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Abstract

This thesis present a newly developed size-composition resolved aerosol model (SCRAM),
which is able to simulate the dynamics of externally-mixed particles in the atmosphere,
and evaluates its performance in three-dimensional air-quality simulations. The main
work is split into four parts. First, the research context of external mixing and aerosol
modelling is introduced. Secondly, the development of the SCRAM box model is pre-
sented along with validation tests. Each particle composition is defined by the combina-
tion of mass-fraction sections of its chemical components or aggregates of components.
The three main processes involved in aerosol dynamic (nucleation, coagulation, conden-
sation/evaporation) are included in SCRAM. The model is first validated by compar-
isons with published reference solutions for coagulation and condensation/evaporation of
internally-mixed particles. The particle mixing state is investigated in a 0-D simulation
using data representative of air pollution at a traffic site in Paris. The relative influence
on the mixing state of the different aerosol processes and of the algorithm used to model
condensation/evaporation (dynamic evolution or bulk equilibrium between particles and
gas) is studied. Then, SCRAM is integrated into the Polyphemus air quality platform
and used to conduct simulations over Greater Paris during the summer period of 2009.
This evaluation showed that SCRAM gives satisfactory results for both PM2.5/PM10

concentrations and aerosol optical depths, as assessed from comparisons to observations.
Besides, the model allows us to analyze the particle mixing state, as well as the impact
of the mixing state assumption made in the modelling on particle formation, aerosols
optical properties, and cloud condensation nuclei activation. Finally, two simulations are
conducted during the winter campaign of MEGAPOLI (Megacities : Emissions, urban,
regional and Global Atmospheric POLlution and climate effects, and Integrated tools for
assessment and mitigation) in January 2010 where the composition of individual parti-
cles was measured. One simulation assumes that particles are internally mixed, while
the other explicitly models the mixing state with SCRAM. The simulation results of
both bulk concentrations of chemical species and concentrations of individual particle
classes are compared with the measurements. Then, the single particle diversity and the
mixing-state index are computed using a quantification approach based on information-
theoretic entropy, and they are compared to those derived from the measurements at a
urban site in Paris: the simulated mixing-state index is equal to 69% against 59% from
the measurements, indicating that particles are not internally mixed over Paris.
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Résumé

Cette thèse présente un nouveau modèle SCRAM (Size and Composition Resolved Aerosol
Model) pour simuler la dynamique des particules dans l’atmosphère (nucléation, coagu-
lation, condensation / évaporation) en prenant en compte leur état de mélange, et elle
évalue la performance de SCRAM dans des simulations 3D de qualité de l’air. Le tra-
vail peut être divisé en quatre parties. Premièrement, la notion de mélange externe est
introduite, ainsi que la modélisation de la dynamique des aérosols. Ensuite, le développe-
ment du modèle SCRAM est présenté avec des tests de validation. Dans SCRAM, pour
définir les compositions, on discrétise d’abord en sections les fractions massiques des
composés chimiques des particules ou d’ensembles de composés chimiques. Les compo-
sitions des particules sont ensuite définies par les combinaisons des sections de fractions
massiques. Les trois processus principaux impliqués dans la dynamique des aérosols (la
coagulation, la condensation / évaporation et la nucléation) sont inclus dans SCRAM.
SCRAM est validé par comparaison avec des simulations « académiques » publiées dans
la littérature de coagulation et condensation/évaporation pour des particules en mélange
interne. L’impact de l’hypothèse de mélange externe pour ces simulations est notamment
étudié. L’impact du degré de mélange sur les concentrations de particules est ensuite
étudié dans une simulation 0-D en utilisant des données représentatives d’un site trafic
en Ile de France. L’influence relative sur l’état de mélange des différents processus in-
fluençant la dynamique des particules (condensation / évaporation, coagulation) et de
l’algorithme utilisé pour modéliser la condensation / évaporation (hypothèse d’équilibre
entre les phases gazeuse et particulaire, ou bien modélisation dynamique des échanges
gaz/particules) est étudiée. Ensuite, SCRAM est intégré dans la plate-forme de qualité
de l’air Polyphemus et utilisé pour effectuer des simulations sur l’Ile de France pendant
l’été 2009. Une évaluation par comparaison à des observations a montré que SCRAM
donne des résultats satisfaisants pour les concentrations de PM2.5/PM10 et l’épaisseur
optique des aérosols. Le modèle est utilisé pour analyser l’état de mélange des particules,
ainsi que l’impact des différentes hypothèses de mélange (mélange interne MI ou mélange
externe ME) sur la formation des particules et leurs propriétés. Enfin, deux simulations,
une avec l’hypothèse de MI et une autre avec l’hypothèse de ME, sont effectuées entre
le 15 janvier et le 11 février 2010, pendant la campagne hiver MEGAPOLI (Megacities :
Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and
Integrated tools for assessment and mitigation) durant laquelle les compositions des par-
ticules individuelles ont été mesurées. Les concentrations simulées de composés chimiques
(concentration massique totale de différents composés) et les concentrations des classes
de particules individuelles (une classe est définie par sa taille et sa composition chimique)
sont comparées avec les observations à un site urbain parisien. Un indicateur de la diver-
sité des particules et de l’état de mélange est calculé à partir des simulations et comparé
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à celui calculé à partir des mesures. Le modèle se compare bien aux observations avec un
état de mélange moyen simulé de 69% contre 59% dans les observations, indiquant que
les particules ne sont pas en mélange interne sur Paris.
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Chapter 1

Introduction

Résumé

Ce chapitre présente le contexte de la thèse et la modélisation des aérosols, ainsi que
l’objectif et le plan de thèse. Les particules ont des effets néfastes sur la santé humaine.
Elles peuvent aussi dégrader la visibilité et affecter le climat en influant sur le bilan énergé-
tique global. Les particules peuvent avoir plusieurs sources, naturelles ou anthropiques,
avec des compositions distinctes. Elles ont une grande variété de tailles et de formes.
Par souci de simplification, on les suppose sphérique en modélisation, et on définit un
diamètre aérodynamique qui correspond au diamètre d’une particule sphérique de taille
équivalente. Les distributions en taille des particules atmosphériques peuvent souvent
être caractérisées par une superposition de plusieurs modes log-normaux, et dans les
modèles, elles sont souvent représentées soit par une approche modale ou une approche
sectionelle. En général, l’état de mélange des particules définit le degré de mélange en-
tre des particules de différentes origines. Les particules sont considérées comme étant
en mélange interne, lorsque toutes les particules de la même taille ont une composition
homogène, sinon elles sont considérés comme étant en mélange externe. Le mélange de
particules est contrôlée par plusieurs processus décrivant la dynamique des aérosols: la
nucléation, la coagulation et la condensation / évaporation. L’influence de ces processus
dynamiques sur la distribution des particules peut être décrit par l’équation de dynamique
générale (GDE). Les modèles d’aérosols simulent l’évolution des distributions de partic-
ules en résolvant la GDE. Les modèles d’aérosols font souvent l’hypothèse de mélange
interne (composition homogène par taille de particules). Ces modèles sont intégrés dans
des modèles de chimie transport pour simuler la qualité de l’air atmosphérique.
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1.1 Particles and their adverse effects

An aerosol is usually defined as a colloidal system of solid or liquid particles in a gas.
Particles in suspension in the atmosphere can vary from several nanometres to tens of
micrometers with extreme diversity in both morphological and physiochemical character-
istics [Putaud et al., 2010]. Particles can be introduced into the atmosphere either by
direct emissions or through aggregation/nucleation from gas molecules. The former ones
are known as primary particles while the later ones are identified as secondary particles.
Primary particles are emitted through combustion, suspension of sea spray, suspension
of dust, volcanoes, etc. Some chemical compounds of particles are secondary: they are
formed through the nucleation or the condensation/evaporation of gas. Particles are
mostly transported through diffusion and advection. Depending on their size, the life-
time of particles vary from a few hours to several days. Particles are often removed from
the atmosphere by precipitation or absorbed by cloud droplets, such process is known as
wet deposition or wet scavenging. According to Anthony and Mary-Scott [1990], consid-
ering the annual global mean, the majority of particle mass is removed by wet deposition
processes, while only less than 20% of particle mass is removed by dry deposition.

People have acknowledged the existence of particles in the atmosphere for centuries.
Back to 44 BC, the cool summers and poor harvests after the eruption of Mount Etna
caused people to suspect the impact of particles released by the volcano on the local
climate. Records about regional haze caused by forest fire can be found in historical
documents ranging from the seventeenth to nineteenth century. As early as 1767, efforts
have been made to map the path of the smoke based on the locations of the fires and
their appearances at different locations [Colbeck et al., 2014].

Despite of the common appearance of particles in nature and their frequent associ-
ation to daily life issues, it is only in comparatively recent times that detailed scientific
studies have been held to investigate their properties and behaviour. While those stud-
ies continue, the multiple adverse effects of particles are revealed ranging from those on
human health to those on visibility and climate.
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Figure 1.1: Particle size and their corresponding intrusion areas within the human respi-
ration system [Hussgroup.com, 2015]

1.1.1 Effect on human health

Atmospheric particles can reach human body in many ways such as skin attachment, food
contamination and inhalation through the respiration system. Inhalation is an efficient
way for particles to reach human body, as adults take in average 16-20 breaths per minute
to get enough oxygen, and about 10 L air per minute.

Figure 1.1 shows the possible intrusion areas within the human respiration system
for different particle sizes. Coarse particles of diameters larger than 10 µm are basically
harmless, as most of them are stopped by the cilia and mucus within the nose and
the throat. However, particles of diameters lower than 10 µm can go through the nose
and the throat and reach the sensitive bronchi or lungs. Such particles may stimulate
the human immune system, and cause inflammation as white blood cells try to destroy
those intruders [Seaton et al., 1995], which can lead to severe health issues especially for
patients with long-term respiration problems like asthma [Tolbert et al., 2000]. For such
reason, the concentration of particulate matter of diameter lower than 10 µm (PM10) is
monitored and regulated in the U.S as well as in Europe.

Fine particles of diameter lower than 2.5 µm (PM2.5) are able to reach the alveolar at
the end of bronchi, which is the gas exchange region of the lung. Particles resting in the
alveolar are unlikely to be removed through ventilation such as cough and sneeze, but
they are rather consumed by macrophages. This may decrease the overall immunity if
the macrophage is overloaded. Besides, ultra-fine particles of diameter lower than 0.1 µm
(PM0.1) can pass directly into the blood circulatory system, thus directly impacting the
cardiovascular system and other organs distant from the lungs [Polichetti et al., 2009].

Reports of epidemiology studies have confirmed that particles have large impacts
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on morbidity and mortality. The World Health Organization (WHO) estimated that
exposure to PM10 led to 3.7 millions of premature deaths worldwide in 2012 [WHO, 2014].
They also estimated that about 80% of aerosol-related premature deaths were due to
heart disease and strokes, while 14% of deaths were due to chronic obstructive pulmonary
disease or acute lower respiratory infections; and 6% were due to lung cancer. Considering
the health effects of particles, WHO suggested that the annual mean concentrations of
PM10 should be lower than 20 µg m−3 and 10 µg m−3 for PM2.5. However, governments
set their own standards based on local situations. For example, in China, the limits
for annual mean concentrations are 70 µg m−3 for PM10 and 35 µg m−3 for PM2.5 [GB
3095—2012, 2012], while in Europe, the regulation for annal PM10 is 40 µg m−3 and 25
µg m−3 for PM2.5 [EU Air Quality Standards, 2015].

1.1.2 Effect on visibility

Visibility decreases when ambient light is either absorbed or scattered by airborne par-
ticles, thereby reducing the contrast in light intensity between a distant object and the
background sky. Such degradation of visibility can be quite striking. Normally, one
can see objects more than 200 kilometres away under clean, dry air condition. However
polluted air can restrict visibility to less than one kilometre.

Figure 1.2 demonstrates how severe the degradation of visibility can be, because of
particles. Such level of visibility degradation has large impacts on traffic activities, (e.g.,
roads, sailing and aviation). Low visibility reduces the observation range of drivers and
pilots, thereby reducing their ability to scene obstacles or dangerous situations, which may
lead to traffic accidents. Besides, it has been reported that the reduction of the visual
range influences the psychological well being of people, increasing stress and degrading
the enjoyment of outdoor leisure activities [Davidson et al., 2005]. For tourist attractions
(e.g. seashores, national parks, landmarks), poor visibility may produce negative impact
on their appealing and reduce their ability to attract tourists, therefore cause economic
dis-benefits.

1.1.3 Effect on climate

The climate system on earth is driven by the energy from the sun. When the solar
radiation reaches the earth, it is partially absorbed by different parts of the climate
system (e.g., atmosphere, landmass and ocean), while the rest is reflected back into space.
The absorbed energy warms up the earth and makes it habitable. As the temperature
rises, each part of the climate system produces their own outgoing long-wave radiations,
which in return colds the earth down. The net flow of energy into and out of the earth
is described as the earth’s radiation balance and is crucial to the climate evolution. The
effect of particles on climate change is complex, as they can influence the earth’s radiation
balance directly, indirectly or even semi-directly.

Direct aerosol effects involve the scattering and absorption of both incoming or out-
going radiation within the atmosphere. In some cases, the presence of particles may
increase the reflectance of solar radiation back to space, thus producing a net cooling
effect on the earth. In other cases, particles may increase the absorption of radiation,
resulting in a net warming effect. The global particle effect can be influenced by many
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Figure 1.2: This composite photograph shows Beijing central business district during
heavy aerosol pollution on 20 Feb. 2014 and during good air quality condition on 19 Feb.
2014 (taken by Qingxiong Zheng).

factors such as particle sizes, shapes, and compositions as well as the angle of the sun.
For instance, ammonium sulphate particles have high albedos and hence cause cooling,
while black carbon (EC) particles have high absorptions and cause warming. According
to Jacobson [2002c], EC may be the second most important anthropogenic atmospheric
constituent contributing to global warming, after CO2.

The indirect effects come from the change of cloud coverage and characteristics due
to the presence of atmospheric particles serving as cloud condensation nuclei (CCN). Hy-
groscopic particles such as ammonium sulphate are efficient CCN, although hydrophobic
particles may also become CCN [Koehler et al., 2009]. According to Twomey [1977], for
two clouds with the same liquid water content, the one that contains more CCN parti-
cles (CCN rich) may have a larger amount of cloud droplets. Furthermore, these cloud
droplets may have smaller sizes than those of the cloud with less CCN (CCN poor). As a
result, the CCN-rich cloud may have a larger albedo, which could enhance its reflection
ability and cooling effect. Besides, because smaller droplets require longer growth times
to reach sizes of precipitation, this cloud can persist for longer time periods. This effect
may enhance the cloud cover, thus imposing an additional cooling effect [Albrecht, 1989],
which can influence the global radiative forcing and the climate.

The semi-direct effect is produced by absorbing aerosols, which have the potential to
modify clouds properties, without directly acting as CCN. Hansen et al. [1997] introduced
a possible mechanism to explain the semi-direct effect. First, by absorbing the solar en-
ergy, particles reduce the amount of solar radiation that reaches the ground, reducing
temperature growth in the lowest layers of the atmosphere. At the same time, by heating
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up the air surrounding them in the highest layers, they create a positive temperature
gradient which stabilizes the atmosphere and diminishes convection and thus the poten-
tial for cloud formation. Secondly, at high altitudes, as the atmospheric temperature
increases, relative humidity decreases, inhibiting cloud formation, and enhancing evapo-
ration of existing clouds. These effects reduce the Earth’s albedo due to the reduction of
cloud cover and lead to a warming effect.

Figure 1.3: Global average radiative forcing (RF) in 2005 with respect to 1750 for CO2,
CH4, N2O, aerosols and other important agents and mechanisms. LOSU stands for the
level of scientific understanding. Blue bars indicate a negative or cooling effect on the
climate. Red bars indicate a positive or heating effect. From Intergovernment Panel on
Climate Control (IPCC) [2007].

In addition, EC and other absorbing constituent of particles deposit on snow or ice
surfaces, reducing the surface albedo, leading to reduced reflectance of solar radiation,
and hence a warming effect [Hansen and Nazarenko, 2004].

The change in the earth’s radiation balance due to anthropogenic or natural emission
is referred to as radiative forcing (RF). RF is often used to quantify and compare the
potential climate impact of the various aerosol effects. Figure 1.3 represents the global
radiative forcing in 2005. It is clear that in general, both direct and indirect aerosols
effects tend to produce negative RF, leading to a cooling effect.
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1.2 Aerosol origins and properties

The abundance of aerosol diversity is largely caused by the great variety of its origins,
with aerosols of different origins mixing and evolving. Particles from different sources
can have distinct properties, sizes, and compositions. For example, combustion generated
particles that can be as small as a few nanometres with carbonaceous compositions while
sea spray particles originate from burst wave bubbles are generally larger than 1 µm,
with high sodium chloride concentrations. Knowledge about aerosol origins and aerosol
formation is essential to understand the nature of aerosols.

1.2.1 Aerosol origins and compositions

Based on their origins, atmospheric particles and their chemical components are either
primary or secondary. Primary particles are those directly emitted into the atmosphere
from either natural or anthropogenic sources. Secondary particles are formed in the
atmosphere from precursor gases.

Primary particles are mostly composed of either inert (dust, black carbon), inorganic
or organic chemical species. Primary particles from natural sources originate from sea
spray (sodium, chloride, sulphate), desert (mineral dust), and volcanoes (dust, ash), etc..
They are usually relatively large (of diameter larger than 1 µm). These particles have
short atmospheric lifetime, typically a few days. Anthropogenic primary particles are
mostly made of black carbon (EC) and organic matter (OM). They are mostly produced
through combustion processes, such as biomass burning and combustion of fossil fuels
from traffic, residential heating, industry. Primary EC and OM containing particles are
generally of diameter lower than 1 µm.

Secondary particles are produced in the atmosphere from precursor gases by homo-
geneous nucleation or by gas-to-particle conversion processes. Their main chemical com-
ponents are sulphate, nitrate, ammonium, chloride and OM. The main precursor gases
are emitted from fossil fuel combustion, agriculture, while biomass burning and biogenic
emissions of VOCs are also important. Biogenic VOCs are generally produced by photo-
synthesis which is enhanced during the summer time when temperature and solar radia-
tion are high. As a result, the formation of secondary organic aerosol (SOA) is favoured
in summer. The evolution between gas and particles phases is largely related to the
change of ambient environment such as temperature and humility as well as the concen-
tration and volatility of precursors. The volatility of precursors, such as volatile organic
compounds (VOC), changes in the atmosphere by different processes: oligomerization
(producing less volatile compounds with similar O:C ratio), oxidation reactions (leading
to the formation of lower volatility compounds with higher O:C ratio) or fragmentation
(producing higher volatility compounds) [Crippa et al., 2013].

1.2.2 Morphology and size distribution

Atmospheric particles have a great variety of sizes and shapes. Figure 1.4 shows an
example of particle size distribution and morphology obtained from electron microscopy.
There are spherical particles such as ammonium sulphate. While, there are also fibre like
particles as well as particles with irregular shapes like dust and sea salt. The variety of
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Figure 1.4: Aerosol size distribution and morphology for various aerosol types. [Colbeck
et al., 2014]

particle shapes creates a difficulty to characterize their sizes. For spherical particles, the
size is described directly by their radius or diameter. However, for particles which are not
spherical, other parameters must be used such as their setting velocity. For example, the
aerodynamic diameter of a non-spherical particle A is defined as the diameter that could
have a spherical particle B of same settling velocity and density [Hinds, 2012]. Other
definitions could be made based on other parameters such as volume or mass. However,
the aerodynamic diameter is the most commonly used to describe particle sizes and it
will be used in this thesis.

Determination of the aerosol size distribution is an important aspect of aerosol dy-
namics. A size distribution is the variation of concentration (i.e., number, surface area,
volume, or mass of particles per unit volume of air) with size [Jacobson, 2002b]. Such
distribution can be represented for example by the sum of log-normal modes with peaks
of concentrations at different diameter ranges, such as a nucleation mode (10−3 µm - 10−2
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µm), an Aitken mode (10−2 µm - 0.1 µm), an accumulation mode (0.1 µm - 1 µm), and
a coarse mode ( > 1 µm).

Particles within the nucleation range are tiny particles created by nucleation. Through
coagulation and condensation of gas, these particles increase in size and move into the
Aitken and accumulation ranges. Particles of diameters within the Aitken and accumu-
lation ranges are usually too light to be removed by gravity forces (i.e., sedimentation) or
too large (for some of them) to be removed by diffusion (Brownian diffusion), so they can
exist in the atmosphere for a relatively long period. Particles in this range require special
attention, as they are the major force to affect health by penetrating deep into the lungs
(see subsection 1.1.1). Besides, particles in this range are close in size to the wavelengths
of visible light and, as a result, affect visibility (see subsection 1.1.2). Particles in the nu-
cleation, Aitken and accumulation ranges are denoted as fine particles. The coarse range
consists of particles of diameter larger than 2.5 µm. Particles in this range are mostly
of primary origins, i.e., directly emitted. Coarse particles are generally heavy enough
to sediment out rapidly. As shown in Figure 1.4, the number concentration is usually
dominated by nucleation and Aitken modes, while their contributions to the volume and
mass distributions are small. On the contrary, with much lower number concentrations,
accumulation and coarse particles dominate the volume and mass distributions.

1.2.3 Representation of the size distribution

The size distribution is often represented using a modal [Whitby and McMurry, 1997] or
a sectional approach [Gelbard et al., 1980] or using the moment method [McGraw, 1997].
The modal and sectional approaches are now briefly explained. The sectional approach
will be used in this study.

In the modal approach, the particle size distribution for number concentration n (#
m−3) is expressed as a function of the particle diameter dp. At a given time t, this function
is described mathematically as the sum of x log-normal distributions:

n(log dp, t) =
x∑

i=1

Ni(t)√
2π log σi

exp

(

−(log dp − log d̄pi)
2

2 log2 σi

)

(1.1)

where i denotes the mode, Ni(t) is the total particle number concentration, d̄pi is the
geometric mean diameter, and σi the standard deviation of the log-normal mode i.

By assuming that all particles are spherical, the size distribution of the volume con-
centration v (µm3 m−3) can be deduced from the number concentration n:

v(log dp, t) =
π

6
d3

pn(log dp, t) (1.2)

The size distribution of the mass concentration q (µg m−3) can also be computed by
assuming that all particles within a mode have the same density ρp (g cm−3):

q(log dp, t) =
(

ρp

106

)

v(log dp, t) =
(

ρp

106

)
π

6
d3

pn(log dp, t) (1.3)

where the factor 106 is needed to convert the units of density ρp from g cm−3 to µg
µm−3.



26 Chapter 1 – Introduction

In the sectional approach, the particle size distribution is described by a sum of
sections. Let us denote ni(dp, t) and qi(dp, t) the number and mass of particles of diameters
ranging between dp and dp + ddp. In each section i, the number Ni(t) and the mass
Qi(t) of particles are assumed to be constant:

Ni(t) =
∫ d+

i

d−
i

ni(dp, t) ddp (1.4)

Qi(t) =
∫ d+

i

d−
i

qi(dp, t) ddp =
π

6
ρi

∫ d+
i

d−
i

d3
p ni(dp, t) ddp (1.5)

where ρi is the density of particles, and d−
i and d+

i are the lower and upper bounds
of the section i. The diameter dp,i of particles in section i can be diagnosed using the
relation

Qi =
π

6
d3

p,i Ni (1.6)

1.3 Mixing state of particles

Generally, the mixing state of particles defines the degree of mixing between the different
chemical compounds of particles, i.e., how the chemical components are distributed among
particles. At a given location, particles of different mixing states may co-exist. For
example, let us assume that particles from a given origin have the same composition
while particles from a different origin have a different composition. Then, when particles
from these different origins meet together, if we let them co-exist and mix gradually
by coagulation, condensation/evaporation, then in a given size range, particle may have
different chemical compositions, as shown in Figure 1.5 (b), and particles are said to be
externally mixed. Alternatively, if in a given size range, particles are assumed to have a
homogeneous composition, then they are said to be internally mixed (see Figure 1.5 (a)).

In the real world, externally-mixed aerosols may be observed near emission sources.
Interactions between newly emitted particles and background aerosols and gas molecules
change the original composition of those particles, such process is known as particle
ageing. As particles age, they may loose their original identities and they may reach the
same composition as background aerosols, that is to say they become internally mixed.
However, completely externally or internally mixed particles probably rarely exist. The
mixture is likely to be something in between, i.e., an aerosol population consisting of an
external mixture of internally-mixed particles but with varying compositions. Figure 1.6
shows one of the attempt to classify measured tropospheric aerosols according to their
compositions made by Murphy et al. [2006]: a wide range of aerosol compositions can
coexist in the atmosphere, including pure sulphate particles, pure organic particles, and
mixed particles of various degrees.

Information on the mixing state of particles is very important. First, the particle
mixing state can provide essential information about source appointment and particle
ageing process. Second, the mixing state influences particle composition, hence particle
properties. For example, if particles from source A consist of pure black carbon (EC),
which is a strong absorber of sunlight but hostile to water vapour, come in contact with
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Figure 1.5: Illustration of (a) a group of internally mixed particles and (b) a group of
externally mixed particles

hydrophilic particles of ammonium-sulphate ((NH4)2SO4), the properties of EC particles
may change as they mix with the other particles. A coating layer of (NH4)2SO4 could
be formed upon the surface of EC particles, due to condensation or coagulation. The
resulting particles would be more easily activated as a cloud condensation nuclei than
EC particles. Such mixing would also modify particle’s optical properties as well. The
mixing may reduce the absorption ability of EC particles, while the scattering capability
may be strengthened as (NH4)2SO4 has a high scattering coefficient.

In order to investigate the importance of aerosol mixing state, field studies have been
conducted. The evolution of the aerosol mixing state from Long Beach to Riverside, CA
was observed by Hughes et al. [2000], where initially externally mixed sea-salt and primary
carbon particles undergo substantial changes of chemical composition during transport
by condensation of ammonium nitrate and organics. Mallet et al. [2004] found that the
observed aerosol optical properties have a better coherence with reconstructed values un-
der the assumption of an external mixture between EC and other particles. The mixing
state of mineral dust from western Sahara was investigated during the African Monsoon
Multidisciplinary Analysis project (AMMA) by Deboudt et al. [2010b]. Mineral dust
and carbonaceous and marine compounds were predominantly found externally mixed.
During the MEGAPOLI 1 campaign, Healy et al. [2012], Healy et al. [2013] and Healy
et al. [2014] conducted a series of studies on the mixing state of carbonaceous particles.
A bimodal distribution of elemental carbon (EC) particles was observed, where particles
of the smaller mode were mostly externally-mixed and locally emitted, while particles
from the larger mode were associated with continental transport event and mostly in-
ternally mixed with OM and nitrate. The diurnal evolution and source identification of
aerosols at a continental regional background site in Italy was investigated by Decesari
et al. [2014] based on observed aerosol composition and mixing state, where the mixing

1Megacities: emissions, urban, regional and Global Atmospheric POLlution and climate effects, and
Integrated tools for assessment and mitigation
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Figure 1.6: An altitude-latitude distribution of observed tropospheric aerosols and their
mixing states [Murphy et al., 2006]



Section 1.4 – Aerosol dynamics 29

Figure 1.7: Scheme of aerosol dynamics processes. [Raes et al., 2000]

state of EC was found strongly related to the meteorological regimes (enhanced stag-
nation or enhanced ventilation). Leck and Svensson [2015] revealed the importance of
aerosol composition and mixing state for CCN activation based on their observation and
numerical reconstruction in the high Arctic. Fitzgerald et al. [2015] compared the mixing
state between long-range transported Asian and African mineral dust. They found that
Asian dust was better mixed with anthropogenic pollutants and more aged than African
dust, which makes Asian dust a better candidate for CCN activation than the fresher
African dust.

The particle mixing state is controlled by several aerosol dynamic processes which are
addressed in the following section.

1.4 Aerosol dynamics

In the atmosphere, the size, the concentration and chemical composition of particles
are constantly evolving with time as a result of many processes: transport (advection,
diffusion), deposition (sedimentation, dry deposition, wet deposition), processes related to
aerosol dynamics (nucleation, coagulation, condensation and evaporation), and processes
related to the activation of particles into cloud droplets, see figure 1.7. Here, we focus on
processes related to aerosol dynamics.

1.4.1 Nucleation

Homogeneous nucleation happens when a gaseous precursor is transformed to particle
mass without a pre-existing particle surface. It generates unmixed particles into the
atmosphere.
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Nucleation requires a high supersaturation of precursor gases. Supersaturation occurs
when a chemical compound has a higher partial pressure than the saturation vapour
pressure of that compound. In the atmosphere, several processes can lead to such a state
of supersaturation [Raes et al., 2000]:

1. Gas-phase chemical reactions leading to an increase in the gas-phase concentration
of compounds with low saturation vapour pressure, such as sulfuric acid.

