NH}_4^+}} q_{\text{NH}_4^+} + \frac{\textit{M}_{\text{NH}_3}}{\textit{M}_{\text{NH}_4\text{NO}_3}} q_{\text{NH}_4\text{NO}_3} \\ \bullet \quad \text{La chimie conserve ENH}_3: \chi_{\text{ENH}_3} = 0 \end{split}$$

• La masse en ENH₃ varie par c/e :
$$I_{\text{ENH}_3} = I_{\text{NH}_3}$$

Exemple : Aérosol de nitrate d'ammonium

$$\begin{split} \mathrm{[NH_3]}g &\rightleftharpoons (\mathrm{NH_3})_{aq} , \ (\mathrm{HNO_3})_g &\rightleftharpoons (\mathrm{HNO_3})_{aq} \\ (\mathrm{HNO_3})_{aq} &\rightleftharpoons (\mathrm{H^+})_{aq} + (\mathrm{NO_3^-})_{aq} \\ (\mathrm{NH_4^+})_{aq} &\rightleftharpoons (\mathrm{H^+})_{aq} + (\mathrm{NH_3})_{aq} \\ (\mathrm{NH_4NO_3})_s &\coloneqq (\mathrm{NH_4^+})_{aq} + (\mathrm{NO_3^-})_{aq} \\ \mathrm{H_2O} &\rightleftharpoons \mathrm{H^+} + \mathrm{OH^-} \end{split}$$

Système Thermodynamique

$$\begin{split} & [\mathrm{NH}_3] \gamma_{\mathrm{NH}_3} = H_1 \rho_{\mathrm{NH}_3} \ , \ [\mathrm{HNO}_3] \gamma_{\mathrm{HNO}_3} = H_2 \rho_{\mathrm{HNO}_3} \\ & [\mathrm{H}^+] [\mathrm{NO}_3^-] \gamma_{\mathrm{H}^+} \gamma_{\mathrm{NO}_3^-} = \mathcal{K}_1 [\mathrm{HNO}_3] \gamma_{\mathrm{HNO}_3} \\ & [\mathrm{H}^+] [\mathrm{NH}_3] \gamma_{\mathrm{H}^+} \gamma_{\mathrm{NH}_3} = \mathcal{K}_2 [\mathrm{NH}_4^+] \gamma_{\mathrm{NH}_4^+} \\ & \mathrm{NH}_4^+] [\mathrm{NO}_3^-] \gamma_{\mathrm{NH}_4^+} \gamma_{\mathrm{NO}_3^-} = \mathcal{K}_{\mathrm{S}} (\mathrm{si\ existe}) \\ & [\mathrm{H}^+] [\mathrm{OH}^-] \gamma_{\mathrm{H}^+} \gamma_{\mathrm{OH}^-} = \mathcal{K}_{\mathrm{W}} \end{split}$$

 γ_i coefficients d'activité de X_i : fonction non linéaire des concentrations

Thermodynamique des aérosols - La résolution

Résolution

- Equilibre local :
 - Entrées : masse totale en NH₃ et HNO₃ dans la particule
 - 6 inconnues, 4 équations et 2 conservations de la masse
 - Sorties : pressions p_{NH3} et p_{HNO3} dans la couche limite

Pilote la condensation/évaporation (c_i^{eq}).

- Equilibre global :
 - Entrées : masse totale NH₃ et HNO₃ dans la(les) particule(s) et la phase gaz
 - 8 inconnues, 6 équations et 2 conservations de la masse
 - Sorties : concentrations dans les phases particulaires et gazeuses

La condensation/évaporation n'a plus besoin d'être résolue : $\forall X_i \ , \ l_i = 0$

population d'aerosols

HNO₃, Ca, Mg, ...

 Coefficients d'activité fonctions non-linéaires des concentrations

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

 Equilibre global : couplage des différentes classes de taille

Thermodynamique des aérosols - Les différents modèles

odéles d'équi	libre inorgan	iques	
modèle	espèces	coefficients d'activités	méthode de calcul
SEQUILIB	sulfate nitrate ammonium sodium chloride	Bromley Pitzer	par domaine résolu en taille
SCAPE2	+ calcium manganèse acide carbonique	Bromley Pitzer Kussik- Meissner	par domaine
EQUISOLV	sulfate nitrate ammonium sodium chloride	Bromley Pitzer Clegg Brimblecombe	par itérations résolu en taille
ISORŔOPIA	sulfate nitrate ammonium sodium chloride	Bromley Pitzer (tabulés)	par domaine calcul des MDRH
GFEMN	sulfate nitrate ammonium sodium chloride	Bromley Pitzer Clegg Brimblecombe	par minimisation

Thermodynamique des aérosols - L'eau

Le contenu en eau liquide (LWC)

Relative abondance de l'eau dans l'atmosphère :

équilibre thermodynamique global $I_{{
m H}_2{
m O}}=0 \Rightarrow a_{
m W}=RH$

L'équilibre peut être

- métastable
- à effet de seuil (DRH, MDRH)

Calcul du LWC $(g.m^{-3})$

Relation de Zdanovski-Stokes-Robinson :

$$LWC = \sum_{i} \frac{n_i}{m_{oi}(a_w)}$$

avec

- n_i masse molaire de l'électrolyte X_i.
- *m_{oi}*(*a_w*) molalité d'une solution aqueuse de *X_i* pure avec même activité *a_w*.

Equilibre de l'eau

Régi par l'équation de Kholer

$$\ln(S) = \frac{a}{d\rho} - \frac{b}{d\rho^3} , \ a = \frac{4v_W\sigma}{R_gT} , \ b = \frac{6n_{\rm SO}v_W}{\pi}$$

Thermodynamique des aérosols - Les espèces organiques

Partie organique

Organiques primaires : composés lourds (> 20

carbones), masse molaire $\sim 300g.mol^{-1}$

Organiques secondaires (SOA) :

1 Oxydation des précurseurs (COV) par O₃, OH :

- biogéniques : terpènes, isoprène
- anthropiques : benzène, toluène, xylène

Condensation des composés organiques

semi-volatiles (COSV)

Grand nombre de COSV. Source : B. Aumont

Modèles organiques

- Lumping des SOA : COSV regroupés par famille suivant leur caractéristiques physico-chimiques :
 - pression de vapeur saturante
 - masse molaire
 - affinité avec l'eau
- Modèle d'absorption (Pankow, Odum) : Loi de Raoult

$$K_i = rac{A_i}{G_i TSP}$$
, $K_i = rac{R_g T}{M_i \gamma_i p_i^{\text{sat}}} 10^{-6}$

Ki coefficient de partition, déterminé par mesures

(日)

э

SQA

ou modèle UNIFAC

Chimie des SOA

- Polymérisation
- Interaction avec la phase aqueuse