2. The decrease of ambient temperature leading to lower saturation vapour pressure
of precursor gases.

3. The formation of additional vapour to the system may lower the saturation pressure
of pre-existing compounds.

Under supersaturation conditions, some gas molecules may form small clusters. How-
ever, as the equilibrium vapour pressure over a spherical particle increases with increasing
curvature of the particle (Kelvin effect), most of those small clusters generally evaporate.
Only clusters exceeding a critical size can escape the evaporation fate and are able to
grow rapidly to form stable particles. So the nucleation rate is defined as the net number
of clusters per unit time that grow past a critical size [Seinfeld and Pandis, 2006].

Generally, homogeneous nucleation happens between two or more species rather than
a single compound, as the necessary saturation pressure to induce nucleation is much
lower for a mixed vapour than for each of its pure substance. An important binary nucle-
ation system in the atmosphere is that of sulphuric acid and water [Doyle, 1961]. Other
nucleation mechanisms that have been investigated include: sulphuric acid-ammonia-
water ternary nucleation [Kulmala et al., 2000], ion-induced nucleation [Yu and Turco,
2000] and nucleation of organic vapours [Hoffmann et al., 1997].

New particles created by nucleation, may grow into microscopic size (around 0.001
µm). Nucleation originated particles may slowly grow into size larger than 0.1 µm within
several days under general atmospheric conditions. However, such growth can occur
within 24 hours under polluted, urban type conditions [Raes et al., 2000].

1.4.2 Coagulation

Coagulation happens when two particles collide together to form a new particle. Such
collision is mostly caused by their Brownian motion. The Brownian motion is caused by
the random collision of quickly moving gas molecules around particles due to their thermal
motions. As a result, Brownian coagulation is often referred as thermal coagulation.
Coagulation may significantly reduce particle number concentrations, while it has no
effect on total particle mass concentration. Generally, coagulation is particularly efficient
at mixing ultra-fine particles, as they tend to have high number concentrations increasing
their collision probabilities. Beside, ultra-fine particles are more affected by Brownian
motion than fine or coarse particles, which makes them more likely to collide between
themselves than the coarse ones.

A key parameter to model the dynamic of coagulation is the Knudsen number:

Kn =
2 λ

dp

(1.7)
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with λ is the mean free path of surrounding gas and dp the particle diameter. The
Knudsen number defines three different dynamical regimes that govern the behaviour of
aerosols and their coagulation coefficient [Seinfeld and Pandis, 2006]:

1. Free molecular regime, Kn >> 1. In this regime, particles behave similarly to gas
molecules, as their diameters are relatively low compared to the mean free path
of gas molecules. The coagulation coefficient between two particles within the free
molecular regime is defined as follows:

Kf
12 =

π

4
(dp1 + dp2)

2(c̄2
1 + c̄2

2)
1/2 (1.8)

where dpi and c̄i are particle mean diameter and average thermal velocity respec-
tively.

2. Continuum regime, Kn << 1. In this regime, surrounding gas molecules act as a
continuous fluid flowing round the particles, as particle diameters are much larger
than the free mean path of gas molecules. The coagulation coefficient in this regime
is as follows:

Kc
12 = 2π(dp1 + dp2)(D1 + D2) (1.9)

where Di is the diffusion coefficient.

3. Transition regime, Kn ≈ 1. This regime includes all the particles between the free
molecular and continuum regimes. They are influenced by a complex combina-
tion of macroscopic forces and microscopic interactions with gas molecules. The
coagulation coefficient in this regime equals to the coefficient of continuum regime
corrected by a factor β:

Kt
12 = 2π(dp1 + dp2)

2(D1 + Dd2)β (1.10)

β =
dp1 + dp2

dp1 + dp2 + 2(g2
1 + g2

2)1/2
+

8(D1 + D2)

(c̄2
1 + c̄2

2)
1/2(dp1 + dp2)

(1.11)

with:

gi =
1

3dpili
[(dpi + li)

3 − (d2
pi + l2

i )3/2] − dpi , li =
8Di

πc̄i
(1.12)

1.4.3 Condensation and evaporation

Generally, particles constantly interact with surrounding gas, which can either condense
or evaporate from the particle surface. Such interactions between gas and particles are
controlled by the difference between the vapour pressure of the gas and its equilibrium
vapour pressure at the particle surface. When the vapour pressure is higher than the
surface equilibrium pressure, molecules go from the gas phase into the particle phase and
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cause particle growth (condensation). On the contrary, when the vapour pressure is lower
than the surface equilibrium pressure, evaporation occurs and particles shrink.

According to [Seinfeld and Pandis, 2006], the mass changing rate of a particle with
diameter dp as a result of condensation/evaporation of species i between the gas and
particle phases can be described by:

Ii =
dmi

dt
=

2πdpDiMi

RT
f(Kn, αi)(pi − peq

i ) (1.13)

where T is the temperature, R is the ideal gas constant, Di represents the diffusion
coefficient of species i in air, Mi is its molecular weight, and f(Kn, α) is a correction
factor due to non-continuum effect and imperfect surface accommodation (αi) [Dahneke,
1983]:

f(Kn, αi) =
1 + Kn

1 + 2Kn(1 + Kn)/αi

(1.14)

The last term on the right hand side of equation (1.13) represent the driving force of
condensation and evaporation as pi is the vapour pressure and peq

i is the equilibrium
vapour pressure. Based on the ideal gas low, equation (1.13) can also be expressed by
the difference between the gas concentration ci and the local equilibrium concentration
ceq

i :

Ii =
dmi

dt
= 2πdpDif(Kn, αi)(ci − Ke(dp)ceq

i ) (1.15)

where Ke(dp) models the Kelvin effect which describes the influence of particle curvature
on equilibrium vapour pressure (the vapour pressure of a curved surface is higher than a
flat surface):

Ke(dp) = exp

(

4σvp

RTdp

)

(1.16)

with σ the particle surface tension and vp the particle molar volume.
In opposite to coagulation, condensation and evaporation do not influence particle

number, but they can significantly modify particle mass concentration as well as their
chemical composition. Actually, the most abundant condensing gas is water vapour. Un-
der high relative humidity, the condensation of water vapour can lead to a significant
growth of particle wet diameter and activates it into a cloud droplet. The original parti-
cle is then referred to as a cloud condensation nuclei. Sulphuric acid gas, with extremely
low surface equilibrium vapour pressure, is another important condensible gas. Once con-
densed, sulphuric acid rarely evaporates as its peq

i ≈ 0. Other condensible species include
nitric acid, ammonia, hydrogen chloride and semi-volatile organic species. Condensation
is responsible for the formation of coating layers observed in many particles [Levin et al.,
1996; Deboudt et al., 2010b]. One classical case of particle composition variation due to
condensation and evaporation is the chloride depletion in sea salt particles when hydrogen
chloride evaporates while nitric acid or sulfuric acid condense [McInnes et al., 1994].

1.4.4 General dynamic equation

The general dynamic equation (GDE) describes the time evolution of aerosol populations
caused by the aerosol dynamic processes mentioned in former sections. The GDE has a
fundamental importance in understanding and modelling aerosol dynamic processes.
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Depending on whether the aerosol size distribution is represented as discrete or con-
tinuous and what physical and chemical phenomena are included, GDE can exist in many
forms [Gelbard and Seinfeld, 1979]. Here, we represent the GDE in form of continuous
number and mass distributions with nucleation, coagulation and condensation/evapora-
tion(c/e) processes.

First, the particle size distribution at a given time t can be described by a continuous
density function of particle number: n(m, t), with n(m, t)dm (# m−3) representing the
number concentration between m and m+dm, where m corresponds to the signal particle
mass at a given size dp. Similarly, the mass distribution of a species Xi can be described
by qi(m, t), with qi(m, t)dm (µg m−3) representing the mass concentration of Xi between
m and m+dm. Under such assumption, the mass of Xi within particles can be determined
by:

mi(m, t) =
qi(m, t)

n(m, t)
(1.17)

While the total mass distribution can be expressed as:

q(m, t) =
s∑

i=0

qi(m, t) = m n(m, t) (1.18)

where s is the total number of species within the particle.
Based on the former assumptions, the GDE for number distribution can be expressed

as follows:

∂n

∂t
(m, t) =

1

2

∫ m−m0

m0

K(u, m − u)n(u, t)n(m − u, t)du
︸ ︷︷ ︸

coagulation gain

− n(m, t)
∫ ∞

m0

K(m, u)n(u, t)du
︸ ︷︷ ︸

coagulation loss

− ∂(I0n)

∂m
︸ ︷︷ ︸

c/e size advection

+ δ(m, m0)J0(t)
︸ ︷︷ ︸

nucleation

(1.19)

Here, the smallest particle mass is defined by m0, which corresponds to the mass of fresh
particles generated by nucleation. The K(u, v), expressed in m3.s−1, represent the coag-
ulation coefficient between two particles of mass u and v. As discussed in section 1.4.2,
the K value varies with the particle dynamical regimes and can be computed based on
equations (1.8) to (1.10). The term I0(m, t) represents the particle growing rate due to
c/e process, expressed in µg s−1. Although the total number is not influenced by c/e pro-

cess, the term
∂(I0n)

∂m
represents the fact that the particle number distribution is shifted

toward higher or lower mass regimes by c/e, due to their size evolution. Finally, the term
J0(t) represent the nucleation rate, in # m−3 s−1, that is the number of particles created
by nucleation within a unit volume of a unit time. The δ(m, m0) is a Dirac function at
m0, which limits the mass (and therefore size) of nucleated particles to particles of mass
m0.
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Similarly, the GDE for mass distribution of species Xi can be described as follows:

∂qi

∂t
(m, t) =

1

2

∫ m−m0

m0

K(u, m − u)qi(u, t)n(m − u, t)du
︸ ︷︷ ︸

coagulation gain

− qi(m, t)
∫ ∞

m0

K(m, u)n(u, t)du
︸ ︷︷ ︸

coagulation loss

− ∂(I0qi)

∂m
︸ ︷︷ ︸

c/e size advection

+ (Ii n)(m, t)
︸ ︷︷ ︸

c/e transport of Xi

+ δ(m, m0)J0(t)mi
︸ ︷︷ ︸

nucleation

(1.20)

The new term (Ii n)(m, t) corresponds to the gain or lost of species Xi for the particle of
mass m by condensation/evaporation. Ii is the mass transfer rate between the gas and
aerosol phase as described in equation (1.15) and I0 =

∑s
i=0 Ii.

1.5 Air quality modelling

1.5.1 Chemical transport models

A chemical transport model (CTM) is designed to investigate the evolution of chemical
concentrations, including gas, particles, ice and water droplets, over predefined spatial
scales, such as local, continental or global. Such evolution is related to multiple pro-
cesses including emissions, meteorology, physico-chemical transformations, transport and
removal processes. All those processes are usually included in CTMs as detailed in figure
1.8. A wide variety of CTMs have been developed since 1970s for air quality impact
and scenario studies [Seinfeld, 2004]. They can be classified depending on whether or
not they compute meteorology: in on-line models, such as WRF-CHEM [Grell et al.,
2005], meteorological fields are computed in the CTM, whereas in off-line models, such
as CMAQ [Byun and Schere, 2006], POLYPHEMUS [Sartelet et al., 2007] or CHIMERE
[Schmidt et al., 2001], meteorology is an input data of the model. Off-line models do not
allow to model the interactions between aerosols and meteorology, but they have shorter
computational times than on-line models. This thesis focuses on off-line models.

The following equation describes the time evolutions of chemical concentrations which
are solved in off-line CTMs [Seinfeld and Pandis, 2006]:

∂ci

∂t
= (

∂ci

∂t
)adv + (

∂ci

∂t
)dif + (

∂ci

∂t
)cloud + (

∂ci

∂t
)dry + (

∂ci

∂t
)aeros + Rgi + Ei (1.21)

where ci represents the concentration of species i; (∂ci/∂t)adv =div(V ci) represents the
time derivative of ci due to advection, which can be express as a function of the wind
velocity V ; (∂ci/∂t)dif represents the time derivative of ci due to diffusion; (∂ci/∂t)cloud

represents the influence of cloud processes including cloud scavenging, evaporation of
cloud droplets, aqueous-phase reactions, wet deposition; the dry deposition due to grav-
itational sedimentation or interception is described by the term (∂ci/∂t)dry. Besides,
aerosol processes (exchange between gas and particle phases, aerosol dynamics, etc.) is
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Figure 1.8: Processes described in CTMs. [Sportisse, 2008]

represented by (∂ci/∂t)aeros. Finally, Rgi is the net production from gas-phase reactions
and Ei is the emission rate.

Thanks to the rapid advancement of computational abilities, CTMs are able to include
more and more atmospheric processes as well as more detailed parametrizations. The
Polyphemus air-quality platform [Mallet et al., 2007] includes a CTM and it is capable
of implementing some advanced methods such as model coupling and data assimilation
[Wang et al., 2013]. It is the hosting platform of the aerosol model developed in this
thesis. The overall architecture of Polyphemus is now described.

In Polyphemus, an air quality simulation is conducted in three steps. First, as an
off-line model, large amount of initial data is generated within the preprocessing step,
including land-use informations, meteorological data, initial and boundary conditions,
and emission inventories. The second part is the processing step, where numerical mod-
els (e.g., the Eulerian chemistry-transport model) solve the time integration of equation
(1.21). During the simulation, concentrations at each simulation time step can be saved.
A driver component is designed as a shell to manage numerical models and provides a
possible interface for data assimilation and other high-level methods. Finally, concen-
trations and aerosol optical depths can be compared and analysed by Python scripts or
additional programs contained in the post-processing component.

Several numerical models are available in the processing part, including Gaussian and
Eulerian models. Here, the chemistry transport model Polair3D [Sartelet et al., 2007]
is used. In the Polair3D/Polyphemus model, processes described in equation (1.21) are
split and solved in a sequential way. Let ∆t be the splitting time step, then at each
time t, the splitting is performed in the following order: advection, diffusion, gas-phase
chemistry, particle or cloud processes.

The advantage of using Polair3D is that it is well structured and very flexible to new
solvers. Actually, most of processes within Polair3D is solved by independent modules,
and it is easy to switch between different numerical methods/parameterizations. For ex-
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ample, for the advection and diffusion, several transport modules have been developed
with different numerical integration methods; for the gas-phase chemistry, multiple chem-
ical mechanisms can be used such as RACM [Stockwell et al., 1997], RACM2 [Goliff and
Stockwell, 2008] and CB05 [Yarwood et al., 2005]. Particles are solved using the sec-
tional model SIREAM [Debry et al., 2007b]. The aerosol model developed in this thesis
is integrated into Polair3D as an alternative of SIREAM.

1.5.2 Aerosol modelling

Since the early 1980s, efforts have been made to model aerosol dynamic processes in 3-D
CTMs [Gelbard and Seinfeld, 1980]. Most of the existing aerosol models can be classified
into two types based on the approach used to represent the particle size distribution:
a modal approach (e.g., [Whitby and McMurry, 1997]; [Binkowski and Roselle, 2003];
[Sartelet et al., 2006]), where the overall size distribution is represented by a sum of log-
normal modes, a sectional or size-resolved approach (e.g., [Gelbard et al., 1980]; [Zhang
et al., 2004]; [Debry et al., 2007b]), where the overall size distribution is represented by a
discrete number of size sections. One advantage of modal models is that they generally
need less computational resources, as they use a limited number of modes. However,
their abilities to represent the evolution of the size distribution may be more limited
than sectional models [Mann et al., 2012], partly because of the difficulties associated
to the modelling of the Kelvin effect [Devilliers et al., 2012]. The sectional model used
in Polair3D/Polyphemus is SIREAM [Debry et al., 2007b]. Like most of current aerosol
models, SIREAM assumes that particles are internally mixed. The internal-mixing as-
sumption assumes that particles from different origins, but same size section, mix instan-
taneously when they meet: all particles within one size section are considered to have a
homogeneous composition. However, as discussed in section 1.3, particles with different
compositions may coexist in the atmosphere. In reality, only very aged particles may
reach an homogeneous composition and can be considered as internally mixed. However,
close to emission sources, particles are more likely to be externally mixed. The internal-
mixing assumption requires less computational resources, but valuable information about
particle origins as well as their mixing states is lost. Furthermore, the mixing state of par-
ticles could influence particle properties and their chemical evolutions. Thus, alternative
schemes, which can represent multiple particle compositions within one size section, have
been proposed and they are referred to as external-mixing models. A source-oriented
model was developed by Kleeman et al. [1997] and Kleeman and Cass [2001] for regional
modelling. In these models, each source is associated with a specific aerosol population,
which may evolve in terms of size distribution and chemical composition, but does not
mix with the other sources (i.e., particle coagulation is neglected). Riemer et al. [2009]
modelled externally-mixed particles using a stochastic approach. However, such an ap-
proach is computationally expensive when the number of particle species is high. On the
other hand, Stier et al. [2005] and Bauer et al. [2008] simulated externally mixed particles
using modal aerosol models, where aerosol populations with different mixing states are
represented by modes of different compositions (soluble/mixed or insoluble/not mixed).
Although these models may be computationally efficient, they may not model accurately
the dynamics of mixing. To represent externally-mixed particles independently of their
sources and number concentrations, Jacobson et al. [1994] and Lu and Bowman [2010]
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considered particles that can be either internally- or externally-mixed (i.e., composed
of a pure chemical species). Lu and Bowman [2010] used a threshold mass fraction to
define whether the species is of significant concentration. Jacobson [2002a] expanded on
Jacobson et al. [1994] by allowing particles to have different mass fractions. Similarly,
Oshima et al. [2009b] discretised the fraction of black carbon in the total particle mass
into sections of different chemical compositions.

Dergaoui et al. [2013] further expanded on these modelling approaches by discretising
the mass fraction of chemical species into sections, as well as the size distribution. For each
size section, the mass fraction of each species is discretised into sections F +

h− = [F −
h , F +

h ]
(h varies from 1 to the number of mass fraction sections nf with F −

1 = 0, F −
nf

= 1 and
F −

h = F +
h−1]), leading to a variety of possible particle compositions. Assuming that it is

possible to have up to c chemical species in particles, let us denote fi the mass fraction
of species Xi (1 ≤ i ≤ c). Each particle is associated with a mass fraction vector ~f =

(f1, f2, · · · , f(c−1)), which defines the particle composition/ ~Pg = (F +
g1−, F +

g2−, · · · , F +
g(c−1)−

)

with fi ∈ F +
gi−

. For a particle composition to be valid,
∑(c−1)

i=1 F −
gi

6 1 must be satisfied.
Note that fc is not specified because it is constrained by mass conservation (fc = 1 −
∑(c−1)

i=1 fi). Based on this discretization, Dergaoui et al. [2013] derived the equation for
coagulation and validated their model by comparing the results obtained for internal and
external mixing. However, processes such as condensation/evaporation and nucleation
were not modelled.

1.5.3 Model performance evaluation

In order to assess the reliability of model simulations, it is necessary to have appropriate
methods and criteria to evaluate the model performance. Doll [1991] and Russell and
Dennis [2000])recommended to use the mean normalised bias error (MNBE) and the
mean normalised gross error (MNGE) as the key statistics to evaluate simulated chemical
concentrations (e.g., ozone) with observational data:

MNBE =
1

N

n∑

i=1

si − oi

oi
(1.22)

MNGE =
1

N

n∑

i=1

| si − oi |
oi

(1.23)

where n is the number of available observations, while si (i=i,n) and oi (i=1,n) are the
simulated and observed values, respectively. The suggested performance criteria is MNBE
≤ 15% and MNGE ≤ 30%.

However,Seigneur et al. [2000] pointed out that using normalized error and bias may
cause misleading conclusions about the model performance, as the error may be artificially
high in case of over predictions (no limits) compared to the under-predictions case (limited
by -1). So they suggested to use fractional error and bias for the statistical evaluations.
The mean fractional bias MFB (%) and the mean fractional error MFE (%) are defined
as follows:

MFB =
1

N

n∑

i=1

si − oi

(si + oi)/2
(1.24)
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MFE =
1

N

n∑

i=1

| si − oi |
(si + oi)/2

(1.25)

Based upon an analysis of numerous PM modelling studies, Boylan and Russell [2006]
proposed a PM model performance goal and criterion. The model performance goal is
considered as the level of accuracy which is expected to be achieved by the best models.
The model performance criterion corresponds to the level of accuracy that is considered
to be acceptable for modelling applications, such as forecast of pollutants and regulatory
applications. The criteria to meet the performance goal is defined as MFB in the range
of [30 %, 30 %] and MFE in the range [0 %, 50 %]. If both the MFB and MFE are in the
range [60 %, 60 %] and [0 %, 75 %] respectively, the model performance criterion is met.

In addition, other statistical measures such as the root mean square error (RMSE)
and the (Pearson) correlation can also be helpful for the performance evaluation. The
RMSE is defined as the square of the deviation of the model from observations. It is
defined as follows:

RMSE =

√
√
√
√

1

N

n∑

i=1

(oi − si)2 (1.26)

The correlation can be computed with the following equation:

correlation =

∑n
i=1(oi − ō)(si − s̄)

√
∑n

i=1(oi − ō)2
∑n

i=1(si − s̄)2
(1.27)

with s̄ and ō the arithmetic averages of all simulated and observed values respectively.

1.6 Objectives and plan of thesis

This work presents an externally-mixed model that takes into account all the known
processes related to aerosol dynamic and that can be used for air-quality simulations.
The discretization scheme of Dergaoui et al. [2013] is used as it discretizes both the size
and the composition distributions. The model developed by Dergaoui et al. [2013] takes
into account coagulation. It is further developed to take into account condensation/e-
vaporation and nucleation processes. The model is then integrated into the Polyphe-
mus platform and its performance is evaluated through 3 Dimension (3-D) simulations
and comparisons, with observations. This work aims at improving our understanding of
mixing processes between different particle populations, as well as the influence of the
mixing-state assumption on particle concentrations and properties, such as optical and
hygroscopic properties. This thesis is organised as follows.

In chapter 2, the methodology and numerical structure of the Size-Composition Re-
solved Aerosol Model (SCRAM) is presented. The model is first validated by comparison
with a reference solution and with results of simulations for internally-mixed particles.
The degree of mixing of particles is investigated in a box model simulation using data rep-
resentative of air pollution in Greater Paris. The relative influence of the different aerosol
processes on the mixing state and of the algorithm used to model condensation/evapora-
tion is studied.

In chapter 3, the ability of SCRAM to simulate externally-mixed particles in a 3-
D environment is investigated, by integrating SCRAM into the Polyphemus air-quality
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modelling platform. Simulation results with different mixing-state assumptions as well as
different condensation/evaporation solvers are presented. The model performance to sim-
ulate PM2.5, PM10 and aerosol optical depths are evaluated through comparisons between
simulation results and observations. Besides, the evolution and the spatial distribution of
the mixing state of black carbon (EC) particles are investigated. Furthermore, the influ-
ence of the mixing-state assumption on particles optical properties and on the formation
of cloud condensation nuclei is studied.

In chapter 4, simulations are conducted during January 2010 where the compositions
of individual particles were measured during the winter campaign of Megapoli. The
simulation of both bulk concentrations of chemical species and the concentrations of
individual particle classes are compared with the observations of [Healy et al., 2012].
Then, the single particle diversity and the mixing-state index are computed based on the
quantification approach developed by [Riemer and West, 2013], and compared with the
observation based analyses of [Healy et al., 2014].

Finally, in Chapter 5, we summarize the results found in the previous chapters and
give conclusions of this work. This chapter also describes possible future directions and
perspectives on the basis of the present simulation results.
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Chapter 2

A size-composition resolved aerosol
model for simulating the dynamics
of externally-mixed particles:
SCRAM (v 1.0)

Résumé

Ce chapitre présente un nouveau modèle SCRAM (Size and Composition Resolved Aerosol
Model) pour simuler la dynamique des particules dans l’atmosphère (nucléation, coagula-
tion, condensation / évaporation) en prenant en compte leur état de mélange. Le modèle
SCRAM est un modèle 0-D basé sur le schéma de discrétisation défini par Dergaoui et al.
[2013], où les particules sont classées à la fois selon leurs tailles et leurs compositions.
Pour définir les compositions, on discrétise d’abord en sections les fractions massiques de
composés chimiques des particules ou d’ensembles de composés chimiques. Les compo-
sitions des particules sont ensuite définies par les combinaisons des sections de fractions
massiques. Les trois processus principaux impliqués dans la dynamique des aérosols (la
coagulation, la condensation / évaporation et la nucléation) sont inclus dans SCRAM.
SCRAM est validé par comparaison avec des simulations « académiques » publiées dans
la littérature de coagulation et condensation/évaporation pour des particules en mélange
interne. L’impact de l’hypothèse de mélange externe pour ces simulations est notamment
étudié. L’impact du degré de mélange sur les concentrations de particules est ensuite
étudié dans une simulation 0-D en utilisant des données représentatives d’un site trafic
en Ile de France. L’influence relative sur l’état de mélange des différents processus in-
fluençant la dynamique des particules (condensation / évaporation, coagulation) et de
l’algorithme utilisé pour modéliser la condensation / évaporation (hypothèse d’équilibre
entre les phases gazeuse et particulaire, ou bien modélisation dynamique des échanges
gaz/particules) est étudiée. Pour le moment, SCRAM ne peut modéliser dynamiquement
les échanges gaz/particules que pour les composés inorganiques. Dans le cas étudié, on
constate que la coagulation est très efficace à mélanger les particules (le pourcentage des
concentrations en nombre et en masse des particules mélangées diminue lorsque la coagu-
lation n’est pas prise en compte dans la simulation). La condensation peut éventuellement
diminuer le pourcentage de particules mélangées, quand une grosse quantité de gaz peu
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externally-mixed particles: SCRAM (v 1.0)

(a) Internal mixing (b) External mixing

Figure 2.1: Particle discretization schemes used in internal (a) and external (b) mixing
aerosol models.

volatiles (comme des organiques) condensent, créant des particules formées principale-
ment par ces gaz. Des simulations faites avec l’hypothèse de mélange interne (MI) et
mélange externe (ME) sont comparées. Utiliser l’approche équilibre pour la condensa-
tion/évaporation conduit à des distributions de particules en taille et en composition
similaires entre ME et MI. De plus grandes différences entre MI et ME sont observées
avec l’approche dynamique. Ce travail a été publié dans Geoscientific Model Development
(GMD) [Zhu et al., 2015a].

Preamble

In this chapter, a model for simulating externally-mixed particles is developed based
on the size-composition discretization scheme of Dergaoui et al. [2013]. As discussed in
section 1.5.2, in most air-quality models, particles are only discretized based on their
size (see figure 2.1 (a)) and the mixing state between different particle populations is not
represented. In order to study the particle mixing state, externally-mixed aerosol models
have been developed (e.g., Jacobson et al. [1994], Jacobson [2002a], Oshima et al. [2009b],
Lu and Bowman [2010]), Dergaoui et al. [2013]). The discretization scheme of Dergaoui
et al. [2013] is used here, as it discretizes both the size and the composition of particles,
as shown in figure 2.1 (b).

To illustrate the discretization of Dergaoui et al. [2013], let us consider a given particle
p of size dp and mass mp with sp chemical components or species. The particle can be
categorized into the discretized section represented by the vector ~Pj of size-section index
js and composition-section index jc. The size index js is such that dp is within the
size bounds [djs

, djs+1]; the composition index jc is such that the mass fraction fcsp
=

msp/mp of any chemical component sp is within the fraction bounds [f−
jcsp

, f+
jcsp

]. A
composition section jc is defined as a combination of the mass-fraction ranges of the
different chemical components, i.e. jc = (jcsp

) for sp varying between 1 and the number
of chemical components.

Let us take the example of two chemical components A, B and C, discretized with
two mass-fraction sections: [0%, 50%] and [51%, 100%]. If the mass fraction of the third
species is computed through mass conservation, there are in total 4 possible combinations
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of the mass-fraction sections: (A[0%, 50%], B[51%, 100%]), (A[51%, 100%], B[0%, 50%]),
(A[0%, 50%], B[0%, 50%]), (A[51%, 100%], B[51%, 100%]). However, the last combina-
tion is unrealistic as the total mass fraction would be larger than 100%. Therefore,
only the first three combinations can be considered as realistic compositions. The same
method applies for c chemical components. When generating the particle compositions
sections, the mass fractions of the first c − 1 components are discretized into Nf fraction
ranges each. The hth fraction range is represented by F +

h− = [f−
h , f+

h ] where F +
h−1 = f−

h

(f−
1 = 0 and f+

Nf
= 1). So in total N c−1

f combinations exist. However, among them, only

those satisfying
∑(c−1)

sp=1 F −
hsp

6 1 is realistic and are kept as the final composition sections.
In the work of Dergaoui et al. [2013] such generation and selection of composition sections
are conducted manually, which is only feasible when c and Nf are small. So, one of our
first work was to develop and integrate an automatic composition generation algorithm.
In this algorithm, all the fraction combinations are determined, and the combination is
kept only if it is realistic. All the possible combination sections are then automatically
generated.

The external-mixing model is named the Size-Composition Resolved Aerosol Model
(SCRAM). It includes all three main processes involved in aerosol dynamics (coagulation,
condensation/evaporation and nucleation). The model is first validated by comparison
with a reference solution and with results of simulations using internally-mixed particles.
The degree of mixing of particles is investigated in a box model simulation using data
representative of air pollution in Greater Paris. The relative influence on the mixing
state of the different aerosol processes (condensation/evaporation, coagulation) and of
the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is
also studied.

Ce chapitre est constitué de:
Zhu, S., Sartelet, K. N., Seigneur, C. : A size-composition resolved aerosol model
for simulating the dynamics of externally mixed particles: SCRAM (v 1.0),
Geosci. Model Dev., 8 (6), 1595-1612, 2015, doi:10.5194/gmd-8-1595-2015
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Abstract

A Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of
externally-mixed atmospheric particles is presented. This new model classifies aerosols by
both composition and size, based on a comprehensive combination of all chemical species
and their mass-fraction sections. All three main processes involved in aerosol dynamics
(coagulation, condensation/evaporation and nucleation) are included. The model is first
validated by comparison with a reference solution and with results of simulations using
internally-mixed particles. The importance of representing the mixing state when mod-
elling atmospheric aerosol concentrations is investigated in a box model simulation using
data representative of air pollution in Greater Paris.
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2.1 Introduction

Increasing attention is being paid to atmospheric particulate matter (PM), which is a
major contributor to air pollution issues ranging from adverse health effects to visibility
impairment [EPA, 2009; Pascal et al., 2013]. Concentrations of PM2.5 and PM10 are
regulated in many countries, especially in North America and Europe. For example,
regulatory concentration thresholds of 12 and 20 µg m−3 have been set for PM2.5 annual
mass concentrations in the United States and Europe, respectively. Furthermore, particles
influence the Earth’s energy balance and global climate change [Myhre et al., 2013].

Three-dimensional chemical-transport models (CTM) are often used to study and fore-
cast the formation and distribution of PM. The size distribution of particles is often dis-
cretised into sections [e.g., Gelbard and Seinfeld, 1980; Zhang et al., 2004; Sartelet et al.,
2007] or approximated by log-normal modes [e.g., Whitby and McMurry, 1997; Binkowski
and Roselle, 2003]. Moreover, CTM usually assume that particles are internally-mixed,
i.e. each size section or log-normal mode has the same chemical composition, which may
vary in space and time.

The internal-mixing assumption implies that particles of a same diameter (or in the
same size section or log-normal mode) but originating from different sources have under-
gone sufficient mixing to achieve a common chemical composition for a given model grid
cell and time. Although this assumption may be realistic far from emission sources, it may
not be valid close to emission sources where the composition of new emitted particles can
be very different from either background particles or particles from other sources. Usually,
internally- and externally-mixed particles are not differentiated in most measurements,
which may be size-resolved (e.g., cascade impactors) but not particle specific [McMurry,
2000]. The use of mass spectrometers for individual particle analysis has shed valuable
information on the chemical composition of individual particles. Consequently, there is a
growing body of observations indicating that particles are mostly externally mixed [e.g.,
Hughes et al., 2000; Mallet et al., 2004; Healy et al., 2012; Deboudt et al., 2010a].

The mixing state assumption may strongly influence aerosol chemistry and the hygro-
scopic characteristics of particles. Particles from different origins may not be well mixed,
and their chemical composition may vary with their origins, leading to variations in their
hygroscopic characteristics. This chemical identity of particles is gradually lost as the
degree of mixing increases (or completely lost under the internal mixing assumption). By
influencing the hygroscopic characteristics of particles, the mixing state also influences
the formation of secondary organic aerosols (SOA), because condensation/evaporation
differs for species that are hydrophilic and/or hydrophobic [Couvidat et al., 2012]. As
the particle wet diameter is strongly related to the hygroscopic properties of particles,
the mixing state also impacts particle wet diameters and the number of particles that
become cloud condensation nuclei (CCN), because the activation of particles into CCN is
strongly related to the particle wet diameter [Leck and Svensson, 2015]. By influencing
CCN, the mixing state also affects aerosol wet removal and thus the aerosol spatial/tem-
poral distribution. Besides, the mixing state influences the particle optical properties,
which depend on both the particle size distribution (wet diameters) and composition (dif-
ferent chemical species possess different absorption/scattering properties). Lesins et al.
[2002a] found that the percentage difference in the optical properties between an internal
mixture and external mixture of black carbon and ammonium sulphate can be over 50%
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for wet aerosols. The mixing state may also influence radiative forcing, as shown by Ja-
cobson [2001] who obtained different direct forcing results between external and internal
mixing simulations of black carbon.

Although CTM usually assume that particles are internally-mixed, several models
have been developed during the last sesquidecade to represent the external mixture of
particles. A source-oriented model was developed by Kleeman et al. [1997] and Kleeman
and Cass [2001] for regional modelling. In these models, each source is associated with
a specific aerosol population, which may evolve in terms of size distribution and chem-
ical composition, but does not mix with the other sources (i.e., particle coagulation is
neglected). Riemer et al. [2009] modelled externally-mixed particles using a stochastic
approach. However, such an approach is computationally expensive when the number of
particle species is high. On the other hand, Stier et al. [2005] and Bauer et al. [2008]
simulate externally mixed particles using modal aerosol models, where aerosol popula-
tions with different mixing states are represented by modes of different compositions
(soluble/mixed or insoluble/not mixed). Although these models may be computationally
efficient, they may not model accurately the dynamics of mixing. To represent externally-
mixed particles independently of their sources and number concentrations, Jacobson et al.
[1994] and Lu and Bowman [2010] considered particles that can be either internally- or
externally-mixed (i.e., composed of a pure chemical species). Lu and Bowman [2010] used
a threshold mass fraction to define whether the species is of significant concentration. Ja-
cobson [2002a] expanded on Jacobson et al. [1994] by allowing particles to have different
mass fractions. Similarly, Oshima et al. [2009b] discretised the fraction of black carbon
in the total particle mass into sections of different chemical compositions. Dergaoui et al.
[2013] further expanded on these modelling approaches by discretising the mass fraction
of any chemical species into sections, as well as the size distribution (see Section 2.2.1.3
for details). Based on this discretisation, Dergaoui et al. [2013] derived the equation
for coagulation and validated their model by comparing the results obtained for internal
and external mixing, as well as by comparing both approaches against an exact solution.
However, processes such as condensation/evaporation and nucleation were not modelled.

This work presents a new Size-composition Resolved Aerosol Model (SCRAM), which
expands on the model of Dergaoui et al. [2013] by including condensation/evaporation
and nucleation processes. Section 2 describes the model. Equations for the dynamic
evolution of particles by condensation/evaporation are derived. A thermodynamic equi-
librium method may be used in SCRAM to compute the evolution of the particle chemical
composition by condensation/evaporation. Redistribution algorithms, which allow sec-
tion bounds not to vary, are also presented for future 3D applications. Model validation
is presented in Section 3 by comparing the changes in the particle size distribution due
to condensational growth for both externally- and internally-mixed particles. Section 4
presents an application of the model with realistic concentrations over Greater Paris.

2.2 Model Description

This section presents the aerosol general dynamic equations and the structure of the
model. First, the formulation of the dynamic evolution of the aerosol size distribution
and chemical composition by condensation-evaporation is introduced. Since it is nec-
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essary in 3D CTM to maintain fixed size and composition section bounds, we present
algorithms to redistribute particle mass and number according to fixed section bounds.
For computational efficiency, a bulk equilibrium method, which assumes an instanta-
neous equilibrium between the gas and particle phases, is introduced. Finally, the overall
structure of the model is described. In particular, the treatment of the different mixing
processes to ensure the numerical stability of the model is discussed.

Particle dynamics is mostly governed by three processes: coagulation, condensation/e-
vaporation, and nucleation. Nucleation refers to the formation of ultra fine particles from
gaseous molecules. SCRAM uses the parametrisation of Vehkamäki et al. [2002] for the
homogeneous binary nucleation of sulphate and water. It was adopted from the existing
SIREAM code [Debry et al., 2007a]. It may be replaced by a better parametrisation in
future versions, because it may lead to unrealistic results under some extreme conditions
[Zhang et al., 2010]. For coagulation, SCRAM uses the code of Dergaoui et al. [2013]
to simulate the collisions of particles caused by Brownian motion. Condensation/evapo-
ration describe the mass transfer process between the gas and the particle phases. It is
essentially to include condensation/evaporation, because this process not only largely in-
fluences the size distribution of aerosols, but may also change the composition of particles
significantly.

2.2.1 Condensation-Evaporation Algorithm

The focus of the following subsections is the formulation and implementation of the con-
densation/evaporation process. A lagrangian approach is used to solve the equations
of change for the mass and number concentrations, which are redistributed onto fixed
sections through a redistribution algorithm (moving diameter, Jacobson [1997]). Equa-
tions are derived to describe the change with time of the mass concentrations of chemical
species in terms of particle compositions.

2.2.1.1 Dynamic equation for condensation/evaporation

Let us denote mi the mass concentration of species Xi (1 ≤ i ≤ c) in a particle and
~x the vector representing the mass composition of the particle ~x = (m1, m2, · · · , mc).
Following Riemer et al. [2009], the change with time of the number concentration n(~x, t)
(m−3 µg−1) of multi-species particles by condensation/evaporation can be represented by
the following equation:

∂n

∂t
= −

c∑

i=1

∂(Iin)

∂mi
(2.1)

where Ii (µg s−1) is the mass transfer rate between the gas and particle phases for species
Xi. It may be written as follows:

Ii =
∂mi

∂t
= 2π Dg

i dp f(Kn, αi)(c
g
i (t) − Ke(dp) ceq

i (~x, t)) (2.2)

where Dg
i is the molecular diffusivity of condensing/evaporating species in the air, and

dp and cg
i are the particle wet diameter and the gas phase concentration of species Xi,

respectively. Non-continuous effects are described by f(Kn, αi) [Dahneke, 1983] which
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depends on the Knudsen number, Kn =
2λ

dp
(with λ the air mean free path), and on the

accommodation coefficient αi = 0.5:

f(Kn, αi) =
1 + Kn

1 + 2Kn(1 + Kn)/αi
(2.3)

Ke(dp) represents the Kelvin effect (for ultra fine particles, the curvature tends to inhibit
condensation):

Ke(dp) = exp

(

4 σ vp

R T dp

)

(2.4)

with R the ideal gas constant, σ the particle surface tension and vp the particle molar
volume. The local equilibrium gas concentration ceq

i is computed using the reverse mode
of the thermodynamic model ISORROPIA V1.7 [Nenes et al., 1998] for inorganic com-
pounds. In the current version of SCRAM, organic compounds are assumed to be at
thermodynamic equilibrium with the gas phase and condensation/evaporation is com-
puted as described in Section 2.2.2.

2.2.1.2 Dynamic equation as a function of mass fractions

Following the composition discretisation method of Dergaoui et al. [2013] (detailed in
Section 2.2.1.3), each particle is represented by a vector ~p=( ~f, m), which contains the
mass fraction vector ~f=(f1, f2, · · · , f(c−1)) of the first (c − 1) species and the total mass
m =

∑c
i=1 mi.

In Equation (2.1), the chemical composition of particles is described by the vector
~x, which contains the mass concentration of each species. After the change of variable
through a [c × c] Jacobian matrix from n(~x, t) to n̄(~p, t) (see Appendix A for detail),
Equation (2.1) becomes:

∂n̄

∂t
= −

(c−1)
∑

i=1

∂(Hin̄)

∂fi
− ∂(I0n̄)

∂m
(2.5)

with I0 =
∑c

i=1 Ii, Hi =
∂fi

∂t
. As fi =

mi

m
is the mass fraction of species (or group of

species) Xi, we may write:

Hi =
1

m

∂mi

∂t
− mi

m2

∂m

∂t
=

Ii − fiI0

m
(2.6)

The change with time of qi = n mi, the mass concentration of species Xi, can be
expressed as follows:

∂qi

∂t
=

∂n

∂t
mi +

∂mi

∂t
n (2.7)

After the change of variables from qi(~x, t) to q̄i(~p, t) (see Appendix A), Equation (2.7)
becomes:

∂q̄i

∂t
= −m fi

∂n̄

∂t
+ n̄ Ii (2.8)
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2.2.1.3 Discretisation

As SCRAM is a size-composition resolved model, both particle size and composition are
discretised into sections, while the numbers and bounds of both size and composition
sections can be customised by the user. The particle mass distribution Q[mmin, mmax]
is first divided into Nb size sections [m−

k , m+
k ] (k = 1, ..., Nb and m+

k−1 = m−
k ), defined

by discretising particle diameters [dmin, dmax] with dmin and dmax, the lower and upper

particle diameters, respectively, and mk =
π ρ d3

k

6
. For each of the first (c − 1) species or

species groups, the mass fraction is discretised into Nf fraction ranges. The hth fraction
range is represented by the range Fh

+
− = [f−

h , f+
h ] where f+

h−1 = f−
h , fmin = 0 and fmax = 1.

Within each size section k, particles are categorised into Np composition sections, which
are defined by the valid combinations of the fraction ranges of the (c − 1) species. The
gth composition section can be represented by ~Pg=(Fg1

+
−, Fg2

+
−, · · · , Fgc−1

+
−). Given the

mass fraction discretisation, those composition sections are automatically generated by
an iteration on all possible combinations (Nf

(c−1)) of the (c − 1) species and Nf fraction
ranges. Only the composition sections that satisfy

∑(c−1)
i=1 Fgi

−
6 1 are kept.

The particle mass distribution is discretised into (Nb × Np) sections. Each section j
(j = 1, ..., Nb × Nc) corresponds to a size section k (k = 1, ..., Nb) and to a composition
section g = (g1, ..., g(c−1)) with g = 1, ..., Np, gh = 1, ..., Nf with h = 1, ..., (c − 1). The
total concentration Qj

i of species i in the jth section can be calculated as follows:

Qj
i =

∫ m+
k

m−
k

∫ f+
g1

f−
g1

...
∫ f+

g(c−1)

f−
g(c−1)

q̄i(m, fg1, ..., fg(c−1)
)dmdfg1...dfg(c−1)

(2.9)

Similarly, the number concentration N j of the jth section may be written as follows:

N j =
∫ m+

k

m−
k

∫ f+
g1

f−
g1

...
∫ f+

g(c−1)

f−
g(c−1)

n̄(m, fg1, ..., fg(c−1)
)dmdfg1...dfg(c−1)

(2.10)

After a series of derivations (see Appendix B for details), we obtain the time derivation
of Equation (2.10):

∂N j

∂t
= 0 (2.11)

as well as the time derivation of Equation (2.9):

∂Qj
i

∂t
= N j Igi

(2.12)

Thus, in each section, the change with time of number and mass concentrations is given
by Equations (2.11) and (2.12).

2.2.1.4 Numerical implementation

According to Debry and Sportisse [2006], the condensation/evaporation process may have
characteristic time-scales of different magnitudes, because the range of particle diameters
is large. Such feature induces strong stiffness of the numerical system. As suggested by
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Debry et al. [2007a], the stiff condensation/evaporation equations are solved using the
second-order Rosenbrock (ROS2) method [Verwer et al., 1999; Djouad et al., 2002].

In addition, potentially unstable oscillations may occur when a dramatic change of
the particle pH occurs. To address this issue, a species flux electro-neutrality constraint
[Pilinis et al., 2000; Debry et al., 2007a] is applied in SCRAM to ensure the numerical
stability of the system.

2.2.1.5 Size and composition redistribution

By condensation/evaporation, the particles in each size section may grow or shrink. Be-
cause the bounds of size sections should be fixed for 3D applications, it is necessary to
redistribute number and mass among the fixed size sections during the simulation after
condensation/evaporation. Similarly, the chemical composition also evolves by conden-
sation/evaporation and an algorithm is needed to identify the particle composition and
redistribute it into the correct composition sections.

Two redistribution methods for size sections may be used in SCRAM: the HEMEN
(Hybrid of Euler-Mass and Euler-Number) scheme of Devilliers et al. [2013] and the
moving diameter scheme of Jacobson [1997]. According to Devilliers et al. [2013], both
redistribution methods may accurately redistribute mass and number concentrations.

The HEMEN scheme divides particle size sections into two parts: the number is redis-
tributed for sections of mean diameter lower than 100 nm and mass is redistributed for
sections of mean diameter greater than 100 nm. The section mean diameters are kept con-
stant and mass concentrations are diagnosed for sections where number is redistributed,
while number concentrations are diagnosed for sections where mass is redistributed. The
advantage of this scheme is that it is more accurate for number concentrations over the
size range where number concentrations are the highest and more accurate for mass con-
centrations where mass concentrations are the highest. In SCRAM, the algorithm of
Devilliers et al. [2013] was modified to take into account the fact that after condensa-
tion/evaporation, the diameter of a section may become larger than the upper bound
of the next section. In that case, the mean diameter of the section after condensa-
tion/evaporation is used to diagnose in which fixed-diameter sections the redistribution
is performed. This feature allows us to use larger time steps for condensation/evaporation
before redistribution.

In the moving diameter method, although size section bounds are kept fixed, the
representative diameter of each size section is allowed to vary. If, after condensation/e-
vaporation, the diameter grows or shrinks outside section bounds, both the mass and
number concentrations of the section are redistributed entirely into the new size sections
bounding that diameter.

For the composition redistribution, a scheme based on the moving diameter method
is applied (i.e., moving mass fraction). First, after condensation/evaporation, the mass
fraction of each species is re-evaluated within each section. For each section, if the new
composition does not match the section composition (i.e., if the mass fraction of each
species does not fit into the mass fraction bounds of the species for that section), the
section that has a composition that matches the new composition is identified, and both
number and mass concentrations of each species are transferred to that section.

The composition redistribution is applied first, followed by the size redistribution for
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each of the composition sections.

2.2.2 Bulk equilibrium and hybrid approaches

Bulk equilibrium methods assume an instantaneous thermodynamic equilibrium between
the gas and bulk-aerosol phases. For semi-volatile species, the mass concentration of
both gas and bulk-aerosol phases after condensation/evaporation are obtained using the
forward mode of ISORROPIA for inorganics and the H2O model [Couvidat et al., 2012]
for organics. Because time integration is not necessary, the computational cost is sig-
nificantly reduced compared to the dynamic method. Weighting factors W are designed
to distribute the semi-volatile bulk-aerosol mass across the aerosol distribution [Pandis
et al., 1993]. In SCRAM, for each semi-volatile species i, we redistribute the bulk aerosol

evaporating or condensing mass, δQi = Q
after bulk eq.
i − Q

before bulk eq.
i , between the

sections j, using factors that depend on the ratio of the mass transfer rate in the aerosol
distribution (Equation 2.2). Because of the bulk equilibrium assumption, the driving
force of (cg

i − Kec
eq
i ) is assumed to be the same for all size and composition sections, and

the weighting factors are as follows.

W j
i =

Nj dj
pf(Kn, αi)

∑Ns

k=1 Nk dk
pf(Kn, αi)

(2.13)

where Nj is the number concentration of section j and dj
p is the particle wet diameter of

section j. In case of evaporation, these weighting factors may not be appropriate, as they

may lead to over-evaporation of some species in some sections, i.e. Q
j after bulk eq.
i =

Q
before bulk eq.
i + δQi × W j

i < 0. In the case of over-evaporation, we use a weight-
ing scheme that redistributes the total bulk aerosol mass rather than the bulk aerosol
evaporating or condensing mass

W j
i =

Qj
i

∑Ns

k=1 Qk
i

(2.14)

and Q
j after bulk eq.
i = Q

after bulk eq.
i × W j

i .
In fact, due to their larger ratios between surface area and particle mass, small par-

ticles may reach thermodynamic equilibrium much faster than large particles. Particles
of diameters larger than 1 µm could require hours or even days to achieve equilibrium
[Wexler and Seinfeld, 1990], which makes the bulk equilibrium assumption inappropri-
ate for them. In order to maintain both the computational efficiency of the equilibrium
method and the accuracy of the dynamic one, a hybrid method is adopted in SCRAM
based on the work of Capaldo et al. [2000] and Debry and Sportisse [2006]. This method
uses the equilibrium method for small particles (dp < 1 µm) and uses the dynamic method
to calculate the mass transfer for larger particles.

2.2.3 Overall time integration and operator splitting in SCRAM

In order to develop a system that offers both computational efficiency and numerical
stability, we perform operator splitting for changes in number and mass concentrations
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with time due to emission, coagulation, condensation/evaporation and nucleation, as
explained below.

Emissions are first evaluated with an emission time step, which is determined by the
characteristic time-scales of emissions obtained from the ratio of emission rates to aerosol
concentrations. The emission time step evolves with time to prevent adding too much
emitted mass into the system within one time step. Within each emission time step,
coagulation and condensation/evaporation/nucleation are solved and the splitting time
step between coagulation and condensation/evaporation/nucleation is forced to be lower
than the emission time tep. Time steps are obtained from the characteristic time steps
of coagulation (tcoag) and condensation/evaporation/nucleation (tcond). The larger of the
time steps tcoag and tcond determines the time step of splitting between coagulation and
condensation/evaporation/nucleation. As coagulation is usually the slower process, the
change due to coagulation is first calculated over its time step. Then, condensation/e-
vaporation/nucleation are solved simultaneously. The change due to condensation/e-
vaporation/nucleation is calculated, using time sub cycles, starting with the sub time
step tcond. The next sub time step for condensation/evaporation/nucleation is estimated
based on the difference between the first and second order results provided by the ROS2
solver. Redistribution is computed after each time step of splitting of coagulation and
condensation/evaporation/nucleation.

When the bulk thermodynamic equilibrium approach is used to solve condensation/e-
vaporation, coagulation then nucleation are solved after each emission time step. The
resolution is done as previously explained, except that the dynamic condensation/evap-
oration solver is disabled: sub time steps are used to solve coagulation and nucleation
during one emission time step. Condensation/evaporation is then solved using the bulk
equilibrium approach and the redistribution process is applied after the bulk equilibrium
algorithm.

When the hybrid approach is used to solve condensation/evaporation, a time loop is
added with a fixed time step of 600 s outside the emission time loop to compute bulk
equilibrium condensation/evaporation for equilibrium sections. This additional time loop
is designed to ensure that bulk equilibrium condensation/evaporation of equilibrium sec-
tions is not applied too often, so that the dynamic condensation/evaporation of dynamic
sections has time to evolve. Redistribution is applied after the bulk equilibrium algorithm.
Within this time loop, the aerosol dynamics is solved as previously explained using the
dynamic condensation/evaporation algorithm for dynamic size sections: emissions are
solved followed by coagulation and condensation/evaporation/nucleation. As in the fully
dynamic approach, redistribution is applied after dynamic condensation/evaporation.

2.3 Model validation

To validate the model, the change with time of internally- and externally-mixed aerosol
models are compared. The simulations use initial conditions for number and mass con-
centrations that are typical of a regional haze scenario, with constant sulphuric acid
vapour source that gives a sulphuric acid condensation rate of 5.5 µm3cm−3 per 12 hours
[Seigneur et al., 1986; Zhang et al., 1999].

Simulations were conducted for 12 h at a temperature of 298 K and a pressure of 1
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Figure 2.2: Simulation of condensation for hazy conditions: initial distribution and after
12 hours.

atm. The original reference simulation [Seigneur et al., 1986; Zhang et al., 1999] was first
reproduced for internally-mixed sulphate particles (redistribution is not applied). For
the sake of comparison between internally- and externally-mixed simulations, half of the
particles were assumed to consist of sulphate (species 1) and the other half of another
species of similar physical properties as sulphate (species 2). For internal mixing, the
initial particles are all 50% species 1 and 50% species 2; and for external mixing, half of
the initial particles are 100% species 1 and the other half are 100% species 2. As both
species have the same physical properties, for any given size section, the sum over all com-
position sections of number and mass concentrations of externally-mixed particles should
equal the number and mass concentrations of the internally-mixed particles. Particles
were discretised into 100 size sections and 10 composition sections for the externally-
mixed case. Figure 2.2 shows the initial and final distributions for the number and
volume concentrations as a function of particle diameters. Both the internally-mixed and
externally-mixed results are presented in Figure 2.2, along with the reference results of
Zhang et al. [1999] (500 size sections were used in the original reference simulation). For
the externally-mixed simulation, the results were summed up over composition sections
to obtain the distributions as a function of particle diameter. As expected, a excellent
match is obtained between internal and external mixing distributions, with an almost
100% Pearson’s correlation coefficient. Furthermore, the accuracy of the SCRAM al-
gorithm is proved by the good match between the results of these simulations and the
reference simulation of Zhang et al. [1999]. In order to investigate the influence of the
composition resolution on simulation results, two additional tests are conducted using
2 and 100 composition bins. The mean mass fraction of species 1 is computed for all
particles within each size section, as well as their standard deviations. Figure 2.3 shows
the size distribution of these statistics. The mean mass fraction is barely affected by
the different composition resolutions as the condensation rate of sulphate is independent
of the particle compositions. However, a different composition resolution does lead to
different standard deviation distributions, as only particles with larger fraction difference
(d > 0.2µm for 2 compositions and d > 0.09µm for 10 compositions) can be distinguished
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Figure 2.3: Mean and standard deviations of species 1 mass fraction as functions of
particle diameter using 2, 10 and 100 composition sections.

from each other under coarser composition resolutions.
Using the same initial conditions and sulphuric acid condensation rate, a second com-

parison test was performed, with both coagulation and condensation occurring for 12
hours. As the coagulation algorithm requires size sections to have fixed bounds [Der-
gaoui et al., 2013], size redistribution was applied for both the internally- and externally-
mixed cases using the HEMEN method. As in the first comparison test, Figure 2.4 shows
that there is a good match between the internally- and externally-mixed distributions as
a function of particle diameter (no reference simulation was available for these simula-
tions). This test validates the algorithm of SCRAM to simulate jointly the coagulation
and condensation of externally-mixed particles.

The mixing states of both internally- and externally-mixed particles at the end of
the simulations of the second test are shown in Figure 2.5. Sulphuric acid condenses to
form particulate sulphate (species 1). During the simulation, pure species 2 particles mix
with pure sulphate particles by coagulation and condensation of sulphuric acid. Figure 2.5
shows that, at the end of the simulation, the sulphate mass fraction is greater for particles
of lower diameters, because the condensation rate is greater for those particles. Particles
with diameters greater than 10 µm remain unmixed. However, the external mixing state
provides a more detailed mixing map, from which it is possible to distinguish mixed
particles from unmixed ones and to trace the origin of each particle. In this test case
where the effect of condensation dominates that of coagulation, most mixed particles are
originally pure species 2 particles coated with newly condensed sulphuric acid (Figure 2.5).

2.4 Simulation with realistic concentrations

To test the impact of external mixing on aerosol concentrations, simulations of coag-
ulation, condensation/evaporation and nucleation were performed with SCRAM using
realistic ambient concentrations and emissions extracted from a simulation performed
over Greater Paris for July 2009 during the MEGAPOLI (Megacities: Emissions, urban,
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Figure 2.4: Simulation of both coagulation and condensation for hazy conditions: initial
distribution and after 12 hours.
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Figure 2.5: Distribution after 12 hours: particle mass concentration as a function of
diameter and mass fraction of species 1.

regional and Global Atmospheric POLution and climate effects, and Integrated tools for
assessment and mitigation) campaign [Couvidat et al., 2013].

2.4.1 Simulation set-up

Data were extracted from one grid cell of the 3D simulation performed by Couvidat
et al. [2013] over Greater Paris. This surface grid cell was chosen because black carbon
(EC) emissions are high in that location, due to high traffic emissions. Figure 2.6 shows
the EC emission map at 2 UT, on 1 July 2009. The highest emission rate is located
at the grid cell center of longitude and latitude (2.28◦ E, 48.88◦ N), which was selected
here to extract the SCRAM simulation input data for emissions, background gas and
aerosol concentrations, and initial meteorological conditions (temperature and pressure).
In the absence of specific information on individual particle composition, all initial aerosol
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Figure 2.6: EC emissions over Greater Paris at 2 UT, 1 July 2009.
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Figure 2.7: Transprt EC concentrations profile of on 1 July 2009.

concentrations extracted from the database were assumed to be 100% mixed (i.e., aged
background aerosols).

Simulations start at 2 UT (1 July 2009), i.e., just before the morning peak of traf-
fic emissions, and last 12 hours. As our simulations are 0D, the transport of gases and
particles and the deposition processes are not taken into account. Therefore, emissions
accumulate, potentially leading to unrealistically high concentrations. To avoid this ar-
tifact, the duration of the emissions was limited to the first 40 min of simulation. This
time duration is calculated using the average EC emission rate between 2 UT and 3 UT,
so that EC emissions lead to an increase in EC concentrations equal to the difference
between EC concentrations after and before the morning traffic peak, i.e., between 6 UT
and 2 UT (Figure 2.7). Besides, gas-phase chemistry (such as SOA formation) is not
included in SCRAM, and is expected to be solved separately using a gas-phase chemistry
scheme. In the simulations of this work, SOA originates either from initial conditions
or they are emitted as semi-volatile organic compounds during the simulation. They
partition between the gas and the aerosol phases by condensation/evaporation.
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The size distribution ranging from 0.001 to 10 µm was discretised into 7 sections with
bounds at 0.001, 0.005, 0.01, 0.0398, 0.1585, 0.6310, 2.5119, and 10 µm. As in Couvidat
et al. [2013], 31 particulate species were included in our simulations. In order to reduce
the computational cost of the externally-mixed simulations, these species were grouped
into 5 groups based on their chemical nature, which influences the formation of particles
and their optical properties. Black carbon, organic species, inorganic species and dust
are separated. Although sulphate could be separated from nitrate and ammonium for
optical properties or for comparisons to observations of mixing state [Healy et al., 2012],
and although chloride and sodium could be grouped together in a marine environment, all
inorganic species are grouped together here for the sake of simplicity. However, because
the hydrophylic properties of the particles strongly influence their formation and cloud
condensation nuclei, hydrophylic and hydrophobic organic species are separated. In sum-
mary, the hydrophilic inorganic group (HLI) contains five inorganic species (sodium, sul-
phate, nitrate, ammonium and chloride); the hydrophilic organic group (HLO) contains
9 hydrophilic surrogate organic species (BiA2D, BiA1D, BiA0D, GLYOXAL, MGLY,
BiMT, BiPER, BiDER and BiMGA); the hydrophobic organic group (HBO) contains 14
hydrophobic surrogate organic species (AnBlP, AnBmP, BiBlP, BiBmP, BiNGA, NIT3,
BiNIT, AnCLP, SOAlP, SOAmP, SOAhP, POAlP, POAmP and POAhP); the black car-
bon group (EC) contains only black carbon; and the dust group (DU) contains all the
neutral particles made up of soil, dust and fine sand. Refer to Couvidat et al. [2012]
for detailed nomenclature of the organic species. For each of the first four groups, the
mass fraction of the group over the total mass is discretised into 3 mass fraction ranges
([0.0, 0.2), (0.2, 0.8], (0.8, 1.0]), leading to 20 possible particle composition sections, as
shown in Table 4.1. Among them, there are 5 unmixed particles and 15 mixed particles.
Here unmixed is used in an approximate sense: it means that the mass fraction of one
chemical component group is high (between 0.8 and 1), while the mass fraction of the
other chemical component groups are low (between 0 and 0.2). The dust mass fraction is
not discretised, as it is obtained by mass conservation. Note that although as an example
we chose dust to be the group for which mass fraction is not treated explicitly, another
group could be chosen as the group for which mass fraction is not treated explicitly.
If all groups need to have their mass fraction treated explicitly, additional composition
sections for the last group could be added to the current composition list without any
modification to the main structure of the SCRAM code. The mass fraction of the last
group would still be obtained by mass conservation, and the composition section of the
particles would be chosen depending on this mass fraction.

In each group, water may also be present, although it is not considered when comput-
ing the mass fractions (it is calculated separately with the thermodynamic equilibrium
models).

The model memorizes the relationship between each species index and group in-
dex, and it stores the mass concentrations separately for each species within each size-
composition sections. The total mass concentration of each group is computed from the
mass concentration of each species based on the species-group relations, allowing the
computation of the mass fraction of each group.
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Table 2.1: 20 Externally-mixed particle compositions

composition Index Mixing state Mass fraction of each groups (%)

HLI HLO HBO EC DU

1 unmixed(DU) 0-20 0-20 0-20 0-20 0-100

2 mixed 0-20 0-20 0-20 20-80 0-80

3 unmixed(EC) 0-20 0-20 0-20 80-100 0-20

4 mixed 0-20 0-20 20-80 0-20 0-80

5 mixed 0-20 0-20 20-80 20-80 0-60

6 unmixed(HBO) 0-20 0-20 80-100 0-20 0-20

7 mixed 0-20 20-80 0-20 0-20 0-80

8 mixed 0-20 20-80 0-20 20-80 0-60

9 mixed 0-20 20-80 20-80 0-20 0-60

10 mixed 0-20 20-80 20-80 20-80 0-40

11 unmixed(HLO) 0-20 80-100 0-20 0-20 0-20

12 mixed 20-80 0-20 0-20 0-20 0-80

13 mixed 20-80 0-20 0-20 20-80 0-60

14 mixed 20-80 0-20 20-80 0-20 0-60

15 mixed 20-80 0-20 20-80 20-80 0-40

16 mixed 20-80 20-80 0-20 0-20 0-60

17 mixed 20-80 20-80 0-20 20-80 0-40

18 mixed 20-80 20-80 20-80 0-20 0-40

19 mixed 20-80 20-80 20-80 20-80 0-20

20 unmixed(HLI) 80-100 0-20 0-20 0-20 0-20

2.4.2 Aerosol dynamics and mixing state

To understand how initial concentrations mix with emissions, four scenarios were simu-
lated. In scenario (A), only emissions are taken into account in the simulation. Only coag-
ulation is added to emissions in scenario (B), while only condensation/evaporation(C/E)
is added to emissions in scenario (C). In scenario (D), emissions and all the aerosol
dynamic processes are taken into account including nucleation (however, no nucleation
occurred during the simulation due to low sulphuric acid gas concentrations).

The mass and number distributions of each chemical composition after 12 hours of
simulation are shown in Figures 2.8 and 2.9 as a function of particle diameter, as well
as their initial distributions in sub-figure (e). Bars with grayscale represent unmixed
particles, while bars with colours are mixed particles. Each bar corresponds to a chemical
composition index (CI). However, any CI with small number or mass concentrations are
not really visible from the plot, so they are regrouped into mixed-other (for mixed CI)
and unmixed-other (for unmixed CI) in the plot. The chemical compositions and the
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Table 2.2: Mixing state after 12hs simulation

Process No Dynamic Coagulation C/E C/E+Coag+Nucl

scenario (A) scenario (B) scenario (C) scenario (D)

Mixed particle number (%) 42 79 48 51

Mixed particle mass (%) 83 85 64 76

CI value associated with colour bars are listed in Table 2.1. All emitted particles are
unmixed: CI 1 (100% DU) into size section (4-6), CI 3 (100% EC) into size section (3-6).
So any mixed particles represented in sub-figure (a) of Figure 2.8 and 2.9 are due to
initial condition instead of emissions. Besides, emissions also involve gas-phase POA and
H2SO4, which can not be observed in sub-figure (a) of Figure 2.8 and 2.9 as they has
no interaction with particle phase under scenario (A). Organic vapours which may lead
to the production of SOA is not included in the emissions, while certain concentration of
such vapours is defined within the initial condition.

As shown by the simulation of scenario (A), emissions lead to high number concentra-
tions of EC in the sections of low diameters (mostly below 0.631 µm) and to high mass
concentrations of dust and EC in the sections of high diameters (mostly above 0.631 µ m).

The comparison of scenarios (A) and (B) shows that coagulation does not affect much
mass concentrations, but significantly reduces the number concentrations of particles in
the sections of diameters lower than 0.631 µm. Also, due to coagulation, small particles
migrated to higher sections. For example, Figure 2.9 shows the mixed CI 15 particles
that originate from the third size section migrated to the fourth size section, and this
could result from coagulation between CI 14 size section 4 particles with CI 3 size section
3 particles, or between two CI 15 size section 3 particles.

As shown by the simulation of scenario (C), C/E leads to high mass and number
concentrations of unmixed HBO (CI 6 – mass fraction of HBO (81.2%) above 80% (exact
mass fraction of the dominate group will be specified within the parentheses right after
the group name here after)), increasing the amount of unmixed particles. Organic matter
of low and medium volatilities is emitted in the gas phase following Couvidat et al. [2013].
This organic matter condenses subsequently on well-mixed particles (CI 14 with mixed
HLI (31%) and HBO (41%)), in sufficient amount to increase the mass fraction of HBO
(81%) to over 80% and, therefore, transferring particles to the unmixed category CI 6
(these particles are not exactly unmixed since up to 20% may correspond to HLI (10%),
but a finer composition resolution would be required to analyse their mixed characteris-
tics). The condensation of organic matter on freshly emitted EC particles (CI 3) also
occurs, as shown by the mixed EC (26%) and HBO (68%) particles (CI 5) which appear
in the third and fourth size sections.

As shown by comparing scenarios (A) and (B) and scenarios (C) and (D), coagulation
significantly reduces number concentrations. The mass concentrations of fine particles
(diameters lower than 0.631 µm) are also reduced. Furthermore, the composition diversity
increases. For example, as demonstrated by the difference between scenarios (C) and (D),
newly mixed particles of CI 4 (between 20% and 80% of HBO (78% for size 4 and 73% for
size 5)) are formed by the coagulation of unmixed particles from CI 6 with others within
the fourth and fifth size sections.
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Figure 2.8: Result mass distributions of externally-mixed particles as a function of par-
ticle diameter for the different chemical compositions for 6 different simulation sce-
narios: (a) Emission only; (b) Emission+Coagulation; (c) Emission+C/E; (d) Emis-
sion+Coagulation+C/E+nucleation; (e) Initial Condition; (f) Internal mixing result.
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Figure 2.9: Result number distributions of externally-mixed particles as a function of
particle diameter for the different chemical compositions for 6 different simulation sce-
narios: (a) Emission only; (b) Emission+Coagulation; (c) Emission+C/E; (d) Emis-
sion+Coagulation+C/E+nucleation; (e) Initial Condition; (f) Internal mixing result.
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Table 2.2 shows the percentage of mixed particles for each scenario based on both
particle number and mass concentrations. It seems that large particles are better mixed
than small particles as the mixing percentages of mass are always higher than those
of number. However, this phenomenon is specific to this case study; it is caused by
the assumption of all initial particles being internally mixed and the initial conditions
dominating for large particles due to their low emissions and the short duration of the
simulations.

The number/mass mixing percentages after emission only (scenario (A)) provide a
baseline for the analysis of the three other scenarios. In scenario (A), 42% (resp. 83%)
of the particle number (resp. mass) originates from initial conditions and is mixed,
while the remaining particles are due to emissions and are unmixed. The comparison of
scenarios (A) and (B) shows that coagulation increases the mixing percentages, especially
for small particles of high number concentrations. The mass mixing percentages decrease
in scenario (C) because the condensation of freshly emitted organic matter on large mixed
particles leads to particles with a mass fraction of organic matter (HBO) higher than 80%,
i.e. unmixed. When all aerosol dynamic processes are taken into account (scenario (D)),
only 51% of particle number concentration and 76% of particle mass concentration are
mixed. The mixing percentages are greater than those of scenario (C), as mixing increases
by coagulation, but the mass mixing percentage is lower than in scenario (A) (emissions
only) because of the strong condensation of HBO emitted in the gas phase.

2.4.3 External versus internal mixing

To investigate the consequence of the internal mixing hypothesis, a simulation of scenario
(D) (all aerosol dynamic processes are taken into account) is conducted by assuming all
particles to be internally mixed. Externally- and internally-mixed 12-hour simulations
lead to a similar total aerosol mass concentration after 12 h (33.09 µgm−3 for internal
mixing and 33.35 µgm−3 for external mixing) as well as to similar total number concentra-
tions (1.16 × 1010 #m−3 for internal mixing and 1.07 × 1010 #m−3 for external mixing).
The bulk mass concentrations of individual species are also similar, although external
mixing leads to slightly lower ammonium concentrations (2.68 #m−3 versus 2.70 #m−3),
slightly higher nitrate concentrations (3.19 #m−3 versus 3.03 #m−3) and higher chloride
concentrations (0.36 #m−3 versus 0.25 #m−3). The size distributions for number and
for individual species masses are also very similar in the internal and external mixing
simulations.

Figure 2.8 (d) and (f) compares the mass distributions and compositions within each
size section after 12 h of the internal and external mixing simulations. External mixing
provides more detail about the particle mixing state, as within each size section particles
have different compositions. For example, in the case of internal mixing, particles in
size section 4 (diameter between 0.0398 µm and 0.1585 µm) are all mostly hydrophobic
organics (CI 4: HBO (76%) between 20% and 80%). The particle compositions are
more detailed in the external mixing simulation: while less than half of the particles are
mostly hydrophobic organics (HBO 78%) (CI 4) as in internal mixing, a large amount
are unmixed particles (CI 6: HBO (82%) between 80% and 100%), and some are equally
mixed with EC and hydrophobic organics (CI 5). In size section 5, as in the internal
mixing simulation, mixed particles dominate (CI 14 - HLI 46%, HBO 36%), but many
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Figure 2.10: Result mass distributions of externally-mixed particles as a function of par-
ticle diameter for the different chemical compositions for 4 different C/E simulation sce-
narios: (a) External bulk-equilibrium; (b) Internal bulk-equilibrium; (c) External hybrid
method; (d) Internal dynamic.
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Figure 2.11: Result number distributions of externally-mixed particles as a function of
particle diameter for the different chemical compositions for 4 different C/E simulation
scenarios: (a) External bulk-equilibrium; (b) Internal bulk-equilibrium; (c) External hy-
brid method; (d) Internal dynamic.

have a different composition (CI 4 and 5) and some are unmixed HBO 83% (CI 6), EC 91%
(CI 3) and dust 90% (CI 1). For particles in size section 6, particles are mixed particles
of CI 12 (HLI 54%,DU 29%), while external mixing also shows that some particles are
unmixed (EC 99% (CI 3) and dust 98% (CI 1)) and there are CI 14 (HLI 46%, HBO
35%) particles that originated from size section 5 through coagulation.

2.4.4 Bulk equilibrium and hybrid approaches

Additional external mixing tests were conducted using the bulk equilibrium and hybrid
approaches for C/E to evaluate both their accuracy and computational efficiency. In
the hybrid approach, the lowest four sections are assumed to be at equilibrium (up to
diameters of 0.1585 µm), whereas the other sections undergo dynamic mass transfer
between the gas and particle phases .

The accuracy of these approaches is evaluated by comparing the mass and number
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Table 2.3: Computational times

Process C/E C/E bu C/E hy Cg C/E+Cg C/E+Cg bu C/E+Cg hy

Internal mixing (s) 7.1 0.11 0.4 0.06 7.3 0.14 0.5

External mixing (s) 63.2 0.3 54.2 48.4 122.8 31.5 113

distributions after 12 hour simulations with the bulk equilibrium or the hybrid approaches
to the mass and number distributions computed dynamically (see Figures 2.10 and 2.11).

For externally-mixed particles, the dynamic mass distribution is shown in Figure 2.8(c);
the bulk equilibrium and hybrid mass distributions are shown in Figure 2.10(a) and Fig-
ure 2.10(c), respectively. The dynamic number distribution is shown in Figure 2.9(c);
the bulk equilibrium and hybrid mass distributions are shown in Figure 2.11(a) and Fig-
ure 2.11(c), respectively. For internally mixed particles, the dynamic mass/number dis-
tributions are shown in Figures 2.10(d) / 2.11(d) and the bulk equilibrium mass/number
distributions in Figures 2.10(b) / 2.11(b), respectively.

For internally-mixed particles, the comparisons between Figures 2.10(b) and 2.10(d)
and between Figures 2.11(b) and 2.11(d) indicate that the bulk equilibrium approach
leads to significantly different distributions and compositions than the dynamic approach.
This result also holds for externally-mixed particles, as shown by the comparisons be-
tween Figures 2.8(c) and 2.10(a) and between Figures 2.9(c) and 2.11(a). For example,
more inorganic species condense on particles in the fourth size section (between 0.0398
µm and 0.1585 µm) in the case of bulk equilibrium compared to the fully dynamic case.
This section is dominated by CI 14 (HLI 33%, HBO 61%) (equal mixture of inorganic
and hydrophobic organics) for bulk equilibrium, instead of CI 6 (HBO 81%) (unmixed
hydrophobic organics) for dynamic. Internal and external distributions are similar with
the dynamic approach, as well as with the bulk equilibrium approach. Although internal
and external compositions are different with the dynamic approach, they are quite similar
with the bulk equilibrium approach. However, with the bulk equilibrium approach, sim-
ilarly to the dynamic approach, unmixed particles of CI 3 (unmixed EC) remain present
in most size sections for externally-mixed particles.

The mass and number distributions and compositions obtained with the hybrid ap-
proach are similar to the fully dynamic approach. For example, the over-condensation of
inorganic species in the fourth size section (leading to particles of CI 14 (HLI 33%, HBO
61%) with bulk equilibrium) is restrained with the hybrid approach, as the fourth size
section is computed dynamically, and particles consist of CI 6 (HBO 81%), as with the
dynamic approach.

Table 2.3 shows the computational times (CPU) required for each simulation on a
DELL Precision T3500 workstation (the lowest integration time step: 1). External mix-
ing requires more CPU, especially for computing coagulation and dynamic C/E. The
largest difference between internal and external mixing occurs for computing coagula-
tion, which is almost 800 times slower with external mixing. Bulk equilibrium C/E
provides a huge economy in CPU time for all simulations compared to dynamic C/E,
while the computational advantage of hybrid C/E is more obvious for internal mixing (17
times faster than dynamic C/E) than external mixing (15% faster than dynamic C/E).
This significant speed degradation of the hybrid C/E scheme in the external mixing case
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is probably a consequence of small time steps used in the ROS2 solver because of the re-
distribution among the different composition sections performed after each time step. In
other words, it takes CPU time to compute the dynamic distribution among the different
composition sections.

2.5 Conclusions

A new Size-Composition Resolved Aerosol Model (SCRAM) has been developed to sim-
ulate the dynamic evolution of externally-mixed particles due to coagulation, condensa-
tion/evaporation, and nucleation. The general dynamic equation is discretised for both
size and composition. Particle compositions are represented by the combinations of mass
fractions, which may be chosen to correspond either to the mass fraction of the different
species or to the mass fraction of groups of species (e.g. inorganic, hydrophobic organ-
ics...). The total numbers and bounds of the size and composition sections are defined by
the user. An automatic classification method is designed within the system to determine
all the possible particle compositions based on the combinations of user-defined chemical
species or groups and their mass-fraction ranges.

The model was first validated by comparison to internally-mixed simulations of con-
densation / evaporation of sulphuric acid and of condensation / evaporation of sulphuric
acid with coagulation. It was also validated for condensation against a reference solution.

The model was applied using realistic concentrations and typical emissions of air
pollution over Greater Paris, where traffic emissions are high. Initial concentrations were
assumed to be internally mixed. Simulations lasted 12 h.

Although internally- and externally-mixed simulations lead to similar particle size
distributions, the particle compositions are different. The externally-mixed simulations
provide details about particle mixing states within each size section when compared to
internally mixed simulations. After 12 h, 49% of number concentrations and 24% of
mass concentrations are not mixed. These percentages may be higher in 3D simulations,
because initial aerosol concentrations should not be assumed as entirely internally mixed
over an urban area. Coagulation is quite efficient at mixing particles, as 52% of num-
ber concentrations and 36% of mass concentrations are not mixed if coagulation is not
taken into account in the simulation. On the opposite, condensation may decrease the
percentage of mixed particles when low-volatility gaseous emissions are high.

Assuming bulk equilibrium when solving condensation/evaporation leads to different
size and composition distributions than the dynamic approach under both the internally-
and externally-mixed assumptions. With the bulk equilibrium approach, internally- and
externally-mixed assumptions lead to similar average compositions as a function of size,
and unmixed particles remain under the externally-mixed assumption, which were also
observed with the dynamic C/E approach.

Although the simulation of externally mixed particles increases the computational
cost, SCRAM offers the possibility to investigate particle mixing state in a comprehen-
sive manner. Besides, its mixing state representation is flexible enough to be modified by
users. Better computational performance could be reached with fewer, yet appropriately
specified species groups and more optimised composition discretisations. For example,
about half of the 20 compositions designed in this work have really low mass concentra-
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tions (e.g. see Figures 2.8, 2.9, 2.10 and 2.11). Those compositions might be dynamically
deactivated in the future version of SCRAM to lower computational cost by using an
algorithm to skip empty sections during coagulation and C/E processing.

Future work will focus on the optimisation and incorporation of SCRAM into the air
quality modelling platform Polyphemus for 3D simulations. In order to investigate its
performance in modelling air quality over Greater Paris, model simulation results will be
compared to observations [Healy et al., 2012].

Code availability

The SCRAM source code related to this article is available under the URL: http://cerea.enpc.fr/
polyphemus/src/scram-1.0.tar.gz , as a supplement package together with Read Me file,
where hardware and software requirements, source code files and model output files are
fully described.

SCRAM is a free software. You can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation.
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Chapter 3

Three-dimensional modelling of the
mixing state of particles over
Greater Paris

Résumé

SCRAM est intégré dans la plate-forme de qualité de l’air Polyphemus et utilisé pour
effectuer des simulations sur l’Ile de France pendant l’été 2009. Une évaluation par com-
paraison à des observations montre que SCRAM/Polyphemus simule de manière satis-
faisante les concentrations de PM2.5 et de PM10, ainsi que l’épaisseur optique des aérosols.
Le modèle est utilisé pour analyser l’état de mélange des particules, ainsi que l’impact
de l’hypothèse de mélange faite dans le modèle sur la formation des particules et leurs
propriétés. Deux simulations sont effectuées et comparées : une avec l’hypothèse de
mélange interne (MI) et l’autre en mélange externe (ME). En comparant les résultats des
simulations MI et ME avec l’approche dynamique pour modéliser la condensation/éva-
poration, on constate que ME conduit à une concentration de nitrate supérieure (1,24 µg
m−3 en moyenne) que MI (0,76 µg m−3 en moyenne), et les différences sont particulière-
ment élevées pour les pics (près de 100% dans le cas du nitrate). L’état de mélange de
carbone élémentaire (EC) est également étudié. Au site urbain de Paris, le pourcentage
de particules d’EC non mélangées est toujours supérieur à 35% avec un pic autour de
80% pendant les heures de pointe, lorsque les émissions de la circulation sont les plus
élevées. Des analyses sur les propriétés optiques des particules montrent que, en général,
la simulation MI mène à des épaisseurs optiques d’aérosols (AOD) supérieures à celles
de la simulation ME, et à des albédos de simple diffusion (SSA) inférieurs à ceux de la
simulation ME. Pour SSA, les différences entre les simulations EM et IM sont inférieures
à 11%, et elles sont concentrées sur la ville de Paris, en zone urbaine, car les particules
de EC y sont le plus souvent non mélangées dans la simulation ME. Pour AOD, les dif-
férences entre MI et ME sont causées principalement par des différences de concentrations
de la teneur en eau des aérosols, causées par des différences de formation des aérosols
inorganiques comme mentionné plus haut. Par exemple, une différence de 22% en con-
centrations d’inorganiques peut conduire à une différence de 80% de la concentration
en eau et 72% en AOD. Concernant la formation des nuages et l’activation des partic-
ules en gouttes d’eau (noyaux de condensation), à faible sursaturation, MI conduit à un
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pourcentage d’activation de noyaux de condensation plus bas que ME, car la présence de
composés hydrophobes dans les particules de MI limite l’activation et seules les particules
hydrophiles de la simulation ME peuvent être activées. A forte sursaturation, MI conduit
à un pourcentage d’activation de noyaux de condensation plus élevé que ME, parce que
la plupart des particules sont activées à l’exception des particules qui sont essentielle-
ment hydrophobes et non mélangées dans la simulation ME. En outre, en cas de forte
sursaturation, les différences entre les simulations MI et ME dans la répartition spatiale
des particules activées sont plus importantes sur les régions urbaines. Ce travail a été
soumis à Journal of Geophysical Research (JGR): Atmospheres.

Preamble

After the development of the 0-D version of SCRAM and its validation through compar-
isons between internal and external mixing simulations, the ability of SCRAM to model
particle concentrations and the particle mixing state in three-dimensional air quality
models is investigated. The aim is to evaluate the model performance by comparisons of
the simulations to measurements of PM10, PM2.5 and aerosol optical depth, as well as to
investigate the impact of the mixing-state assumption made in modelling on aerosol for-
mation, composition, optical properties and cloud condensation nuclei (CCN) formation.

The SCRAM model is first integrated into the Polyphemus air-quality modelling plat-
form. In order to support the additional composition dimension introduced by SCRAM
compared to the currently used aerosol model (SIREAM), all aerosol related data struc-
tures and functions in Polyphemus are updated. The number of particles and the chemical
components of each size/composition sections are transported. The model is very flexi-
ble, as it allows simulations with either the internal or the external mixing assumption.
For input data, both initial and boundary conditions of the simulation can be specified
as either internally mixed (data without composition information) or externally mixed
(data with composition information). In case of internally-mixed data, the composition
index of each section is computed based on the composition of particles in that section.
However, emissions are considered as externally mixed (particles are only made of the
emitted chemical component).

Four simulations are carried out for one week from 28 June to 5 July 2009, over Greater
Paris. Meteorology is generated with WRF (v3.6) model using an urban canopy model
and the Corine land-use with the YSU parametrization. Initial and boundary conditions
inputs are from internal mixing simulation, which were obtained from nested simulations
over Europe and France, as detailed in [Couvidat et al., 2013]. Emissions are generated
based on the Airparif and EMEP inventories. Two simulations assume that particles are
internally mixed (IM), while two other simulations simulate externally-mixed particles
(EM). Within each of these two groups of simulations (IM and EM), one simulation uses
the fully dynamic approach for condensation/evaporation, while the other one uses the
bulk equilibrium approach for solving condensation/evaporation.

The concentrations from IM and EM simulations are similar when bulk equilibrium
is assumed for condensation/evaporation. Comparisons therefore focus on differences
from IM and EM simulations when condensation/evaporation is computed dynamically.
Note that only the condensation/evaporation of inorganics can be computed dynamically
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here. EM leads to higher nitrate concentration (1.24 µg m−3 on average) than IM (0.76
µg m−3 on average) and lower ammonium concentration (1.23 µg m−3 on average) than
IM (1.33 µg m−3 on average). Furthermore, the differences are especially high for peak
concentrations. Between 3 and 4 July, the peak concentration of nitrate for the EM
simulation is twice the one for the IM simulation.

We define the unmixed EC percentage as the ratio of the EC mass of unmixed EC
particles to the EC mass of all particles. At the urban site of Paris, the unmixed EC
percentage does not drop to low values: it is higher than 35% with peaks around 80%
during rush hours when emissions are the highest.

Detailed analyses are also conducted to investigate the impact of the mixing state on
particle optical properties as well as on the cloud condensation nuclei (CCN) based on
the dynamic IM and EM simulations. Using the same aerosol optical depth (AOD) com-
putation method (core or mix), the IM simulation leads to higher AOD values and lower
Single Scattering Albedo (SSA) values than the EM simulation. However, the differences
between AOD computed using a core or a mix method and AOD are lower than differ-
ences between AOD computed from the IM and EM simulations. For SSA, the largest
differences, up to 11% between IM and EM simulations, are concentrated in the city of
Paris, where a large percentage of EC is unmixed in the EM simulation, affecting the
absorption and scattering properties of particles. For AOD, differences between IM and
EM are rather low over the city of Paris, but they are high over some regions such as the
north east and the south west of Paris. Differences are due to differences in inorganic
concentrations resulting from differences in the mixing-state assumption, and leading to
differences in water aerosol concentration. For example, a difference of 22% in inorganic
concentrations can lead to a difference as high as 80% in water concentration and 72%
in AOD. Concerning CCN, at low supersaturation, IM leads to lower CCN activation
percentage than EM, because the hydrophobic components of IM particles inhibit acti-
vation and only the hydrophilic particles of the EM simulation may be activated. At
high supersaturation, IM leads to higher CCN activation percentage than EM, because
most particles are activated except for the particles that are mostly hydrophobic in the
EM simulation. Moreover, in case of high supersaturation, the difference in the spatial
distribution between IM and EM simulations are more significant over urban regions.
However, such distribution pattern is opposite in case of low supersaturation.

This chapter consists of
Zhu, S., Sartelet, K. N., Zhang, Y., Nenes, A. : Three-dimensional modelling of
the mixing state of particles over Greater Paris, Journal of Geophysical Research,
2015, submitted.
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Abstract

A size-composition resolved aerosol model (SCRAM) is coupled to the Polyphemus air
quality platform and evaluated over Greater Paris. SCRAM simulates the particle mix-
ing state and solves the aerosol dynamic evolution taking into account the processes of
coagulation, condensation/evaporation and nucleation. Both the size and mass fractions
of chemical components of particles are discretized. For a given particle size section,
particles may have distinct chemical compositions. When discretizing mass fractions,
chemical components are grouped into several aggregates to reduce computational cost.
SCRAM has been integrated into the Polyphemus air quality modelling platform, and
its performance to model air quality over Greater Paris is evaluated by comparison of
model prediction to the measurements of PM10, PM2.5 and aerosol optical depth. Because
air quality models usually uses simplifying treatments with an assumption that particles
are internally mixed, the impact of the mixing state assumption on aerosols formation,
composition, optical properties and their ability to be activated as cloud condensation
nuclei (CCN) is investigated. The simulation results show that more than half (up to 80%
during rush hours) of black carbon particles are unmixed at the urban site of Paris, while
they are more mixed with organic species at a rural site. The comparisons of simulations
run with the internal-mixing (IM) assumption and with modelling of the mixing state
(external-mixing (EM) assumption) show that IM assumption leads to lower nitrate and
higher ammonium in the particulate phase. Besides, the IM assumption leads to lower
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single scattering albedo, and the difference of aerosol optical depth caused by different
mixing states can be as high as 72.5%. Moreover, the IM assumption leads to lower CCN
activation percentage at low supersaturation, but higher CCN activation percentage at
high supersaturation.

3.1 Introduction

Airborne particulate matter (PM) is regulated in many countries due to its adverse im-
pact on human health, visibility and climate [Pascal et al., 2013; Davidson et al., 2005;
Jacobson, 2002c]. Hence, air quality models are used to simulate and forecast its concen-
tration. Most of existing models assume that particles are internally mixed (i.e., particles
of the same size mix instantaneously when they meet and have the same chemical compo-
sition), largely for computational reasons. However, field measurements [Murphy et al.,
2006; Healy et al., 2012] have proved that a wide range of particle compositions can
coexist in the atmosphere, namely they are externally mixed, and the internal-mixing
(IM) assumption may be inaccurate especially close to emission sources. For example,
the measurements of Healy et al. [2012] showed that particles from different sources may
have different compositions, and particles with local or transported origins have distinct
mixing states [Healy et al., 2013]. The mixing state of particles may influence aerosol
properties, such as absorption and scattering properties [Lesins et al., 2002b; Mallet et al.,
2004], as well as the global radiative forcing [Jacobson, 2001]. By influencing the particle
composition, the mixing state also influences the hygroscopicity and the potential of par-
ticles to be activated as cloud condensation nuclei [Wex et al., 2010; Lance et al., 2013;
Leck and Svensson, 2014].

To simulate the evolution of externally-mixed particles by aerosol dynamics (coagula-
tion and condensation/evaporation), models of different complexity have been developed.
Limited by the complexity and computational abilities, most of the earlier attempts are
0D box models [Jacobson et al., 1994; Russell and Seinfeld, 1998; Jacobson, 2002a; Lu
and Bowman, 2010; Dergaoui et al., 2013; Zhu et al., 2015a]. In the 3-d Eulerian model
of Kleeman and Cass [2001], each source is associated to an aerosol distribution. The
different aerosol distributions are transported in the atmosphere, but they only interact
with the gas phase by condensation and evaporation. In the global atmospheric models of
Stier et al. [2005] and Bauer et al. [2008], the aerosol distribution is represented by mixed
and unmixed modal modes of predefined compositions. Oshima et al. [2009b] discretized
into sections both the particle size distribution and the fraction of black carbon in the
total particulate masss. However they did not model coagulation. Riemer et al. [2009]
model externally-mixed particles using a stochastic approach. Although this approach
is accurate and takes into account coagulation as well as condensation/evaporation, it is
computationally expensive when the number concentration of particles is high, limiting
its 3-d applications.

Extended from the discretization scheme of Dergaoui et al. [2013], the Size-Composition
Resolved Aerosol Model (SCRAM) [Zhu et al., 2015a] solves the aerosol dynamic evo-
lution for external mixtures taking into account the processes of coagulation, conden-
sation/evaporation and nucleation. In this work, the SCRAM model is integrated into
the Polyphemus air-quality modelling platform, and its performance to model air quality
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over Greater Paris is evaluated by comparison to the measurements obtained during the
Megapoli campaign in July 2009. The impact of the mixing-state assumption on aerosol
formation, composition as well as on aerosol optical properties and ability to be activated
as cloud condensation nuclei is investigated.

3.2 Model description and simulation setup

SCRAM uses the sectional representation to discretize the particle size distribution.
Within each size section, the composition of particles is also discretized. For a given
chemical component or aggregate of chemical components, the mass fraction is discretized
into mass fraction sections. The possible combinations of the mass fraction sections of
each chemical component or aggregate of chemical components are generated to define
all possible particle compositions. A combination of mass fractions is possible only if
the sum of the lower bound of each fraction section within the combination is lower
than 100%. In SCRAM, particle compositions can either be defined manually or au-
tomatically generated by giving the number of mass fraction sections of each chemical
component or aggregate of chemical components. Three aerosol dynamic processes are
taken into account in SCRAM: coagulation, condensation/evaporation and nucleation.
The parametrisation of Vehkamäki et al. [2002] for the homogeneous binary nucleation of
sulphate and water is used to simulate nucleation. For coagulation, the collisions of par-
ticles caused by Brownian motion is simulated using the module developed by Dergaoui
et al. [2013]. Three different approaches may be used in SCRAM for condensation/e-
vaporation: the fully dynamic approach, the bulk equilibrium approach or the hybrid
approach. The fully dynamic approach computes the mass transfer rate due to conden-
sation/evaporation for each particle size and composition section. It is the most accurate
of the 3 approaches but it has the largest computational cost. The bulk equilibrium ap-
proach computes the mass partition between the gas and the bulk particle concentration
by assuming an instantaneous thermodynamic equilibrium. After this bulk condensa-
tion/evaporation, the bulk particle concentration is redistributed between the particle
sections. The bulk equilibrium approach is more computationally efficient, but it is less
accurate than the dynamic approach, because particles may not be at thermodynamic
equilibrium with their surrounding and the composition identity of each particle is not
considered during the computation. Finally, the hybrid approach provides a compromise
by assuming bulk equilibrium for small particles while dynamically computing the mass
transfer rate for large particles. In this work, after condensation/evaporation, the moving-
center algorithm is used for mass-number redistribution among fixed size sections. For
more details about the discretization method, the mathematical derivation and model
validations please refer to Zhu et al. [2015a].

SCRAM was integrated into the Polair3D air quality model [Sartelet et al., 2007] of the
Polyphemus air-quality platform [Mallet et al., 2007] for 3D simulation over the Paris area.
The Carbon Bond 05 model (CB05) [Yarwood et al., 2005] is used for gas phase chemistry.
The thermodynamic model used for condensation/evaporation of inorganic aerosol is
ISORROPIA [Nenes et al., 1998], while the H2O model [Couvidat et al., 2012] is used for
the secondary organic aerosol (SOA) formation. Although the condensation/evaporation
of inorganics may be computed dynamically, bulk equilibrium is always assumed for



Section 3.2 – Model description and simulation setup 75

�4 �2 0 2 4 6 8

42

44

46

48

50

Paris

France

Figure 3.1: Simulated domain located within the red rectangle

organics, because a dynamic approach is not available in H2O. For in-cloud processing of
aerosols, the VSRM model [Fahey and Pandis, 2001] is used.

The Polair3D/Polyphemus air-quality model was modified to take into account both
size and composition sections. The number of particles and the chemical components of
each size/composition sections are transported. For input data, both initial and boundary
conditions of the simulation can be specified as internally mixed (data without compo-
sition information) or externally mixed (data with composition information). In case of
internally-mixed data, the composition index of each section is computed based on the
composition of particles in that section. Emissions are considered as externally mixed
(particles are only made of the emitted chemical component). Simulations in this work
assume that initial and boundary conditions are internally mixed as they are obtained
from a larger-scale simulation, which assumes that particles are internally mixed.

The simulation domain is the same as in Couvidat et al. [2013] and Wang et al. [2014].
As shown in figure 3.1, it covers the Paris area ([1.2◦E, 3.5◦E] × [47.9◦N, 50.1◦N]) with
a horizontal resolution of 0.02◦ × 0.02◦, and 9 vertical layers from the ground to 12
000 m. The meteorology data are obtained from the Weather Research and Forecasting
(WRF) [Skamarock et al., 2008] model using an urban canopy model and the Corine
land-use data base [Kim et al., 2013] with the YSU parametrization [Hong et al., 2006]
for the planetary boundary layer. Initial and boundary conditions inputs for aerosols and
gas are from Couvidat et al. [2013], which were obtained from nested simulations over
Europe and France. Biogenic VOC emissions are generated from the MEGAN emission
model [Guenther et al., 2006], while anthropogenic emissions of gases and particles are
obtained from the Airparif inventory [Airparif, 2010]. Four simulations are carried out for
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Table 3.1: 20 Externally-mixed particle compositions

Composition Index Pseudo Names Mass fraction of each groups (%)

IL OL OB EC

1 DUST 0-20 0-20 0-20 0-20

2 EC+ 0-20 0-20 0-20 20-80

3 EC 0-20 0-20 0-20 80-100

4 OB+ 0-20 0-20 20-80 0-20

5 OB+EC 0-20 0-20 20-80 20-80

6 OB 0-20 0-20 80-100 0-20

7 OL+ 0-20 20-80 0-20 0-20

8 OL+EC 0-20 20-80 0-20 20-80

9 OM+ 0-20 20-80 20-80 0-20

10 OM+EC 0-20 20-80 20-80 20-80

11 OL 0-20 80-100 0-20 0-20

12 IL+ 20-80 0-20 0-20 0-20

13 IL+EC 20-80 0-20 0-20 20-80

14 IL+OB 20-80 0-20 20-80 0-20

15 IL+OB+EC 20-80 0-20 20-80 20-80

16 IL+OL 20-80 20-80 0-20 0-20

17 IL+OL+EC 20-80 20-80 0-20 20-80

18 IL+OM 20-80 20-80 20-80 0-20

19 IL+OM+EC 20-80 20-80 20-80 20-80

20 IL 80-100 0-20 0-20 0-20

one week from 28 June to 5 July 2009. The first two simulations assume that particles
are internally mixed (IM), while the other two simulations simulate externally-mixed
(EM) particles. Within each of the two groups of simulations, one simulation uses the
fully dynamic approach for condensation/evaporation, while the other one uses the bulk
equilibrium approach for solving condensation/evaporation.

The size distribution is discretized into 5 size sections between 0.01 and 10 µm. As
in Zhu et al. [2015a], 31 aerosol species are grouped into 5 groups: inorganic hydrophilic
(IL), organic hydrophilic (OL), organic hydrophobic (OB), black carbon (EC) and dust
(DUST). The IL group includes sodium, sulphate, nitrate, ammonium and chloride. The
23 organic model species are divided into two groups (9 OB and 14 OL species) based on
their hygroscopic characters as detailed in Couvidat et al. [2012]. EC and DUST contains
respectively black carbon and dust. For the EM simulations, the mass fraction of each
of the first four groups (IL, OL, OB, EC) is discretized into three mass-fraction sections
([0.0, 0.2],[0.2, 0.8],[0.8, 1.0]). In total 20 possible particle compositions are generated, as
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presented in Table 3.1. DUST is not discretized and its mass fraction is obtained by mass
conservation. The names assigned to the particle compositions are chosen depending on
the main chemical groups (with mass fraction greater than 20%) of each composition.
Particles with more than 80% of one chemical group are considered as unmixed, they
are referred as DUST, EC, OB, OL and IL. Besides, EC+, OB+, OM+, OL+ and IL+
represent compositions that are partly mixed as they do not have a chemical group which
dominates the mass fraction by more than 80%, but only one chemical group has a mass
fraction larger than 20%. When both hydrophilic and hydrophobic organics are equally
present in the composition, they are referred as organic matter (OM). In each group, water
may also be present, although it is not considered when computing the mass fractions (it
is calculated separately with the thermodynamic models).

3.3 Particle concentrations

This section analyses the simulated particle concentrations from all four simulations.
First, PM2.5 and PM10 are compared to observational data. The influences on PM2.5

and PM10 of the mixing-state assumption and of the approach used to model condensa-
tion/evaporation (equilibrium vs dynamic) are investigated. Secondly, as only inorganic
concentrations may be computed dynamically, a more specific analysis is performed on
inorganic aerosol formation. Finally, the mixing state of EC is studied. Because EC is an
inert species and it is emitted by traffic, which is an important source of pollution over
Paris, it is a good candidate to demonstrate the ability of SCRAM to study the particle
mixing state.

3.3.1 PM concentrations

The model performance to simulate PM concentration over Greater Paris is evaluated
based on the criteria proposed by Boylan and Russell [2006]: PM performance goal is
met when the mean fractional bias (MFB) is in range of [-30%, 30%] and the mean
fractional error (MFE) is in range of [0%, 50%]; the PM performance criterion is met
when the mean fractional bias (MFB) is in range of [-60%, 60%] and the mean fractional
error (MFE) is in range of [0%, 75%]. The PM performance goal corresponds to the
level of accuracy that is considered to be close to the best level that can be expected to
achieve, while the PM performance criterion corresponds to the level of accuracy that
is considered to be acceptable for modelling applications. The root-mean-square error
(RMSE) and correlation coefficient are also used as statistical indicators in this work.
Definitions about MFB, MFE, RMSE and correlation are detailed in table 3.2.

Statistics of the four simulations are presented in table 3.3 for both PM2.5 and PM10.
For all the simulations, the PM performance goal is met for PM2.5 and the PM criterion
is met for PM10. In other words, the model simulates well PM2.5, while PM10 is slightly
under estimated as expected from the former simulations which use the same setup and
input data [Couvidat et al., 2013; Wang et al., 2014]. The reasons for this underestima-
tion of coarse particles may be that re-suspension is not modelled and dust boundary
conditions may be underestimated.

Although the statistics of the different simulations are very similar, they are always
better for the dynamic approach than for the equilibrium approach no matter what mixing
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Table 3.2: Definitions of the statistics used in this work. (oi)i and (ci)i are the observed
and the model concentrations at time and location i, respectively. n is the number of
data

Statistic indicator Definition

Root mean square error (RMSE)

√

1

n

∑n
i=1(ci − oi)2

Correlation
∑n

i=1(ci − c̄)(oi − ō)
√
∑n

i=1(ci − c̄)2
√
∑n

i=1(oi − ō)2

Mean fractional bias (MFB)
1

n

∑n
i=1

ci − oi

(ci + oi)/2

Mean fractional error (MFE)
1

n

∑n
i=1

| ci − oi |
(ci + oi)/2

Table 3.3: Statistics between simulation results and the measurements of the BDQA
(Base de Données sur la Qualité de l Air) network during the MEGAPOLI summer
experiment. (Obs. stands for observation. Sim. stands for simulation. Corr. stands for
correlation.)

Simulations PM2.5

Obs. Sim. RMSE Corr. MFB MFE

mean mean

µg m−3 µg m−3 µg m−3 % % %

Internal-eq 21.35 17.15 9.5 56.5 -15.8 32.8

Internal-dy 21.35 17.14 9.6 56.1 -15.4 32.7

External-eq 21.35 17.18 9.5 56.5 -15.6 32.7

External-dy 21.35 17.42 9.3 57.9 -13.9 31.9

Simulations PM10

Obs. Sim. RMSE Corr. MFB MFE

mean mean

µg m−3 µg m−3 µg m−3 % % %

Internal-eq 35.54 18.96 23.3 36.3 -53.8 59.4

Internal-dy 35.54 19.11 23.2 34.7 -52.7 58.5

External-eq 35.54 18.97 23.3 36.2 -53.7 59.3

External-dy 35.54 19.35 22.9 38.5 -51.6 57.4
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Figure 3.2: Time evolution of PM2.5 at BDQA site Gennevilliers (48.93 N◦, 2.29 E◦)
between 28 June and 5 July 2009

assumption is used. Besides, in general EM simulations have better statistics than the
IM ones, especially with the dynamic approach, partly because the EM simulations lead
to slightly higher PM concentrations than the IM simulations. This is a consequence of
differences of inorganic aerosol concentrations, as discussed in the next section.

The dynamic approach leads to larger differences between the IM and EM simulations
than the equilibrium approach. This can be observed from Figures 3.2 and 3.3, where
the time evolutions of PM2.5 and inorganic concentrations at Gennevilliers (48.93 N◦,
2.29 E◦) (marked in Figure 3.4) respectively are presented for the four simulations. The
concentrations from IM and EM simulations are similar when bulk equilibrium is assumed,
because the mass transfer by condensation/evaporation between particles and gas depends
on the total bulk mass of inorganic components and it is independent of the mixing
state. Condensation/evaporation is the main process leading to differences in the mixing
state here, because internal and external mixing simulations have the same initial and
boundary concentrations. Furthermore, coagulation and transport treat similarly all
particles, independently of their mixing state. Under the dynamic approach, the mass
transfer rate varies with particle composition during condensation/evaporation, leading
to differences in PM concentrations between IM and EM simulations. Because only the
condensation/evaporation of inorganics is computed dynamically here, the differences of
PM2.5 concentrations between the IM and EM simulations are relatively low. Because
organics may not be at thermodynamic equilibrium [Couvidat and Sartelet, 2015] and
because they make a significant part of the total particle mass, larger differences would
be observed if the condensation/evaporation of organics is computed dynamically.
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Figure 3.3: Time evolution of NO−
3 and NH+

4 at BDQA site Gennevilliers (48.93 N◦, 2.29
E◦) between 28 June and 5 July 2009

3.3.2 Inorganic aerosol formation

The impact of the mixing state assumption and the condensation/evaporation approach
on the formation of inorganic aerosols is studied here, with a focus on nitrate and am-
monium. The sodium and sulphate concentrations are found to be very similar for all
simulations, because they are not volatile (with an averaged concentration of 0.165 µg
m−3 for sodium and 3.11 µg m−3 for sulphate). Chloride is ignored in the comparison
because its concentration is very small.

Figure 3.3 compares the time evolution of nitrate (NO−
3 ) and ammonium (NH+

4 ) be-
tween the four simulations at Gennevilliers. For both the EM and the IM simulations, the
dynamic approach for condensation/evaporation leads to lower peaks and higher troughs
for NO−

3 , but higher peaks and lower troughs for NH+
4 , compared to the bulk equilibrium

approach. Similarly to the PM2.5 concentration results, if bulk equilibrium is assumed
for condensation/evaporation, the mixing-state assumption makes almost no difference
on both NO−

3 concentrations (0.88 µg m−3 in average) and NH+
4 (1.19 µg m−3 in av-

erage). Using the dynamic approach for condensation/evaporation, EM leads to higher
NO−

3 concentration (1.24 µg m−3 in average) than IM (0.76 µg m−3 in average) and lower
NH+

4 concentrations (1.23 µg m−3 in average) than IM (1.33 µg m−3 in average). Fur-
thermore, the differences are especially high for peak concentration. Between 3 July and
4 July, the peak concentration of NO−

3 for the EM simulation is twice the one for the
IM simulation. Using the dynamic approach, the impact of the mixing-state assumption
is larger (average difference of 0.48 µg m−3 for NO−

3 and 0.1 µg m−3 for NH+
4 ) than the

impact of the condensation/evaporation approach (average difference of 0.35 µg m−3 for
NO−

3 and 0.04 µg m−3 for NH+
4 with external mixing).

Because sulphate concentrations do not change between the IM and EM simulations,
an increase of NO−

3 would lead to an increase of NH+
4 if bulk equilibrium is considered

for condensation/evaporation. However, in the EM simulations, NH+
4 decreases because

the amount neutralized by sulphate is lower. This leaves more ammonia available to
react with nitric acid, leading to an increase of NO−

3 . For a better understanding, let us
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Figure 3.4: Spatial distribution of EC mixing state over Paris region

define [TA], [TS], and [TN] the total (gas + particle) molar concentrations of ammonium,
sulphate, and nitrate, respectively. Two different chemical environments around particle
surface may exist. If [TA] > 2 [TS], then the local environment is ammonia rich, and
all sulphate is in the form of (NH4)2SO4. On the contrary, if [TA] < 2 [TS], then the
environment is ammonia-poor, sulphate is not fully neutralized and it may be in the
form of both (NH4)3H(SO4)2 and (NH4)2SO4. Because (NH4)3H(SO4)2 has lower NH+

4

to SO2−
4 ratio than (NH4)2SO4, less NH+

4 is formed in ammonia-poor environment than
in ammonia-rich environment. In the IM simulation, within a size section, the mass of
sulphate is the same for each particle, and each particle neutralizes the same amount of
ammonia. Once sulphate is fully neutralized, then the remaining ammonia reacts with
nitric acid to condense, which means that ammonium nitrate can only be formed under
an ammonia-rich environment. However, in the EM simulation, particles may contain
different amounts of sulphate. For particles that contain a high fraction of sulphate, the
local environment may be ammonia poor, reducing the amount of ammonium neutralized
by sulphate compared to the IM simulation, and increasing the amount of ammonia
available for particles that contain a low fraction of sulphate. For those particles, more
ammonia is left in the gas phase after neutralization of sulphate, favouring the formation
of NH+

4 NO−
3 and leading to more nitrate in the particle phase than in the IM simulation.

3.3.3 Mixing state of EC

The external mixing model provides the opportunity to investigate particle mixing state.
As EC is an inert component of particles and as it is the most strongly light-absorbing
one, the mixing state of EC is studied here, using the EM simulation with the dynamic
approach.

We define the unmixed EC percentage as the ratio of the EC mass of unmixed EC
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Figure 3.5: Temporal evolution of EC mixing state over Paris region

particles to the EC mass of all particles. Figure 3.4 shows the spatial distribution of
the unmixed EC percentage during the morning rush hour at 5:00 AM UTC on 29 June
2009. Regions with strong traffic emissions have high unmixed EC percentages, such
as the highways and ring roads around the city. Up to 80% of the EC mass may be
unmixed. Figure 3.5 shows the time evolution of the total EC mass as well as the
unmixed EC percentage at an urban site Gennevilliers. These two curves are strongly
correlated: the unmixed EC percentage is the highest when the total EC mass is the
highest, mostly during morning rush hours. Peaks of unmixed EC percentages are also
observed in the late afternoon during the evening rush hours, although the increase of
the total EC mass during the evening rush hours is low. Between 28 June and 3 July,
the unmixed EC percentage does not drop to low values: it is higher than 35% with a
peak at 72%. Between 3 July and 4 July, the unmixed EC percentage increases to values
above 60% with a peak at 80%. This is caused by a strong wind event on 3 July, which
clears out most of the background particles and the total EC mass is lower than between
28 June and 3 July. The same decrease can also be observed in the time evolution of
PM2.5 in Figure 3.2. Particles are therefore less mixed on 3 and 4 July than between 28
June and 3 July.

The EC mixing state at an urban and a rural sites is compared in Figure 3.6, which
presents the week-averaged partition of EC mass amongst the particle types at both the
urban site of Gennevilliers and the rural site of Fontainebleau (48.35 N◦, 2.77 E◦) (south
est of Paris, see Figure 3.4). At the urban site, more than half (53.8%) of the total EC
mass is unmixed on average, whereas at the rural site, only 32.2% of the total EC mass
is unmixed. EC particles are more mixed at the rural site, because it is further apart
from emission sources, such as traffic emissions. At both the urban and the rural sites,
a large percentage of mixed EC particles contains inorganic species (IL), which are often
mixed with organics (IL+OB, IL+OL, and IL+OM). A larger percent of EC particles
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Figure 3.6: Comparison between partition of EC mass amongst the particle types at
urban and rural site (Week averaged at ground level)

are mixed with organics (9.7% of OM+, OM+EC, and OL+EC) at the rural site than at
the urban site (2.5% of OM+ and OB+EC). This may correspond to stronger biogenic
emissions and higher SOA concentrations at the rural site.

3.4 Aerosol optical properties

Particles attenuate the solar radiation, influencing the earth radiative budget and affect-
ing the climate. This attenuation is modelled using aerosol optical properties, such as
the Aerosol Optical Depth or Thickness (AOD / AOT) and the Single Scattering Albedo
(SSA). The AOD represents the attenuation of solar radiation, while the SSA represents
the importance of scattering during such attenuation. Both the AOD and SSA values
are determined by the vertical particle concentrations. They depend on the size, the
composition and the mixing state of particles. In this section, the computation of aerosol
optical properties is first detailed. The AOD values are then compared to AERONET
measurements, and the influence of the mixing-state assumption is studied. Finally, the
particle types that contribute the most to high AOD values are determined. AODs and
SSAs are computed from the concentrations of both the IM and EM simulations with the
dynamic approach (AODint and AODext; SSAint and SSAext).

3.4.1 Computation of aerosol optical properties

When light reaches a particle, it might be scattered into other directions or absorbed by
particles. The ability to scatter or absorb radiations is described by the extinction coeffi-
cient bext = bscat + babs which depends on both the size and composition of particles. The
Complex Refractive Index (CRI) is used to represent the optical property of each particle
chemical component. It is a complex number whose real part describes the scattering
ability of the component while the imaginary part describes the absorbing ability. The
CRI are sensitive to the wavelength of incident light, in this study the optical properties at
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Table 3.4: CRI of simulated species at λ=550 nm in dry state

Species Real Imaginary

Nitrate 1.60 0.0

Ammonium 1.53 -6.0 × 10−3

Sulphate 1.53 0.0

Sodium 1.50 -1.0 × 10−8

Chloride 1.50 -1.0 × 10−8

EC 1.95 -0.79

Mineral Dust 1.52 -1 × 10−3

Hydrophilic Organics 1.53 -6.0 × 10−3

Hydrophobic Organics 1.53 -8.0 × 10−3

550 nm are investigated. Table 3.4 shows the CRI used in this study. They are obtained
from the ADIENT/APPRAISE technical report (http://www.met.rdg.ac.uk/ adient) for
inorganics and from the OPAC software package [Hess et al., 1998] for organics (water
soluble type for hydrophilic organics and insoluble for hydrophobic organics).

Because particles are often made of several chemical components, an Aerosol Complex
Refractive Index (ACRI) is determined from the CRI. Two methods may be used to do so:
one method assumes that the chemical components are well mixed, and the other assumes
that EC is a non-mixed core at the center of each EC containing particles. In the first
method, the ACRI is computed by a simple volume averaged procedure. The second
method uses the Maxwell-Granett approximation [Maxwell, 1904]. After computed the
ACRI value m, the extinction and the scattering coefficients are computed based on the
Mie theory [Mie, 1908], using the Mie code of Bohren and Huffman [1983]. Finally the
AOD and the aerosol scattering depth (ASD) at a wavelength λ are calculated as the
integral of the extinction coefficient and the scattering coefficient respectively through

the vertical of atmosphere. The single scattering albedo (SSA) is defined by
ASD

AOD
.

The algorithm for computing the AOD and aerosol optical properties is obtained from
Tombette et al. [2008] and Wang et al. [2014].

3.4.2 Comparisons to AERONET measurements

AERONET (AErosol RObotic NETwork) is a ground-based remote sensing network, with
aerosol optical measurements performed by sun photometers [Holben et al., 1998]. Its
database provides accurate AOD measurements at different wavelengths, with a mea-
surement uncertainty lower than 0.02 [Holben et al., 2001]. Three data quality levels are
available: level 1.0 (unscreened), level 1.5 (cloud-screened), and level 2.0 (cloud-screened
and quality assured). Three AERONET stations are available over Greater Paris: one
urban station Paris (48.87◦ N, 2.33◦ E; 50 m a.s.l.) and two suburban stations Palaiseau
(48.70◦ N, 2.21◦ E; 156 m a.s.l.) and Créteil (48.78◦ N, 2.44◦ E; 59 m a.s.l.) (marked
in Figure 3.8). In this study, level 2.0 AOD data at 500 and 675 nm are used to derive
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Table 3.5: Statistics between AOD values computed from simulation results and the mea-
surements of the AERONET. (Obs. stands for observation. Sim. stands for simulation.
Corr. stands for correlation.)

Simulations Obs. mean Sim. mean RMSE Corr. MFB MFE

Internal-core 0.30 0.28 0.18 49.3% -14.4% 38.7%

Internal-mix 0.30 0.29 0.18 48.2% -11.9% 37.8%

External-core 0.30 0.28 0.18 49.2% -16.1% 39.3%

External-mix 0.30 0.28 0.18 48.3% -13.6% 38.2%

AODobs data at 550 nm following the Ångström law:

AOD(550) = AOD(500) ×
(

550

500

)−α

(3.1)

with α the Ångström exponent:

α = ln

(

AOD(500)

AOD(675)

)

/ln
(

675

500

)

. (3.2)

Table 3.5 presents the statistics of the comparison of computed AOD values to AERONET
measurements at the three available stations. Internal-core and external-core denote re-
sults of respectively the IM and EM simulations, with AOD computed using the EC
core hypothesis. Internal-mix and external-mix denote results of respectively the IM
and EM simulations, with AOD computed using the well-mixed hypothesis. The statis-
tics of results with different mixing states (internal-core, external-core, internal-mix and
external-mix) are similar. Simulated AODs compare well to measurements, with a mean
simulated value of 0.28 and a mean observed value of 0.30. The correlations are between
48% and 50%. The MFB and MFE values satisfy the model performance goal criterion
of Boylan and Russell [2006]. Figure 3.7 shows the daily variations of AOD and SSA
at the urban station Paris. AOD values are very similar for internal-core, external-core,
internal-mix and external-mix and the daily variations compare well to observations.
Both the simulated and the observed AOD are highest in 2 July and lowest in 30 June.
Higher differences between the results of different mixing states are observed for SSA at
the station Paris. The next section studies in more details the influence of the mixing
state on AOD and SSA at the station Paris and over the domain of study (Greater Paris).

3.4.3 Influence of the mixing state

Because the AERONET station Paris is located down-town Paris where particles and
especially EC are largely unmixed, it is a good location to study the influence of the
particle mixing state on AOD and SSA. As discussed in the previous section, Figure 3.7
shows that the influence of the mixing state is larger on SSA than on AOD at Paris.
Using the same AOD computation method (core or mix), the IM simulation leads to
higher AOD values and lower SSA values than the EM simulation. However, for the
same mixing-state assumption in the simulation, the EC core hypothesis in the AOD
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Figure 3.7: (a) Comparison of AOD between different mixing assumptions and the ob-
servation; (b) comparison of SSA between internal and external mixing case; Both plot
is based on the data collected from the location of AERONET site Paris (48.87◦ N, 2.33◦

E; 50 m a.s.l.)

computation method leads to slightly lower AOD and higher SSA than the well-mixed
hypothesis. However, the differences are lower than differences between the EM and IM
simulations using the same A0D computation method.

The higher SSA values observed for externally-mixed EC particles are explained by the
fact that for a given mass of EC within a particle, its absorption cross section is greater
when other non-absorbing materials are also present than when the particle is made of
pure EC. Hence, as discussed in Seinfeld and Pandis [2012], in the EM simulations, EC
is highly concentrated in several EC dominated particle types, while EC is present in
all particles in the IM simulations, leading to larger total absorption cross sections and
larger absorption effects.

The influence on SSA is in good agreement with the results of Mallet et al. [2004],
which indicate that IM reduces SSA by about 15% compared to EM. The SSA difference
between different mixing assumptions is lower in this study than in Mallet et al. [2004],
because in Mallet et al. [2004] SSA is computed by assuming that EC is either completely
mixed or not mixed at all with other components. However, in our EM simulations, EC
can have different mixing states (see section 3.3.3).

Figure 3.8 shows the spatial distribution of the weekly averaged AOD and SSA dif-
ferences between the IM and EM simulations with the well-mixed hypothesis for optical
calculations. Using the EC core rather than the well-mixed hypothesis leads to sightly
lower differences for AOD and SSA between the IM and EM simulations (about 2.0%
lower for AOD and about 0.7% lower for SSA). AOD and SSA differences are calculated
using the following equation:

Difference = |ωext − ωint

ωint
| × 100% (3.3)

where ωint and ωext are either AOD or SSA obtained from the IM and EM simulations
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Figure 3.8: Spatial distribution of differences between different mixing assumptions of
different parameters
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(a) PM10 contribution (b) AOD contribution

Figure 3.9: (a) Averaged mass fraction of each particle types (all level); (b) Averaged
AOD fraction contribute by each particle types

respectively. For SSA, the larger differences between IM and EM are concentrated in
the city of Paris, where a large percentage of EC is unmixed in the EM simulation,
affecting the absorption and scattering properties of particles. Although, on average over
the week of simulation, the highest SSA difference is only 2.15%, Figure 3.8 (d) shows
that for specific time periods (e.g. during rush hour at 9:00 AM on 4 July when 80% of
EC is unmixed) the difference can be as high as 10.7%. For AOD, differences between
IM and EM are rather low over the city of Paris, but they are high over some regions
such as the north east and the south west of Paris. Although the weekly-averaged AOD
difference is at most of 7.25%, the hourly-averaged difference can be as high as 72.5%, for
example at 12:00 AM on 28 June (see Figure 3.8 (c)). The differences in AOD are mostly
related to differences in mass concentrations between the IM and EM simulations. Water
plays an important role in light scattering and the AOD difference is mostly caused by
the difference of aerosol water content. Indeed, the comparison of Figures 3.8 (c), 3.8
(e) and 3.8 (f) shows that the AOD difference is strongly correlated to difference in
aerosol water concentration, and also correlated to difference in inorganic concentrations,
although the correlation to the difference in inorganic concentrations is not as high as the
correlation to difference in water concentration. Differences in inorganic concentrations
result from differences in the mixing-state assumption as discussed in section 3.3.2, and
they lead to differences in water aerosol concentration, which is computed based on
inorganic aerosol concentrations using ISORROPIA. As shown in Figures 3.8 (e) and 3.8
(f), a difference of 22% in inorganic concentrations can lead to differences as high as 80%
in water concentration and 72% in AOD.

3.4.4 Contributions of particle types

Figure 3.9 compares the contribution of each particle type to PM10 and AOD. Particles
containing inorganic species (IL+OB and IL+) are the main contributors to AOD, with
a contribution fraction of 88%. Their contribution to PM10 is lower, although high
(60%). Besides, there are only three particle types whose AOD contribution exceed their
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mass contribution: IL+, IL+OB and IL+OL. Let us define the ratio between the AOD
contribution fraction (AODfrac) and the PM10 contribution fraction (PMfrac) as the AOD

contribution efficiency (AODeff) of one particle type: AODeff =
AODfrac

P Mfrac
× 100%. The

IL+OL particles have the highest AOD contribution efficiency (170.6%), followed by the
IL+ particles (160.7%) and the IL+OB particles (131.8%). This is a consequence of the
hygroscopic property of particles. For a given dry particle diameter, hydrophilic particles
have a larger water concentration than hydrophobic particles, thus larger wet diameter,
leading to higher particle scattering ability. Therefore, the particle types with the three
highest AOD contribution efficiency contain inorganic hydrophilic species and the particle
type containing both inorganics and hydrophilic organics (IL+OL) has the highest AOD
contribution efficiency. Although the contribution of unmixed EC particles is not large
enough to be seen in Figure 3.9 (b), further analyse reveals that with less than 0.45%
of the total PM mass, the unmixed EC particles contribute to around 2.1% of the total
AOD.

3.5 Cloud Condensation Nuclei

Cloud condensation nuclei or CCN are particles that can become cloud droplets by con-
densation of water vapour when the surrounding atmosphere is supersaturated. They are
very important for cloud formation, as they provide the non-gaseous surface which is nec-
essary for water vapour to condense. Without such surface, the spontaneously nucleation
of water vapour is very difficult. In above freezing temperatures the air would have to
be supersaturated to around 400% before the droplets could form without the presence
of CCN [Seinfeld and Pandis, 1998]. Based on Köhler equation [Kohler, 1921; Köhler,
1926], the percentage of particles that are activated as cloud droplets is controlled by
both particle wet diameter (Kelvin effect) and composition (solute effect). The Kelvin
effect is related to the curvature of particles: the surface vapour pressure is higher for
particles of lower diameter, inhibiting the condensation of water vapour. The solute ef-
fect decreases the surface vapour pressure depending on the dissociation ability of the
chemical components of the particle. Hydrophilic particles are more easily activated than
hydrophobic particles. Because the mixing state of particles influences the particle com-
position and water content as seen in the previous section, its impact on the formation of
CCN may be important. This section first explains briefly the activation of particles in
CCN. Then, the impact of the mixing state on the formation of CCN is studied, as well
as the contribution of the different particle types to the CCN formation.

3.5.1 Computation of CCN

A particle is activated into a cloud droplet when the supersaturation of its surrounding
environment is larger than a critical supersaturation sc, which depends on the size and
the composition of the particle [Seinfeld and Pandis, 1998]:

sc = exp[(
4A3ρwMs

27νρsMwd3
sfvs

)1/2] − 1 (3.4)
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(a) CCN(1%) (b) CCN(0.02%)

Figure 3.10: Spatial distribution of weekly averaged CCN activation percentage differ-
ences (%) between internal and external mixing under (a) high supersaturation (1%), (b)
low supersaturation (0.02%)

where A =
4Mwσw

RTρw
, ds is the particle dry diameter, fvs is the volume fraction of soluble

components, ν is the Van’t Hoff factor, which represents the averaged number of ions re-
sulting from the dissociation of one solute molecule, Ms and Mw are the molecular weights
of solute and water respectively, ρs and ρw are their densities, T is the temperature, R is
the ideal gas constant, and σw the water air surface tension.

In this study, only the species of groups IL and OL are considered as soluble species,
others are considered as insoluble. The routine of Nenes and Seinfeld [2003] is used for
computing the critical supersaturation sc of particles based on their size and composition.
As the computation of CCN is very sensitive to particle size, each size section is divided
into 10 size sections of same composition to obtain a smooth CCN spectrum. The number
of CCN is computed at six hypothetical supersaturation (0.02, 0.05, 0.1, 0.2, 0.5, 1.0)%
for the whole simulation domain. Then, the CCN activation percentage is computed
based on the ratio of the number of particles that have been activated as CCN to the
total number of particles.

3.5.2 Impact of the mixing state on CCN

To investigate the impact of the mixing state on CCN, CCN activation percentages are
computed at different supersaturations for both the IM and EM simulations. Figure 3.10
shows the spatial distribution of the difference between IM and EM simulations of the
absolute value of the weekly-averaged CCN activation percentage at a high supersatu-
ration (1%) and at a low supersaturation (0.02%). This CCN activation difference is
computed based on equation (3.3) by replacing ωint and ωext by the CCN activation per-
centage computed from the IM and EM simulations respectively. The absolute value of
the CCN activation percentage difference between IM and EM simulations is lower at 1%
supersaturation (between 0 and 11%) than at 0.02% supersaturation (between 12 and
75%), because at 1% supersaturation, hydrophobic particles are more easily activated
than at 0.02%, reducing the impact of differences of particle compositions. The spatial
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Figure 3.11: Averaged CCN activation percentage and CCN activation difference (%) for
different supersaturation % at urban site.

pattern of the absolute value of the CCN activation percentage difference is also very
different at 1% and at 0.02% supersaturations. At 1% supersaturation, high differences
are concentrated over Paris and the near vicinity, where they reach up to 11%. However,
at 0.02% supersaturation, differences are larger outside Paris over rural area. The dif-
ferences over urban regions are a consequence of high concentrations of freshly emitted
insoluble particles such as EC particles from traffic. In the EM simulation, these particles
are hardly activated because they are hydrophobic. However, in the IM simulation, EC is
always mixed with hydrophilic components, enhancing the particle activation. Over rural
regions, particles are more aged and mixed than over urban regions, leading to a lower
percentage of unmixed hydrophobic EC particles in the EM simulations. Hence, at high
supersaturation, the difference between EM and IM simulations is lower than over urban
regions and most particles are activated. At low supersaturation, the difference between
EM and IM simulations is high over rural regions, because only particles with very low
sc can be activated, such as large-diameter soluble-rich particles. In the IM simulation,
all particles contain both hydrophilic and hydrophobic species, with the hydrophobic
components enhancing the activation of particles. However, in the EM simulations, the
particles that are made exclusively of hydrophilic species do get activated.

The relative difference between IM and EM simulations is also illustrated in Figure
3.11, which shows the CCN activation percentage as well as the CCN activation relative
difference at six supersaturations at the urban site (48.82◦ N, 2.34◦ E) of Figure 3.10. The
relative difference changes sign at around 0.15% supersaturation. Its variations depend
on the mass repartition of soluble/insoluble species over particles, which depends on the
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(a) CCN(1%) (b) CCN(0.02%)

Figure 3.12: CCN contribution of each particle types under 1% and 0.02% of supersatu-
ration.

mixing state. At low supersaturation, IM leads to lower CCN activation percentage than
EM, because the hydrophobic components of IM particles inhibit activation and only the
hydrophilic particles of the EM simulation may be activated. At high supersaturation, IM
leads to higher CCN activation percentage than EM, because most particles are activated
except for the particles that are mostly hydrophobic in the EM simulation.

3.5.3 Contribution of particle types

Figure 3.12 compares the relative contribution of the different particle types to the number
of CCN activated particles at 0.02% and 1% supersaturations. Inorganic (IL+) particles
are activated at lower supersaturation than organic (OM+) particles. At 0.02% supersat-
uration, the IL+ particles contribute to around 30.5% of the total CCN activation and
the fraction of activated organic particles is negligible, while at 1% supersaturation, the
IL+ contribution is only 4.4%, and almost 6% of activated particles are organic particles
(OM+). This is quite reasonable, as IL+ particles are mostly made of soluble materi-
als, thus have low sc and can easily be activated. At higher supersaturation, a larger
percentage of less soluble particles are activated. Thus the relative contribution IL+ is
lower. Besides, most activated particles contain inorganic species or at least hydrophilic
species, as hydrophilic species favour CCN activation. Activated OM+ particles at 1%
supersaturation contain more than 20% of hydrophilic species.

The relative contribution of the different particle types to the total number concen-
tration is presented in Figure 3.13. There are 5 particle types that mostly contribute to
total number concentration: IL+OM, IL+OB, OM+, IL+, IL+OL. The comparison to
Figure 3.12 shows that these 5 particle types are activated at 1% supersaturation, while
only OM+ is not activated at 0.02% supersaturation. Furthermore, at 1% supersatura-
tion, the comparison shows that the relative contribution of IL+OB and IL+OM to the
number of activated particle is higher than their contribution to the total number of par-
ticles, while the contribution of IL+ to the number of activated particles is slightly lower
than its contribution to the total number of particles. These differences in relative con-
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Figure 3.13: Averaged fraction of each particle type to total aerosol number concentration

tribution may not be explained by the hydrophilic properties of the species, as particles
that contain hydrophobic materials (OB or OM) are less easily activated than particles
that do not. These differences in relative contribution are explained by differences in
the size distribution of chemical species: a great number (42.7%) of IL+ particles are
concentrated in the smallest size section (dp < 0.0398 µm), which is very difficult to be
activated, whereas this percentage drops to 9.9% for IL+OB particles and to 19% for
IL+OM particles.

3.6 Conclusions

The size-composition resolved aerosol model (SCRAM) coupled to the Polyphemus air-
quality platform is evaluated over Greater Paris. Four simulations with different mixing-
state assumption (internal mixing IM or external mixing EM) and condensation/evap-
oration algorithms (bulk equilibrium or dynamic) are compared. The four simulations
model well the total mass of PM10 and PM2.5 and aerosol optical depths, as assessed from
comparisons to observations from the BDQA and AERONET networks.

The concentrations from IM and EM simulations are similar when bulk equilibrium
is assumed for condensation/evaporation. Comparisons therefore focuses on differences
from IM and EM simulations arise when condensation/evaporation is computed dynami-
cally. Note that only the condensation/evaporation of inorganics is computed dynamically
here. EM leads to higher nitrate concentration (1.24 µg m−3 on average) than IM (0.76
µg m−3 on average) and lower ammonium concentration (1.23 µg m−3 on average) than
IM (1.33 µg m−3 on average). Furthermore, the differences are especially high for peak
concentration. Between 3 July and 4 July, the peak concentration of nitrate for the EM
simulation is twice the one for the IM simulation.

We define the unmixed EC percentage as the ratio of the EC mass of unmixed EC
particles to the EC mass of all particles. At the urban site of Paris, the unmixed EC
percentage does not drop to low values: it is higher than 35% with peak around 80%
during rush hours when emissions are the highest.

Detailed analyses are also conducted to investigate the impact of the mixing state on
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particle optical properties as well as on the cloud condensation nuclei (CCN) based on
the dynamic IM and EM simulations. Using the same aerosol optical depth (AOD) com-
putation method (core or mix), the IM simulation leads to higher AOD values and lower
SSA values than the EM simulation. However, the differences between AOD computed
using a core or mix method and AOD are lower than differences between AOD computed
from the IM and EM simulations. For SSA, the larger differences, up to 11% between IM
and EM simulations, are concentrated in the city of Paris, where a large percentage of EC
is unmixed in the EM simulation, affecting the absorption and scattering properties of
particles. For AOD, differences between IM and EM are rather low over the city of Paris,
but they are high over some regions such as the north east and the south west of Paris.
Differences are due to differences in inorganic concentrations resulting from differences
in the mixing-state assumption, and leading to differences in water aerosol concentra-
tion, and AOD. For example, differences of 22% in inorganic concentrations can lead to
differences as high as 80% in water concentration and 72% in AOD. Concerning CCN,
at low supersaturation, IM leads to lower CCN activation percentage than EM, because
the hydrophobic components of IM particles inhibit activation and only the hydrophilic
particles of the EM simulation may be activated. At high supersaturation, IM leads to
higher CCN activation percentage than EM, because most particles are activated except
for the particles that are mostly hydrophobic in the EM simulation. Moreover, in case
of high supersaturation, the difference in the spatial distribution between IM and EM
simulations are more significant over urban regions. However, such distribution pattern
also inverses under low supersaturation.

Although the potential of SCRAM to investigate particle mixing state has been
demonstrated in this study, it is somehow limited as no mixing state observation data is
available during our summer simulation period. So, the future work will focus on con-
ducting a new simulation where particle type resolved measurement is available, such
as the winter period of 2010 [Healy et al., 2012]. Besides, current simulation period is
limited to only one week due to the relative high computational demand of external mix-
ing simulation and limited computational resources. Although a comprehensive particle
composition descritization has been used in this study, it is still possible to improve such
representation. Because most of the particle mass and number are concentrated within
a few particle compositions, and several compositions are hardly exist during the entire
simulation. So, it is possible to optimize the computation efficiency by improving the
particle class parametrization, which could reduce the total number of particle classes
while conserving those particle classes with significant importance.



Chapter 4

Simulation of particle diversity and
mixing state over Greater Paris:
Model-to-data comparison

Résumé

Deux simulations, une avec l’hypothèse de mélange interne (MI) et une autre avec
l’hypothèse de mélange externe (ME), sont effectuées entre le 15 janvier et le 11 février
2010, pendant la campagne hiver MEGAPOLI durant laquelle les compositions individu-
elles des particules ont été mesurées. D’abord, les simulations sont évaluées par des
comparaisons des concentrations simulées d’O3, de PM2.5 et de PM10 avec les observa-
tions de la BDQA (Base de données de la qualité de l’air). Les statistiques montrent que
les simulations donnent des résultats satisfaisants. Ensuite, les concentrations simulées
des composés chimiques (concentration massique totale de chaque composé) et les con-
centrations des classes de particules (une classe est définie par sa taille et sa composition
chimique) sont comparées avec les observations de Healy et al. [2013]. De bonnes cor-
rélations sont trouvées entre les résultats des simulations et les mesures à la fois pour les
PM1 et pour les concentrations massiques de différents composés tels que EC (carbone
élémentaire). Pour les comparaisons des concentrations des classes de particules entre
la simulation et les observations, nous trouvons une assez bonne cohérence entre les ré-
sultats de simulation et les mesures pour les particules riches en EC. L’état de mélange
des particules pauvre en EC est cependant un peu moins bien simulé, probablement à
cause de l’algorithme de redistribution des organiques après condensation/évaporation.
Ensuite, un indicateur de la diversité des particules et de l’état de mélange est calculé
comme dans l’approche développée par Riemer and West [2013]. L’indicateur calculé à
partir des simulations est comparé avec celui calculé à partir des mesures de Healy et al.
[2012]. La valeur moyenne de l’indicateur est cohérente entre la simulation et la mesure
(2,91 à partir de la simulation et 2,79 à partir des mesures). Cet indicateur représente le
nombre moyen d’espèces dans chaque particule. La distribution spatiale de l’indicateur
(en moyenne sur le temps de la simulation) montre que les particules sont peu mélangées
en région urbaine, tandis qu’elles sont plutôt bien mélangées en région rurale. Cela in-
dique que l’hypothèse de mélange interne traditionnellement utilisée dans les modèles de
chimie transport est bien adaptée aux régions rurales, mais cette hypothèse est moins
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réaliste en régions urbanisées proches des sources d’émissions.
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4.1 Introduction

Atmospheric particles possess a large diversity of their chemical compositions, and those
compositions are constantly evolving as particles mix with each other and interact with
surrounding gases. The diversity of particle compositions in a population of a given size
range is often referred to as the particle mixing state [Healy et al., 2014]. Although most
measurements are performed for "bulk" chemical compounds, i.e. without considering
the particle mixing state (e.g., aerodyne high-resolution time-of-flight aerosol mass spec-
trometer (HR-ToF-AMS) [DeCarlo et al., 2006], and multi-angle absorption photometer
(MAAP) [Petzold and Schönlinner, 2004]), more and more field studies have focused on
measuring individual particle compositions using the single particle mass spectrometers
such as the aerosol time-of-flight mass spectrometer (ATOFMS). Particle mixing state
may allow to assists in the identification of particle sources [Murphy et al., 2006; Ault
et al., 2010; Healy et al., 2012; Dall’Osto et al., 2013], as well as to determine climate-
relevant particle properties such as cloud condensation nuclei (CCN) activity, hygroscop-
icity, optical absorption and scattering [Mallet et al., 2004; Furutani et al., 2008; Herich
et al., 2009; Crosbie et al., 2015]. Furthermore, information on the particle mixing state
can be a powerful tool to assess ageing processes and the relative impact of local and
regional sources of ambient particles in urban environments [Healy et al., 2013].

Aside from observations, the modelling of composition-resolved particles remains chal-
lenging. In most air-quality and climate models, for computational reasons, the particle
diversity is not considered, and it is assumed that all particles within the same size section
[Debry et al., 2007a] or within the same mode [Sartelet et al., 2006] have an homogeneous
composition. Those models are often referred to as internal-mixing models. An external-
mixing model provides additional complexity by allowing for multiple particle compo-
sitions within a given size range. Limited by complexity and computational resources,
most of the developed external-mixing models are 0-D box models [Jacobson et al., 1994;
Russell and Seinfeld, 1998; Jacobson, 2002a; Lu and Bowman, 2010; Dergaoui et al.,
2013; Zhu et al., 2015a]. Few attempts have been made to simulate the externally-mixed
particles in three dimensions, usually neglecting coagulation, and introducing simplifying
assumptions. In Kleeman and Cass [2001], different particle distributions are associated
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with different emission sources. However, particles are not allowed to exchange freely
between different populations, and only transportation and interaction with gas phase
species is simulated. In the works of Stier et al. [2005] and Bauer et al. [2008], the parti-
cle distribution is represented by mixed and unmixed modes of predefined compositions;
in Oshima et al. [2009a], the compositions of particles are discretized based on the mass
fraction of black carbon in the particles. Riemer et al. [2009] model externally-mixed par-
ticles using an accurate stochastic approach, which may be computationally expensive
when the number of particles is high. Zhu et al. [2015a] developed a Size-Composition
Resolved Aerosol Model (SCRAM), where both the size and mass fractions of chemical
components of particles are discretised. For a given particle size section range, particles
could have distinct chemical compositions. When discretising mass fractions, chemical
components may be grouped into several aggregates to reduce the computational cost.
SCRAM takes into account the processes of coagulation, condensation/evaporation and
nucleation. The SCRAM model has already been integrated into the Polyphemus air
quality platform [Mallet et al., 2007] and used to evaluate the Paris region from 28 June
to 5 July 2009 [Zhu et al., 2015b]. This evaluation showed that SCRAM is able to give
satisfactory results for both PM2.5/PM10 mass concentrations and aerosol optical depths,
as assessed from comparison to observations. Furthermore, the model has the ability to
analyse the particle mixing state, as well as the impact of the mixing-state assumption
on particle formation and properties. However, as no observational data of single parti-
cle composition and mixing state is available for the simulation of July 2009, the model
performance could not be evaluated for that period [Zhu et al., 2015b]. In this work, a
simulation is conducted for January/February 2010 when the composition of individual
particles was measured [Healy et al., 2014] during the winter campaign of MEGAPOLI
(Megacities: emissions, urban, regional and Global Atmospheric POLlution and climate
effects, and Integrated tools for assessment and mitigation). As a result, the model per-
formance in simulating the particle mixing state is able to be evaluated in the first time
through the model-to-data comparison.

After a brief presentation of the model, the simulation set-up and the measurement
data of Healy et al. [2013] are presented. The simulated bulk concentrations of chemical
species and the concentrations of individual particle classes are then compared to the
measurements. The single particle diversity and the mixing state index are computed
based on the approach developed by Riemer and West [2013], and they are compared to
the measurements based analyses of Healy et al. [2014].

4.2 Model presentation

The Polair3D air quality model [Sartelet et al., 2007] of the Polyphemus air quality
platform [Mallet et al., 2007] is used to simulate air quality over the Paris area. The
Carbon Bond 05 model (CB05) [Yarwood et al., 2005] is used for gas-phase chemistry.
The VSRM model is applied for the in-cloud process of aerosols [Fahey and Pandis, 2001].
The SCRAM model [Zhu et al., 2015b] is used to simulate the dynamics of the aerosol
size distribution.

In SCRAM, the mass fraction of a given chemical component or aggregate of chemical
components within each particle is discretised into sections. Compared to previous work
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[Zhu et al., 2015a, b], SCRAM now allows to discretize independently the mass fraction
sections for each chemical component or aggregate of chemical components. In other
words, the discretization and the number of mass-fraction sections can be different for
each chemical component or aggregate of chemical components. A comprehensive particle
composition list is generated by selecting the possible combinations of the mass-fraction
sections of each chemical component or aggregate of chemical components. A combination
of mass fractions is defined as acceptable only if the sum of the lower bounds of each
fraction section within the combination is lower than 100%.

Although three aerosol dynamic processes may be taken into account in SCRAM: co-
agulation, condensation/evaporation and the homogeneous binary nucleation of sulphate
and water nucleation, nucleation is not considered here. Within SCRAM, the conden-
sation/evaporation of inorganic aerosols is determined using ISORROPIA [Nenes et al.,
1998]. It can be solved with three different approaches: a fully dynamic approach, a
bulk equilibrium approach or a hybrid approach. The fully dynamic approach computes
dynamically the mass transfer rate between gas and particles for each particle size and
composition section. It is the most accurate method among the 3 approaches, and it is
used in this study. For the secondary organic aerosol (SOA) formation, the H2O model
[Couvidat et al., 2012] is used, and bulk equilibrium is always assumed for organic species
due to limitations of the H2O model. After condensation/evaporation, the moving-center
algorithm is used for mass-number redistribution among fixed size sections and composi-
tion sections. More details about the discretisation method, the mathematical derivation,
the different condensation/evaporation approaches and model validations can be found
in Zhu et al. [2015a].

Although SCRAM has the ability to simulate externally-mixed (EM) particles, it may
also be used for internally-mixed (IM) particles, i.e. using the internal-mixing assumption
by having only one section for each mass-fraction section (between 0 and 100%).

4.3 Simulation setup and measurement database

Simulations are conducted over Greater Paris between 15 January and 11 February 2010.
The domain covers the whole Greater Paris ([1.35◦E, 3.55◦E] × [48.00◦N, 49.50◦N]) with
a horizontal resolution of 0.02◦ × 0.02◦, and 9 vertical levels from the ground to 12 000
m.

In order to generate initial and boundary conditions for the simulation over Greater
Paris, two nested simulations over Europe and France are conducted (see Figure 4.1
for details of the domains). Because of limitation of computational resources, those
simulations are conducted with the internal-mixing assumption and the bulk-equilibrium
approach for condensation/evaporation. The initial and boundary conditions for the
Europe simulation are obtained from the Model for OZone And Related chemical Tracers
(Mozart v2.0) [Horowitz et al., 2003], and those for the France simulation are obtained
from the Europe simulation. For both the France and Europe simulations, anthropogenic
emissions of gases and particles are taken from the EMEP inventory [Vestreng, 2003], and
the biogenic emissions are computed using the Model of Emissions of Gases and Aerosols
from Nature (MEGAN) [Guenther et al., 2006]. Meteorology is from reanalysis of the
European Centre for Medium-Range Weather Forecasts (ECMWF) model.
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Figure 4.1: Map of three domains of simulations: Europe ([-14.75◦E, 34.75◦E] × [35.25◦N,
69.75◦N], resolution: 0.5◦ × 0.5◦), France ([-5.0◦E, 10.0◦E] × [41◦N, 52◦N], resolution:
0.1◦ × 0.1◦) and Greater Paris ([1.35◦E, 3.55◦E] × [48.00◦N, 49.50◦N], resolution: 0.02◦

× 0.02◦)
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For the simulations over Greater Paris, the anthropogenic emissions of gases and
particles are obtained from Airparif (the Paris air quality agency, www.airparif.asso.fr)
inventory for the year 2005 over Ile de France and from the EMEP inventory outside Ile
de France. Following Couvidat et al. [2013], gas-phase semi-volatile organic compound
(SVOC) emissions are estimated from primary organic aerosol (POA) emissions. Al-

though a ratio
EmissionsSVOC
EmissionPOA

of 5 is used in Couvidat et al. [2013], this ratio is set to

2.5, as derived from measurements data from a recent traffic emission report [Charron
and Aymoz, 2015]. Meteorology is simulated with the Weather Research & Forecasting
(WRF) version 3.6 model [Skamarock et al., 2008] using the urban canopy model and the
Corine land-use data base [Kim et al., 2013] with the YSU parametrization [Hong et al.,
2006] for the planetary boundary layer. The WSM6 scheme [Hong and Lim, 2006] is used
for the microphysic option of WRF, and the Kain-Fritsch convective parametrization
[Kain, 2004] is used for cumulus physics.

Two simulations are conducted over Greater Paris: one with the internal-mixing (IM)
assumption and one with the external-mixing (EM) assumption. The size distribution
ranging from 0.01 to 10 µm is discretised into five size sections with bounds at 0.01,
0.1585, 0.4, 1.0, 2.5119 and 10 µm. As detailed in Couvidat et al. [2012], 31 particulate
species are included in the simulations. In order to establish an appropriate comparison
with the chemical species available from the observations, those 31 species are grouped
into 5 groups in the EM simulation: Elementary Carbon (EC), Sulphate (SO4), Nitrate
(NO3), all organics species are grouped into the Organic Aerosol group (OA), and all
the other species (ammonium and sea salt) are in the group OThers (OT). For the EM
simulation, the mass fraction of the first group EC is discretised into three mass-fraction
sections ([0.0,0.1],[0.1,0.9],[0.9,1.0]), while SO4, NO3 and OA groups are discretised into
two mass-fraction sections ([0.0,0.1],[0.1,1.0]). If the mass fraction of one chemical group
is located within the rage [0.1,1.0], then the chemical group is considered as one of the
main chemical group of the section, otherwise it is regarded as insignificant. EC is
discretised with one more mass-fraction section than the other groups ([0.9,1.0]), to be
able to distinguish freshly emitted EC particles from aged particles. The last group OT
is not discretised and its mass fraction is obtained by mass conservation. A total of
17 possible particle compositions are generated, as presented in Table 4.1. The names
assigned to the particle compositions are chosen depending on their main chemical groups.
The water content within each particle is also computed and tracked with SCRAM, while
it is excluded when computing the mass fraction of each chemical group.

The measurement data of O3, PM10 and PM2.5 from the BDQA database ("Base
de Données de la Qualité de l’Air": the French Data Basis for Air Quality that covers
France) is used to evaluate the model performance. More detailed observation data is
obtained during the winter MEGAPOLI (Megacities: Emissions, urban, regional and
Global Atmospheric POLlution and climate effects, and Integrated tools for assessment
and mitigation) campaign in 2010 [Healy et al., 2013], where chemical composition at
single particle level was measured using an Aerosol Time-of-Flight Mass Spectrometer
(ATOFMS) for particles within the size range 150-1067 (nm) at the urban background
site of the Laboratoire d’Hygiène de la Ville de Paris (LHVP), Paris (48.75o N, 2.36o E)
between 15 January and 11 February. Ten carbonaceous classes were identified from ap-
proximately 1.50 million detected spectra with the help of a K-means algorithm [Anderson
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Table 4.1: 17 Externally-mixed particle compositions

Index Composition Names Mass fraction of each groups

EC SO NO OA

1 OT 0-0.1 0-0.1 0-0.1 0-0.1

2 OA 0-0.1 0-0.1 0-0.1 0.1-1

3 NO 0-0.1 0-0.1 0.1-1 0-0.1

4 OA-NO 0-0.1 0-0.1 0.1-1 0.1-1

5 SO 0-0.1 0.1-1 0-0.1 0-0.1

6 OA-SO 0-0.1 0.1-1 0-0.1 0.1-1

7 SO-NO 0-0.1 0.1-1 0.1-1 0-0.1

8 OA-SO-NO 0-0.1 0.1-1 0.1-1 0.1-1

9 EC+ 0.1-0.9 0-0.1 0-0.1 0-0.1

10 EC-OA 0.1-0.9 0-0.1 0-0.1 0.1-1

11 EC-NO 0.1-0.9 0-0.1 0.1-1 0-0.1

12 EC-OA-NO 0.1-0.9 0-0.1 0.1-1 0.1-1

13 EC-SO 0.1-0.9 0.1-1 0-0.1 0-0.1

14 EC-OA-SO 0.1-0.9 0.1-1 0-0.1 0.1-1

15 EC-SO-NO 0.1-0.9 0.1-1 0.1-1 0-0.1

16 EC-OA-SO-NO 0.1-0.9 0.1-1 0.1-1 0.1-1

17 EC 0.9-1 0-0.1 0-0.1 0-0.1
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et al., 2005]. First, the number concentration of each ATOFMS class was calculated for
each hour of the campaign, then the corresponding mass concentration of each particle
class was estimated based on particle diameter and an assumed density value of 1.5 g
cm−3. The hourly-resolved mass fraction of each chemical species was also measured for
each size sections, which helped to deduce the bulk mass concentration of each species
during the measured period. Finally, the ATOFMS-derived total mass concentrations for
each species were multiplied dy a factor 1.24 to account for the low bias of the ATOFMS
[Healy et al., 2013].

4.4 Result analysis and discussion

4.4.1 Bulk mass concentrations

Concentrations of PM2.5, PM10 and O3 from both the IM and EM simulations are first
compared to the observations from the BDQA database to evaluate the model perfor-
mance. Table 4.2 shows the definitions of the statistical indicators used in this study.
Table 4.3 presents the statistics between both the IM and EM simulation results and
the measurements during the entire simulation period (from 15 January to 11 February).
Both the EM and IM simulations have good model performance, as the hourly O3 con-
centration satisfies the recommanded performance criteria [Russell and Dennis, 2000] (|
MNGB | ≤ 15 % and MNGE ≤ 30 %), and both the PM10 and PM2.5 meet the model
performance criterion for PM proposed by Boylan and Russell [2006] with MFE ≤ 75%
and | MFB | ≤ 60 %. The statics of PM2.5 are even close to the model performance goal
(MFE ≤ 50% and | MFB | ≤ 30 %) proposed by Boylan and Russell [2006], while PM10

is rather under-estimated, which is consistent with previous simulations over the same
region [Couvidat et al., 2013; Wang et al., 2014; Zhu et al., 2015b]. Possible reasons for
this under-estimation of coarse particles may be that re-suspension is not modelled and
that boundary conditions may be under-estimated.

The concentrations of PM10 and PM2.5 from the IM and EM simulations are very
similar, which is consistent with the findings of the summer simulations [Zhu et al.,
2015b]. However, the similarity between the PM10 and PM2.5 from the IM and EM
simulations may be artificial, and it may be caused by the bulk equilibrium approach
used to compute the condensation/evaporation of organics. Organic mass is found to be
the largest component of the total aerosol mass here. As shown in Zhu et al. [2015b]
for inorganics, the mixing assumption strongly impacts concentrations of semi-volatile
components when the condensation/evaporation is computed dynamically.

More detailed analysis are made for PM1 and individual chemical components between
model simulations results and observation data from Healy et al. [2013]. Because dust
and sea-salt are not taken into account in the measurements of Healy et al. [2013], they
are not included in the computation of simulated PM1 concentrations for the comparison.
In other words, PM1 is computed by summing the concentrations of the first three size
sections (between 0.01 µm and 1 µm) and all composition sections, excluding the concen-
trations of dust and sea salt. The concentrations of elementary carbon (EC), sulphate
(SO4), nitrate (NO3), ammonium (NH4), organic aerosols (OA) in PM1 are available in
the measurements and are compared to the simulation results. The statistics are anal-
ysed between the results of both the IM and EM simulations and the measurements for
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Table 4.2: Definitions of the statistics used in this work. (oi)i and (ci)i are the observed
and the simulated concentrations at time and location i, respectively. n is the number of
data

Statistic indicator Definition

Root mean square error (RMSE)

√

1

n

∑n
i=1(ci − oi)2

Correlation
∑n

i=1(ci − c̄)(oi − ō)
√
∑n

i=1(ci − c̄)2
√
∑n

i=1(oi − ō)2

Mean normalised gross bias (MNGB)
1

n

∑n
i=1

oi − ci

ci

Mean normalised gross error (MNGE)
1

n

∑n
i=1

|oi − ci|
ci

Normalised mean bias (NMB)
∑n

i=1 oi − ci
∑n

i=1 ci

Normalised mean error (NME)
∑n

i=1 |oi − ci|
∑n

i=1 ci

Mean fractional bias (MFB)
1

n

∑n
i=1

ci − oi

(ci + oi)/2

Mean fractional error (MFE)
1

n

∑n
i=1

| ci − oi |
(ci + oi)/2

Table 4.3: Statistics between the IM and EM simulation results (from 15 January to 11
February) and the measurements of the BDQA network during the MEGAPOLI winter
compaign. (Obs. stands for observation. Sim. stands for simulation. Corr. stands for
correlation.)

Species Sim. Obs. Sim. RMSE Corr. MNGB MNGE MFB MFE

mean mean

µg m−3 µg m−3 µg m−3 % % % % %

O3 IM 31.59 37.07 18.72 61.23 -2.78 20.44 -8.13 23.71

EM 31.59 37.07 18.72 61.23 -2.78 20.44 -8.13 23.71

PM10 IM 30.68 19.63 22.49 38.26 -24.33 51.06 -46.64 63.34

EM 30.68 19.44 22.65 37.86 -25.10 51.41 -47.69 64.08

PM2.5 IM 24.95 21.65 19.02 39.58 19.53 66.86 -9.39 55.57

EM 24.95 21.53 19.21 38.65 19.55 67.73 -10.08 56.28
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Figure 4.2: Comparisons of the IM (blue line) and the EM (green line) simulation results
with ATOFMS-derived mass concentrations for PM1, EC, OA and inorganic ions (Obs.
stands for observation - red line)
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Table 4.4: Statistics between the IM and EM simulation results (from 15 January to 11
February) and the measurements of [Healy et al., 2013] at LHVP site (48.75o N, 2.36o E)
during the MEGAPOLI winter compaign. (Obs. stands for observation. Sim. stands for
simulation. Corr. stands for correlation.)

Species Sim. Obs. Sim. RMSE Corr. NMB NME MFB MFE

mean mean

µg m−3 µg m−3 µg m−3 % % % % %

PM1 IM 14.21 12.16 9.53 59.47 -14.42 43.45 -8.83 45.84

EM 14.21 11.99 9.62 59.06 -15.60 43.82 -10.62 46.52

EC IM 2.08 1.46 1.42 46.82 -29.59 46.56 -26.33 49.35

EM 2.08 1.47 1.41 46.90 -29.45 46.54 -26.16 49.30

SO=
4 IM 1.62 0.84 1.82 54.52 -48.48 65.34 -31.36 70.14

EM 1.62 0.83 1.83 53.55 -49.04 65.91 -33.02 71.30

NO−
3 IM 3.59 2.20 2.85 64.79 -38.73 49.15 -39.47 61.79

EM 3.59 2.23 2.77 67.57 -37.90 49.06 -40.67 64.49

NH+
4 IM 1.15 1.54 1.10 61.47 33.42 70.29 38.98 69.07

EM 1.15 1.34 0.95 61.88 15.74 59.62 32.64 65.12

OA IM 4.65 6.20 6.41 38.72 33.19 77.86 10.28 60.59

EM 4.65 6.21 6.42 38.79 33.44 77.99 10.42 60.64
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the entire simulation period, and they are presented in Table 4.4. Meanwhile, the time
evolution of the different chemical components are plotted in Figure 4.2.

Over the entire simulation period, Table 4.4 and Figure 4.2 show that both the IM
and EM results compare well to observations. The statistics of comparisons of PM1 and
EC meet both the model performance goal and criterion proposed by Boylan and Russell
[2006], while the statistics of the other components meet the model performance criterion.
EC, SO4 and NO3 are moderately under-estimated, while OA and NH4 are moderately
over-estimated. SO4 tends to be more under-estimated during the first two weeks because
of the under-estimation of some peaks, as can be seen in Figure 4.2. On 18 January, a
peak of SO4 was caused by a strong fog event according to Healy et al. [2013]. The
model is not able to reproduce this peak, as fog events may not be properly modelled in
our simulations, where cloud chemistry occurs depending on the liquid water content of
the grid cell. This also explains the under-estimation of the peak concentrations of NO3

and NH4 during the same period. The under-estimation of sulfate may also be linked
to the formation of organo-sulfate, as Healy et al. [2013] found some internally-mixed
organics and sulfate during that fog event. Another peak of SO4 occurs between 25 and
28 January, where highly polluted continental air masses, which most likely originated
from the north-western and eastern Europe, are transported over Greater Paris [Healy
et al., 2013]. The under-estimation of this peak may due to the uncertainties in the larger-
scale simulations (France and Europe), leading to the under-estimation of the amount
of sulphate transported into Greater Paris through boundary conditions. Such under-
estimation of sulphate has been spotted in previous simulations over Europe during the
winter period of 2001 [Sartelet et al., 2007]. It may originate from uncertainties in sulphur
aqueous chemistry. As emphasized by Bessagnet et al. [2004], sulphur aqueous chemistry,
which is predominant in winter, is very difficult to simulate, because it is very sensitive
to temperature and pH. Note that during that peak, EC is relatively well modelled, while
OA is over-estimated. There is no peak of SO4 during the period between 28 January
and 7 February, which is a local-emission dominated period and is well modelled.

As for PM10 and PM2.5, the differences in PM1 concentrations between the IM and
EM simulations are not significant, although noticeable differences occur in the NO3 and
NH4 peaks, as shown in the time evolution curves of Figure 4.2. As expected, both the
IM and EM simulations lead to similar concentrations of non-volatile components (EC,
SO4) and also of OA (because of the bulk-equilibrium assumption made when computing
condensation/evaporation of organics). Because EC, SO4 and OA represent more than
71% of the PM1 concentration, the variations of the PM1 concentration with the mixing-
state hypothesis are limited. For volatile inorganics (NO3 and NH4), the EM assumption
results in higher NO3 concentration and lower NH4, as noted in the summer simula-
tions [Zhu et al., 2015b]. Besides, NH4 peaks are found significantly reduced between 30
January to 3 February with EM results (see Figure 4.2), which is more consistent with
observations.

Figure 4.3 represents the size distribution of mass concentration and mass fraction for
each chemical species. Compared to Fig. 4. of Healy et al. [2013], a similar distribution
was found for EC with top concentration at low diameters (< 200 nm), while for secondary
inorganic components such as NO3, SO4 and NH4, larger mass fractions are found at
higher diameters (> 400 nm) as indicated by the observation. However, different from
the measurements, most of the OA mass was found at smallest size sections, which is
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Figure 4.3: Mass-size distribution (left, stacked) and size-resolved average mass fractions
(right, stacked) for each chemical species from external mixing simulation.

due to the bulk-equilibrium approached used for organic species and the redistribution
method used to redistribute newly condensed organic mass after each equilibrium which
will be addressed later.

4.4.2 Concentration of each particle composition

In the EM simulation, 17 particle classes are discretised based on the combinations of
the mass-fraction sections of the different chemical components (or groups of chemical
components), as defined in Table 4.1. The chemical group OT contains NH4, dust and sea
salt. However, as dust and sea salt are not included in the measurements of [Healy et al.,
2013], they are not considered when computing particle total mass, and the composition
of each particle class is therefore recomputed after the simulation. In the updated particle
classes, the only component considered in the group OT is NH4. Table 4.5 shows the
average mass fraction of each chemical component at the site of LHVP for PM1 particles,
as well as the mass fraction of each particle class within the PM1 concentration. It is clear
that most of the particle mass is concentrated in a few particle classes. OA dominant
particles represent more than half of the total particle mass (60.09%), while the rest of
the particle mass concentrates in the particle classes OA-NO (19.79%), EC-OA (13.13%),
EC (2.90%), OA-SO (1.27%) and EC-OA-NO (1.01%).

To facilitate the comparisons to measurements, the particle classes that have low
mass concentrations compared to the total particle mass (lower than 0.1 %), are merged
together or regrouped with particle classes of larger mass fractions. Table 4.6 shows the
mass ratio of the class to the total particle mass for each of the 8 particle classes remaining
after merging, as well as the mass fraction of each chemical group within each particle
class. The merging does not affect the classes OA and EC-OA, while the classes EC and
EC+ are merged into EC; NO and OA-NO are merged into OA-NO; SO and OA-SO
are merged into OA-SO; EC-OA and EC-NO are merged into EC-OA-NO; SO-NO and
OA-SO-NO are merged into OA-SO-NO; EC-OA-SO, EC-SO, EC-OA-SO, EC-SO-NO
and EC-OA-SO-NO are merged into EC-OA-SO. Particles are also classified depending
on their EC mass fraction: the EC-rich particle types include particle classes with high
EC mass fractions (EC, EC-OA, EC-OA-NO, EC-OA-SO). In contrast, the other particle
classes (OA, OA-NO, OA-SO, OA-SO-NO) are considered as EC-poor particles, as their
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Table 4.5: Mass ratio of each particle class to the total mass, and the mass fraction of
each chemical group within each particle class

Mass Particle Mass fraction of each groups

ratio % class EC SO4 NO3 OA NH4

<0.01 OT 0.09 0.09 <0.01 0.08 0.74

60.09 OA <0.01 0.03 0.04 0.90 0.03

<0.01 NO 0.03 0.02 0.68 0.08 0.19

19.79 OA-NO 0.02 0.05 0.19 0.65 0.09

0.01 SO 0.07 0.31 <0.01 0.08 0.54

1.27 OA-SO 0.02 0.13 0.03 0.74 0.09

<0.01 SO-NO 0.03 0.27 0.39 0.07 0.24

0.78 OA-SO-NO 0.03 0.12 0.20 0.53 0.12

0.71 EC+ 0.89 0.01 0.01 0.09 <0.01

13.13 EC-OA 0.33 0.03 0.02 0.60 0.02

0.08 EC-NO 0.61 0.01 0.29 0.06 0.03

1.01 EC-OA-NO 0.32 0.03 0.18 0.43 0.04

<0.01 EC-SO 0.46 0.34 0.01 0.05 0.14

0.19 EC-OA-SO 0.14 0.15 0.03 0.54 0.14

<0.01 EC-SO-NO 0.21 0.23 0.25 0.09 0.22

0.02 EC-OA-SO-NO 0.19 0.15 0.18 0.31 0.17

2.90 EC 0.93 <0.01 <0.01 0.06 <0.01
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EC mass fraction is less than 0.1.
To obtain a comparable classification of the particle classes in the simulations and

in the observations, merging of some of the observed particle classes is also done. Table
4.7 shows the association between ATOFMS particle classes from the measurements and
the merged particle classes from the simulations, as well as the mass fractions of each
chemical component within each particle type from the measurements. In the study of
[Healy et al., 2013], Potassium (K) is used to identify the biomass burning origin of the
particles. Since K is not included in the current version of SCRAM and its mass fraction
is very small, the particle class K-OA-NOx from the measurements is merged with the
OA-NOx class, and it is compared to the OA-NO class of the simulation. The classes
from the measurements are assigned to classes of the simulation depending on the mass
fraction of the chemical components of the class. For example, the class OA-TMA from
the measurements, which links organics to trimethylamine (TMA), is merged in the OA-
SO-NO class of the simulation, because it contains OA (45%) but also 12% of SO4 and
17% of NO3. Actually, there is no particle class that can be truly considered as unmixed
from the measurements: K-OA only contains 52% of OA mass but also 21% of NO3; K-
EC contains 52% of EC mass, but also 24% of OA. However, in the simulation, particles
within the EC class (2.90% of the total aerosol mass) is considered as unmixed (other
chemical components contribute each to less than 10% of the particle mass), as well as
particles within the OA class which consist of 60.09% of the total aerosol mass. This high
percentage of unmixed OA is a consequence of the algorithm used for condensation/e-
vaporation of organics in SCRAM with the bulk equilibrium assumption. This algorithm
only gives the total amount of mass condense/evaporate in each time step regardless the
particle size and their Kelvin effect. Than the total amount of condense/evaporate mass
is redistribute back to each section j based on a weight factor W j

i defined by following
equation:

W j
i =

Nj dj
pf(Kn, αi)

∑Ns

k=1 Nk dk
pf(Kn, αi)

(4.1)

where Nj is the number concentration of section j, dk
p is the the particle wet diameter of

section j, and f(Kn, αi) describes the non-continuous effects [Dahneke, 1983] based on
Knudsen number Kn = 2λ

dj
p

(with λ the air mean free path), and accommodation coefficient

αi = 0.5. dj
pf(Kn, αi) represents the condensation/evaporation kernel of single particle

in section j, so the numerator represents the total condensation/evaporation kernel of all
particles within section j while the denominator represents the total condensation/evap-
oration kernel of particles from all sections. Generally, larger particles will have higher
dj

pf(Kn, αi) values but they also will have much smaller number concentrations. What
have been found from the simulation is that sections with smaller diameter dominate the
weight factor due to their high number concentrations, as a result, most of the newly
formed OA is condensed into the smallest sections. However, in reality, the condensation
on tiny particles will be limited due to strong Kelvin effect, and more OA should be con-
densed on larger particles. In the other side, the condensation/evaporation of inorganic
species are computed dynamically, taking into account both condensation/evaporation
potential and Kelvin effect, which makes them tend to condense on relatively larger par-
ticles. As a combination of both effects, most of the OA is condensed on the smallest
sections which are not favourite for inorganic condensation. This may explain why most
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Figure 4.4: Mass-size distribution (left, stacked) and size-resolved average mass frac-
tions (right, stacked) for each chemical species from inter mixing simulation using bulk
equilibrium approach with updated redistribution method.

OA is not well mixed. To estimate the influence of the weighting factors used for redis-
tribution, an attempt has been conducted to take into account the Kelvin effect during
the redistribution process after the bulk-equilibrium condensation/evaporation process,
with an updated weighting factor:

W j
i =

Nj dj
pf(Kn, αi)(1/(Ke(dp) − 1))

∑Ns

k=1 Nk dk
pf(Kn, αi)(1/(Ke(dp) − 1))

(4.2)

where Ke(dp) represents the Kelvin effect for a particle of diameter dp, (Ke(dp) is close
to 1 for large particles and, for small particles, it become larger as the particle diameters
become smaller). A quick test run with the bulk-equilibrium approach for both organics
and inorganic shows a much reasonable size distribution for OA, as presented in Figure
4.4. Much less OA is concentrated in the smallest sections, and more OA is concentrated
between 400 nm and 1000 nm, which is more consistent with the observation of Healy
et al. [2013]. This suggests that the redistribution weighting factor defined in equation
(4.2) is better suited for redistribution than the previously used factors, which did not
take into account the Kelvin effect.

The mixing state of EC is well reproduced in the simulation. By comparing Table
4.6 and Table 4.7, a relatively good consistency is found for the mass ratio of EC-rich
and EC-poor particles between simulation results and measurements. The simulation
results estimate 18.04% of EC-rich particles and 81.96% EC-poor particles, which is
similar to the ratio from the measurements: 16.8% EC-rich particles and 83.2% EC-
poor particles. Furthermore, 10.3% of EC particles are found to be mixed with OA
(EC-OA class) in the measurements against 13.13% in the simulation. The percentage
of EC-OA-NO particles is under-estimated in the simulation (1.09%) compared to the
measurements (3.8%), as well as the percentage of EC-OA-SO particles (0.21% in the
simulation compared to 2.7% in the measurements. In the measurements, EC-OA-SO
particles have the highest concentrations during the fog event, indicating that the under-
estimation of EC-OA-SO particles in the simulation is probably linked to the fog event
when sulphate concentrations are strongly under-estimated in the simulation. Besides,
a large difference exist in simulated mass fraction of NO3 and OA for EC-poor group
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Table 4.6: Mass ratio of particle class to the total mass, and the mass fraction of each
chemical group within each particle class

Particle Mass Mean Mass fraction of each group

class ratio mass EC SO4 NO3 OA NH4

% µg m−3

OA 60.09 7.21 <0.01 0.03 0.04 0.90 0.03

OA-NO 19.79 2.37 0.02 0.05 0.19 0.65 0.09

OA-SO 1.29 0.15 0.02 0.13 0.03 0.73 0.09

OA-SO-NO 0.78 0.09 0.03 0.12 0.20 0.53 0.12

EC 3.61 0.43 0.92 0.01 <0.01 0.06 <0.01

EC-OA 13.13 1.57 0.33 0.03 0.02 0.60 0.02

EC-OA-NO 1.09 0.13 0.35 0.02 0.19 0.40 0.04

EC-OA-SO 0.21 0.03 0.15 0.16 0.04 0.51 0.14

when compared to the observation. OA mass fraction is largely over estimated (sim.
0.83 vs obs. 0.36) due to the overestimation of bulk OA concentration, while the NO3

is largely underestimated (sim. 0.08 vs obs. 0.32) due to most of the EC-poor particles
are concentrated in the smallest size section, where the condensation of NO3 is largely
limited by the Kevin effect.

As for the total EC, the mixing state of EC-rich particles is relatively well simulated
based on the mass ratio between EC (2.90%) and all EC rich particles (18.04%) from
Table 4.8, as most particles are found to be mixed with other species (84%) which is close
to the measurements, where all EC particles are found mixed with other species. Besides,
the average mass fraction of EC is around (0.45) for all EC-rich particles in the simulation
based on the mass fraction of EC in each particle class and their mass ratio from Table
4.6, which is close to the one from the measurements (0.48) computed based on the same
method from Table 4.7. This indicates that the average degree of mixing of EC-rich
particles is similar between simulation and measurements. However, the mixing state of
EC-poor particles is not as well simulated as the mixing state of EC-rich particles. Most
of the EC-poor particles are nearly unmixed (73%) in the simulation, while all of the
particles are found to be well mixed (with OA mass fraction between 0.27 and 0.52) from
the measurements. Most of the mass fraction of EC-poor particle are OA dominated,
as indicated by the high value (0.83) of the OA mass fraction for the EC-poor particles
from the simulation. These EC-poor particles tend to have low diameters (92% below
0.4 µm). The condensation/evaporation of organics is done using the bulk-equilibrium
approach, which redistributed the total condensed OA mass onto particles depending on
the combination of their number concentration and their condensation kernel as explained
in former paragraph. In order to improve the mixing result, the redistribution of the OA
mass should be improved to decrease the mass of organics in the bins of low diameters.

Table 4.9 presents the statistics for EC-rich and EC-poor particles where a relatively
good correlation can be found for both EC-rich and EC-poor particles (43.11% and 60.50%
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Table 4.7: Mass fractions of each chemical group determined for each ATOFMS class
[Healy et al., 2013], and their corresponding SCRAM class

Class Class Mass Mean Mass fraction of each group

SCRAM ATOFMS ratio mass EC SO4 NO3 OA NH4

% µg m−3

OA-NO K-OA 8.80 1.50 0.14 0.09 0.21 0.52 0.07

K-OA-NOx 28.73 4.91 0.06 0.07 0.52 0.27 0.07

OA-NOx 13.99 2.39 0.07 0.09 0.27 0.40 0.17

OA-SO OA-SOx 8.92 1.52 0.08 0.31 0.10 0.40 0.11

OA-SO-NO K-OA-SOx 19.68 3.36 0.05 0.23 0.22 0.36 0.13

OA-TMA 3.10 0.53 0.04 0.12 0.17 0.45 0.21

EC-OA EC-OA 8.27 1.41 0.62 0.06 0.02 0.30 0.01

K-EC 2.00 0.34 0.57 0.04 0.08 0.24 0.06

EC-OA-NO EC-OA-NOx 3.83 0.65 0.32 0.06 0.23 0.33 0.06

EC-OA-SO EC-OA-SOx 2.70 0.46 0.21 0.33 0.05 0.21 0.04

Table 4.8: Mass fractions of each chemical group for EC-rich and EC-poor particles from
both observation (Obs.) and simulation (Sim.)

Cases Particle Mass Mass fraction of each group

class ratio EC SO4 NO3 OA NH4

%

Obs. EC-rich 16.8 0.48 0.10 0.08 0.31 0.03

EC-poor 83.2 0.07 0.14 0.32 0.36 0.11

Sim. EC-rich 18.04 0.45 0.02 0.03 0.48 0.02

EC-poor 81.96 0.01 0.03 0.08 0.83 0.05

Table 4.9: Statistics of EC-rich and EC-poor particles between simulation results (15
to 28 January) and the measurements of [Healy et al., 2013] at LHVP site (48.75o N,
2.36o E). (Obs. stands for observation. Sim. stands for simulation. Corr. stands for
correlation.)

Particle Obs. Sim. RMSE Corr. NMB NME MFB MFE

class mean mean

µg m−3 µg m−3 µg m−3 % % % % %

EC rich 4.77 2.14 3.71 43.11 -55.13 63.11 -83.68 89.96

EC poor 11.82 9.85 8.46 60.50 -16.68 45.56 -7.61 48.98
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respectively). The statistics of EC-poor particles even satisfy the model performance goal
of Boylan and Russell [2006] for PM simulation. The statistics of EC-rich particles are not
as good as those of EC-poor particles, because the particle mass is under-estimated due
to the underestimation of EC, NO3 and SO4 (EC-rich particles do not only contains EC
mass, but also the mass of the other species mixed with EC). However, this table shows
that the SCRAM model can offer a reasonable performance to simulate the concentrations
of EC-rich and EC-poor particles.

4.4.3 Mixing state analysis

Healy et al. [2014] compute a quantitative mixing-state index (χ) of measured parti-
cles based on the information-theoretic entropy approach proposed by Riemer and West
[2013]. The same method is used in this study to derive the mixing-state index of simu-
lated particles. The detailed description of this method can be found in Riemer and West
[2013]. For a population of N particle compositions (N=17 in this study) and A distinct
chemical components (or species, A=5 in this study), the mass of species a in particle i
is denoted as µa

i for i = 1,...,N and a=1,...,A; the total mass of particle i is µi; the total
mass of species a in the total particle population is µa, and the total mass of the entire
population is µ. These masses are computed as follows:

µi =
A∑

a=1

µa
i µa =

N∑

i=1

µa
i µ =

N∑

i=1

µi (4.3)

The mass fraction of species a in particle i (pa
i ), the mass fraction of particle i in the

population (pi), and the mass fraction of species a in the population (pa) can be calculated
as follows:

pa
i =

µa
i

µi
pi =

µi

µ
pa =

µa

µ
(4.4)

Those basic information can be computed either for particles within each size section or for
particles merged from several size sections. In this study, for comparison to measurements,
which were performed for PM1, the analysis is done for particles from the first three size
sections (10 nm -1000 nm).

The information-theoretic Shannon entropy is a measure of the uncertainty associated
with a random variable. According to Riemer and West [2013], the Shannon entropy
associated with each single particle (Hi) can be computed based on the mass fraction of
each species within that particle:

Hi =
A∑

a=1

−pa
i ln pa

i (4.5)

While the average per-particle Shannon entropy (Hα) is given by:

Hα =
N∑

i=1

−pi Hi (4.6)

Finally, the Shannon entropy of the entire bulk population (Hγ) equals to:

Hγ =
A∑

a=1

−pa ln pa (4.7)
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Based on those Shannon entropies, their corresponding diversity values can be derived:

Di = eHi Dα = eHα Dγ = eHγ (4.8)

where Di is the particle diversity, or the effective number of species in particle i, Dα is
the average single particle diversity, and Dγ is the bulk population diversity.

Finally, the mixing state index χ can be derived by following equation:

χ =
Dα − 1

Dγ − 1
(4.9)

To summarize, Di represents the number of chemical components in a particle, Dα repre-
sents the average value of Di over the entire particle population, and Dγ shows the bulk
population diversity which is consistent under both IM and EM assumptions. Eventually,
χ represents the degree of similarity between an arbitrary mixing case and a pure internal
mixture. As a result, χ=0% for a pure external mixture, because Di = Dα = 1, while
χ=100% for a pure internal mixture as Dα = Dγ.

The single particle diversity (Di) is computed from the simulation results and com-
pared to the measurements at the LHVP site. Most of the simulated particles (64.5%)
are within the Di range of 1.8 to 3.0, which is very close to the measurements of Healy
et al. [2014], where the Di value of the majority of particles is also in range of 1.8 and 3.0
(about 71%). As most of particle numbers are concentrated in the smallest size sections,
the Di values are normalised by the number of particles in each size section in order to get
a better representation of the variation of Di with the particle size. Figure 4.5 shows the
dependence of the time-averaged number concentrations on diversity and particle diame-
ters, as well as the dependence of time-averaged particle composition on particle diameter.
This figure is to be compared to Figure 3 of Healy et al. [2014]. As noted by Healy et al.
[2014], smaller particles have higher mass fractions of EC and OA, while larger particles
have higher inorganic mass fractions. Although the particle number concentrations tend
to be under-estimated in the simulation, high number concentrations are observed at low
diameters (below 200 nm) for low diversity (2 in the measurements and between 1.8 and
3 in the simulation) and at high diameters for high diversity (4 in the measurements and
between 3.4 and 4.2 in the simulation). In agreement with the measurements, at low di-
ameters, most of the particles are composed of 2 or 3 species, mostly OA and EC. At high
diameters, particles are composed of inorganics (80% in the simulation and 60% in the
measurements). As the particles diameter growth, the mass fraction of inorganics grows
as in the measurements, indicating the condensation/evaporation of inorganic species is
correctly modelled. However, the OA mass is under-estimated at high diameters but
over-estimated at low diameters, indicating as noted before that the redistribution of OA
after condensation/evaporation needs to be improved or to be computed dynamically.

As in the measurements, the mass fraction of EC decreases from the section with
diameters between 158.6 nm and 400 nm to a value lower than 10% at high diameters.
The variation of EC with particle diameters is largely linked to the size distribution used
in the emissions: 54% was emitted in the section [10-158.5 nm], 42% in the section [158.5-
400 nm] and 3% in the section [400-1000 nm]. Although the mass fraction of EC increases
to about 52% in the measurements, it stays below 30% in the simulation, because of the
over-estimation of OA at low diameters and because of the assumed size-distribution of
emissions.
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Figure 4.5: Dependence of the time-averaged number concentration on single particle
diversity (diversity normalised by the number of particles in each section) and particle
diameter (upper panel), and dependence of time-averaged particle composition on particle
diameter (lower panel).
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The average single particle diversity (Dα) and the species diversity of the bulk pop-
ulation (Dγ) are also derived from the simulation results. Unlike Di which represents
the characteristic of a single particle, Dα and Dγ describe the overall attribute of the
entire particle population. The mixing state index can potentially range from 0% (fully
externally mixed) to 100% (fully internally mixed). The averaged value of Dα from the
simulation (2.91) is close to the one from the measurements (2.79), while that averaged
value of Dγ tends to be under-estimated (3.76 from the simulation and 4.04 from the mea-
surements), because of the bulk over-estimation of OA and of the bulk under-estimation
of SO4. As a result, the mixing state index χ is slightly over-estimated (69% in the
simulation and 59% in the measurements), although the average single particle diversity
is well represented. These low-values of the mixing-state index indicate that the particle
population at LHVP is not internally mixed.

The relationship between Dα, Dγ and χ at the LHVP site is displayed in Figure 4.6,
to be compared with Figure 5 of Healy et al. [2014]. The values of the mixing-state index
range from 23% to 90%, with a mean value of 69%. This result is generally consistent with
the measurements of Healy et al. [2014], where the mixing-state index is found to vary
between 37% and 72%, with a mean value of 59%. Another phenomenon observed from
the measurements, and also apparent in Figure 4.6 is that the average single particle
diversity (Dα) never goes above 4 (3.5 in the measurements), even when the the bulk
population diversity (Dα) approaches the maximum value of 5. This indicates that there
exists a variety of different chemical mixing states for particles of the same size.

The diurnal variations of Dα, Dγ and χ are computed from both simulation and
observation results, and their mean value upon time of day is shown in Figure 4.7, as
well as the corresponding variation of the mass fraction of each chemical components.
The averaged value of Dα from the simulation (2.91) are very close to the one from the
measurement (2.79), as well as their curves. However, Dγ is relatively underestimated
from the simulation due to the overestimation of OA and underestimation of SO4. As a
result, the mixing state index χ is overestimated. A decrease of both Dα and χ can be
observed between 5:00-8:00, due to the increase of traffic emissions which introduce large
amount of particles with high EC mass fractions and low Di value. However, Dγ does
not increase during this period as suggested by the measurement because the growth of
the mass fraction of EC is not able to compensate the rapid decrease of the mass fraction
of NO3, and the mass fraction of OA also increased during that period. The χ quickly
increased between 8:00-14:00 due to the combining effect of growing Dα and decreasing
Dγ. The slowly increase of Dα is due to the decrease of traffic emission and ageing of
existing particles. While the decreasing of Dγ is largely caused by the increase of OA
fraction and decrease of of EC and inorganic fractions. χ drop again between 14:00-20:00
due to the increase of Dγ as a result of slowly increasing EC mass fraction. A rapid
increase of Dα can be observed between 20:00-22:00 as a result of enhanced ammonium
nitrate during the night time which is reflected by the increase of inorganic mass fraction
during that period as well as an increase of Dγ.

The previous discussion is based on the measurements and simulation results at the
LHVP site. Because our modelling study provides comprehensive data for the study of
the spatial distribution of particle properties, Figure 4.8 presents the spatial distribution
of Dα, Dγ and χ over the entire simulated domain, averaged over the simulation period.
The values of Dα are lower close to center Paris and traffic roads and higher in rural
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Figure 4.6: Scattering plot of the hourly mixing-state index (χ) as a function of average
particle diversity (Dα) and average bulk population diversity (Dγ).
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Figure 4.8: Spatial distribution of time-averaged average single particle diversity (Dα, a),
average bulk population diversity (Dγ, b), difference between Dα and Dγ (c),and mixing
state index (χ, d) over Greater Paris.
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areas, because diversity is lower where emissions are high, as freshly emitted particles
mostly consist of pure chemical component with a single particle diversity close to 1.
The spatial of Dγ is relatively uniform as it represents the number of bulk chemical
components. However, there are regions where Dγ can suddenly increase or decrease,
and these variations may not be similar to those of Dα. For example, in the region
within the black box in Figure 4.8 (strong dust emissions from sand and stone mining
industry along the river Seine), some parts have low Dγ and low Dα. This type of
region (low Dα and low Dγ) may imply a relatively homogeneous emission source, where
only one type of particles is emitted. Other regions, such as the south west of Paris
and Roissy airport (delimited by the black circle in Figure 4.8) have low Dα value and
high Dγ value. In such regions, there may be heterogeneous emission sources, where
particles with distinct compositions may be emitted from the same place or transported
to that place. Considering the spatial distribution of the mixing-state index χ, regions
with larger difference between Dα and Dγ usually have lower χ, which means they are
less internally mixed. Usually, the regions of low χ correspond to regions of low Dα

(high traffic emissions). Note that for regions of low Dα but low Dγ, such as within the
black box of Figure 4.8, the mixing-state index can be high, although the region may
correspond to a location of strong emission. Actually, χ represents the homogeneity of
particles, and a group of particles with heterogeneous compositions has a low mixing-state
index and is considered as externally mixed. However, a group of particles dominated by a
homogeneous composition has a high mixing-state index and it is considered as internally
mixed, even if the dominated particles consist of only one species. Such classification of
the particle mixing-state is slightly different from the mixing-state identification of Table
4.1, where particles with only one specie or group of chemical compound are considered
as unmixed. However, those unmixed particles can have a high mixing-state index, if
they dominate the total particle concentration.

4.5 Conclusion

The particle diversity and mixing state is studied with the help of the newly developed
size-composition resolved aerosol model (SCRAM) coupled to the Polyphemus air-quality
platform. Two simulations are conducted over Greater Paris with different mixing-state
assumption (internal mixing IM or external mixing EM).

Both simulations model well the total mass of O3, PM10 and PM2.5, as assessed from
comparisons to observations from the BDQA network. The simulation results of both
bulk concentrations of chemical species and the concentration of individual particle classes
are compared with the observations of Healy et al. [2013]. Good correlations are found
between simulation results and measurements for both PM1 and bulk species concentra-
tions, and the statistics of most species satisfy the model performance criteria proposed by
Boylan and Russell [2006], although the concentration of SO4 is under-estimated during
a strong fog event and during periods prevailed by transported continental air masses.

For the concentration of individual particles obtained from the EM simulation, a rel-
atively good consistency is found for the mass fraction of EC-rich and EC-poor particles
between simulation results and observations. According to the simulation results, 18.04%
of particles are EC-rich particles and 81.96% are EC-poor particles, which is similar to
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the ratio from the measurements: 16.78% of EC-rich particles and 83.22% of EC-poor
particles. Finally, the single particle diversity and the mixing-state index are computed
from the results of the EM simulation based on a new quantification approach developed
by Riemer and West [2013], and they are compared with the observation based analyses of
Healy et al. [2014] at the urban site LHVP. The average value of the single particle diver-
sity is consistent between the simulation and the measurements (2.91 from the simulation
and 2.79 from the measurements). It represents the average effective number of species
in each particle. The averaged bulk population diversity, which is the effective number
of species in the bulk population, is slightly under-estimated (3.76 from the simulation
and 4.04 from the observation), probably because of the under-estimation of sulfate or
nitrate in the model. The mixing-state index, which depends on both the single particle
diversity and the bulk population diversity, is well represented by the simulation, with
a value of 69% from the simulation and 59% from the measurements, indicating that
particles are not internally mixed. Finally, the time-averaged spatial distribution of the
mixing-state index shows that particles are rather externally mixed in urban regions in
and around Paris, while they are rather internally mixed in rural regions. This indicates
that traditional aerosol models, which assume that particles are internally mixed, may
be suitable for simulating rural regions, while in urbanised areas, the internal-mixing
assumption does not hold.



Chapter 5

Conclusion

Résumé

Ce chapitre présente les conclusions et les perspectives de ce travail. Tout d’abord,
un nouveau modèle SCRAM (Size-Composition Resolved Aerosol Model) est développé.
Dans SCRAM, les particules sont discrétisées selon leurs tailles et compositions. SCRAM
est validé par comparaisons avec des simulations "académiques" publiées dans la littéra-
ture pour la coagulation de particules en mélange interne et la condensation/évaporation.
L’impact du degré de mélange sur les concentrations de particules a ensuite été étudié
dans une simulation 0-D en utilisant des données représentatives d’un site trafic en Ile de
France. Dans le cas étudié, on constate que la coagulation est très efficace à mélanger les
particules et la condensation peut éventuellement diminuer le pourcentage de particules
mélangées. Puis SCRAM est intégré dans la plate-forme de qualité de l’air Polyphemus
et utilisé pour effectuer des simulations sur l’Ile de France pendant l’été 2009. Une éval-
uation par comparaison à des observations a montré que SCRAM donne des résultats
satisfaisants pour les concentrations de PM2.5/PM10 et l’épaisseur optique des aérosols.
En outre, l’hypothèse de mélange choisie dans SCRAM influence la formation des par-
ticules et leurs propriétés, telles que les propriétés optiques et la formation de noyaux de
condensation dans les nuages. Deux simulations sont effectuées (une avec l’hypothèse de
MI et l’autre avec l’hypothèse de ME) entre le 15 janvier et le 11 février 2010, pendant
la campagne hiver MEGAPOLI durant laquelle les compositions des particules individu-
elles ont été mesurées. Les résultats des simulations se comparent bien aux mesures de
concentration massique de différents composés et aux concentrations de particules riches
en carbone élémentaire (EC). Ensuite, un indicateur de la diversité des particules et de
l’état de mélange est calculé comme dans l’approche développée par Riemer and West
[2013]. La valeur de l’indicateur est cohérente entre la simulation et la mesure. Cet
indicateur représente le nombre d’espèces dans chaque particule. La distribution spatiale
de l’indicateur montre que les particules sont peu mélangées en région urbaine, tandis
qu’elles sont plutôt bien mélangées en région rurale. Enfin, le modèle développé dans
cette thèse peut être appliqué à d’autres modèles de qualité de l’air et il y a beaucoup de
perspectives pour la recherche et les applications, telles que l’introduction de l’approche
dynamique pour la formation des aérosols organiques, des études fines sur les relations
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nuages-aérosols, l’identification de sources de pollution et des analyses d’impact.
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5.1 Conclusions

This thesis present a newly developed size-composition resolved aerosol model (SCRAM)
which is able to simulate the dynamics (nucleation, coagulation, condensation/evapora-
tion) of externally-mixed particles in the atmosphere, and it evaluates the performances
of SCRAM in three-dimensional simulations. The main work is split into four parts:
the research context of external mixing and aerosol modelling; the development of the
box model of SCRAM and its validation tests; the 3D application of SCRAM during the
summer period of 2009 and the influence of different mixing state assumption on particle
properties; the model to data comparison of particle mixing state during winter period
of Megapoli campaign.

Firstly, a new box model (SCRAM) is developed based on the discretisation scheme
of [Dergaoui et al., 2013], where particles are classified by both their size and composi-
tion. Each particle composition is defined by a combination of mass-fraction sections of
the different chemical components or aggregate of components. All three main processes
involved in aerosol dynamic (coagulation, condensation/evaporation and nucleation) are
included in SCRAM. The model is first validated by comparison with a reference solu-
tion and results of simulations using internally-mixed particles. The degree of particle
mixing is investigated in a 0-D simulation using data representative of air pollution in
Greater Paris. The relative influence on the mixing state of the different aerosol processes
(condensation/evaporation, coagulation) and of the algorithm used to model condensa-
tion/evaporation (bulk equilibrium, dynamic) is studied. It is found that coagulation
is quite efficient at mixing particles, as the percentage of mixed particles decreases for
both number concentration and mass concentrations when coagulation is not taken into
account in the simulation. On the opposite, condensation may decrease the percentage of
mixed particles when low-volatility gaseous emissions are high. Besides, the choice of the
condensation/evaporation (C/E) approach (bulk equilibrium or dynamic) influences the
size and composition distributions, under both the internally-mixed (IM) and externally-
mixed (EM) assumptions. While the size and composition distributions simulated with
the IM and EM simulations are similar if the bulk-equilibrium approach is used for con-
densation/evaporation (C/E), the distributions are different if the dynamic approach is
used.

Secondly, SCRAM is integrated into the Polyphemus air quality platform and used
to conduct simulations over Greater Paris during summer 2009. The evaluation shows
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that SCRAM gives satisfactory results for PM2.5, PM10 concentrations and aerosol opti-
cal depths, as assessed from comparisons to observations. Besides, the model is able to
analyze the particle mixing state, as well as the impact of the mixing-state assumptions
on particle formation and properties. By comparing results from IM and EM simulations
with the dynamic approach for C/E, it is found that EM leads to higher nitrate concen-
tration (1.24 µg m−3 on average) than IM (0.76 µg m−3 on average), and the differences
are especially high for peak concentrations (up to nearly 100% for nitrate). The mixing
state of black carbon (BC) is also studied, and it is found that at the urban site of Paris,
the unmixed BC percentage is always higher than 35% with peaks around 80% during
rush hours, when traffic emissions are the highest. Analyses on particle optical prop-
erties show that in general IM simulation leads to higher aerosol optical depth (AOD)
and lower signal scattering albedo (SSA). For SSA, the larger differences, up to 11%
between the IM and EM simulations, are concentrated in the city of Paris, where BC is
mostly unmixed in the EM simulations. For AOD, differences between IM and EM are
mostly due to differences in aerosol water content concentrations, which are caused by
differences in inorganic aerosol formation. For example, differences of 22% in inorganic
concentrations can lead to differences as high as 80% in water concentration and 72%
in AOD. Concerning CCN, at low supersaturation, IM leads to lower CCN activation
percentage than EM, because the hydrophobic components of IM particles inhibit activa-
tion and only the hydrophilic particles of the EM simulation may be activated. At high
supersaturation, IM leads to higher CCN activation percentage than EM, because most
particles are activated except for the particles that are mostly hydrophobic in the EM
simulation. Moreover, at high supersaturation, the differences in the spatial distribution
between the IM and EM simulations are more significant over urban regions. However,
at low supersaturation, such distribution pattern inverses.

Finally, two simulations are conducted between 15 January and 11 February 2010
where the composition of individual particles is measured during the winter campaign of
Megapoli. First, concentrations of O3, PM2.5 and PM10 are compared with observations
from the BDQA database, and their statistics satisfy the published evaluation criteria.
Then, the simulation results of the bulk concentrations of chemical species and the con-
centration of the individual particle classes are compared with the observations of Healy
et al. [2013]. Good correlations are found between simulation results and measurements
for both PM1 and bulk species concentrations, and the statistics of PM1 and BC even
satisfy the model performance goals proposed by Boylan and Russell [2006]. For the
concentration of individual particles obtained from the EM simulation, a relatively good
consistency is found for the mass fration of BC rich and BC poor particles between sim-
ulation results and observations. The simulation estimates that 18.04% of particles are
BC-rich particles and 81.96% are BC-poor particles, which is similar to the ratio from the
measurements: 16.78% of particles are BC-rich particles and 83.22% of particles are BC-
poor particles. The simulated BC-rich particles tend to show a better consistency with
observations in terms of mixing state, as most of them are found mixed to other species,
similarly to the measurements. Finally, the single particle diversity and the mixing-state
index are computed from the results of the EM simulation based on a new quantification
approach developed by Riemer and West [2013], and they are compared with the obser-
vation based analyses of Healy et al. [2014]. First, the average single particle diversity,
which represents the average effective number of species in each particle, is consistent
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between the simulation and the measurements (2.91 from the simulation and 2.79 from
the measurements). However, the averaged bulk population diversity, which is the ef-
fective number of species in the bulk population, is slightly under estimated (3.76 from
the simulation and 4.00 from the measurements). This may due to the under-estimation
of sulfate and nitrate in the model. Besides, the model shows a close while slightly
higher mixing state index in average, with 69% from the simulation and 59% from the
observation. The time averaged spatial distribution of the mixing state index shows that
particles are relatively externally mixed in the urban region of Paris, while particles are
basically internally mixed in rural regions. This indicates that traditional aerosols model
which assume that particles are internally mixed, may be suitable for modelling rural
regions. However, they may not suitable for urbanized areas, where particles are more
freshly emitted and less mixed.

5.2 Perspectives

This study presents a new method to model externally-mixed aerosols with a comprehen-
sive representation of particle compositions, and it demonstrates the ability to simulate
particle mixing in 3D Eulerian simulations. The model developed in this thesis can be
applied to any other air quality models or computational fluid dynamic models, and there
are many perspectives for further research and application.

5.2.1 Dynamic condensation/evaporation of organics

The influence of the mixing-state assumption on aerosol formation has been observed for
inorganic species. However, the effect of the mixing-state assumption on the formation of
organics species could not be investigated in this study, because in the current version of
SCRAM, the condensation/evaporation of organic species is solved with the H2O module,
which only contains the bulk equilibrium approach. The bulk equilibrium approach does
not distinguish between different particle compositions, as it only considered the parti-
tion of total mass between the gas and particle phases. Therefore, more comprehensive
investigations could be conducted with SCRAM, regarding the effect of the mixing-state
assumption on aerosol formation if the condensation/evaporation of organics is computed
dynamically, as done for inorganic species. A newly developed secondary organic aerosol
processor (SOAP) [Couvidat and Sartelet, 2014] may be a good choice, as it contains a
dynamic representation of organic aerosols.

5.2.2 Cloud aerosol study

In the atmosphere, particles play an essential role for cloud formation, as they are the best
candidates for water vapour to condense upon. The condition for a particle to be activated
as cloud condensation nuclei (CCN) depends on its diameter and hygroscopicity, which is
determined by the chemical composition. Because the external mixing assumption allows
particles of different compositions to coexist within the same size section, the activation
of a size section would rather be progressive rather than instantaneous as under the
internal-mixing assumption. A simple demonstration on how the mixing-state assumption
could impact the activation of CCN is made in Chapter 3. It would be interesting to
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make further investigations by comparing model predictions with field measurements
[Lance et al., 2013; Jurányi et al., 2013]. Furthermore, we could also investigate how
the assumption of external mixing could affect the prediction of cloud droplet number
concentrations (CDNC) by coupling SCRAM with a cloud convection model.

5.2.3 Source identifications and impact analysis

Another potential application of SCRAM is the source identification and impact analysis.
By discretizing the particle composition, it becomes possible to separate different emission
sources and study their potential impact over space and time. With SCRAM, different
types of emissions could be categorized into different composition sections and their
evolutions can be tracked independently. With internal-mixing models, it is difficult to
separate different emission sources even if they have distinct compositions. Besides, some
toxic chemical components or radioactive pollutants may be released due to accidents
or natural disasters. A precise assessment of their potential impact may highly depend
on the knowledge of their detailed compositions, as their toxicity could also evolve with
their compositions. In such cases, the external-mixing model would definitely provide
more accurate information on candidate particles, and offer better impact analysis than
internal-mixing models.

5.2.4 Improve the computational efficiency

Although SCRAM is able to simulate externally-mixed particles on a large scale 3-D
domain, its computational cost is too high for forecasting or long-term simulations. For
example, the external-mixing simulation conducted in chapter 4 takes around 21 minutes
to compute a 10 minutes simulation, on a computer equipped with Intel(R) Bi-Xeon E5-
2680v2 CPU (10 core-2.8GHz x40). Therefore the computational efficiency of SCRAM
should be improved, in order to make it more suitable for daily forecast or long-term
simulations. One possibility is to improve the particle composition discretization. Based
on the results of previous simulations, it is found that most of the particle mass and
number concentrations are concentrated within a few particle composition sections. Sev-
eral composition sections are almost always empty during the simulation, such as the
SO-NO, EC-SO-NO and NO compositions in table 4.5. So, it is possible to optimize the
computational efficiency by improving the particle class parametrization: by reducing
the total number of particle classes and only conserving the particle classes of significant
mass/number concentrations.
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Appendix A

Change of variables for the evolution
of number and mass distributions

This appendix describes how to derive the equations of change for the number concentra-
tion n̄ and mass concentration q̄ distributions as a function of the variables f1, ..., f(c−1), m
used in the external mixing formulation.

To derive the equation of change for n̄(f1, ..., f(c−1), m) (Equation 2.5) from the equa-
tion of change for n(m1, ..., mc) (Equation 2.1), we need to perform a change of vari-
ables from m1, ..., mc to f1, ..., f(c−1), m and to compute the [c × c] Jacobian Matrix
J(f1, f2, · · · , f(c−1), m)

J =
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and the Jacobian inverse matrix:

J−1 =
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The relationship between n and n̄ is

n =
n̄

det(J)
=
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m(c−1)
(A.3)

Thus,
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For the right-hand side of Equation (2.1), the terms
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are replaced by terms de-

pending on the new variables, using:
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For i ∈ (1, (c − 1)), this leads to:
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and for i = c:
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If we replace Ic with I0 −∑(c−1)
i=1 Ii in (A.7), we have:
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The sum of the first (c − 1) terms of the right side of Equation (2.1) may be written as
follows.
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The right-hand side of Equation (2.1) becomes
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If we denote Hi =
∂fi
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, then Ii may be written as follows.
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Replacing n with
n̄

m(c−1)
in Equation (2.1) and using (A.12), we have
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and the equation of change for n̄ is finally
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The equation of change for the mass distribution qi = n mi of species i is derived as
follows.
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Appendix B

The time derivation of
Equation (2.10) and (2.9)

The time derivation of Equation (2.10) leads to:
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Replacing
∂n̄

∂t
(m, fg1 , ..., fg(c−1)

) by Equation (2.5), we have
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and using I0 =
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So A = −B, thus

∂N j

∂t
= (A + B) = 0 (B.4)

which is expected since condensation/evaporation does not affect the total number of
particles.

Similarly, an equation of change can be derived for Qj
i . In order to simplify the writing

of the equations, the following abbreviations are introduced:
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The time derivation of Equation (2.9) leads to:
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Substituting Equation (A.16) and q̄i = m fi n̄ into Equation (B.5), we obtain:
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Similarly to Equation (B.1), it can be proved that C = −D, so that Equation (B.6)
simplifies to:
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(B.7)

Thus, in each section, the change with time of number and mass concentrations is given
by Equations (B.4) and (B.7).
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