Model of Urban Network of Intersecting Canyons and Highways

MUNICH 2.0 User's Guide

CEREA (ENPC – EDF R&D) Youngseob Kim, Lya Lugon, Karine Sartelet, Yelva Roustan, Thibaud Sarica, Alice Maison

http://cerea.enpc.fr/munich https://github.com/cerea-lab/munich

Copyright (C) 2021 CEREA Last update: September 1, 2021

Contents

1	Introduction	3
2	Download	3
3	Requirements 3.1 External Libraries and Python Modules 3.1.1 Install Blitz++ 3.2 Build 3.3 Parallel Computing	3 3 4 4 5
4	Programs 4.1 Main program: ssh-aerosol 4.2 Legacy program without aerosol model: photochemistry	5 5 5
5	 Source code 5.1 Configuration for ssh-aerosol	6 7 8 10 12 13 13 14 14 14 14 15
6	preprocessing	16
7	Postprocessing 1	
8	Markups	19
9	Dates	20
10	References	20

1 Introduction

The Model of Urban Network of Intersecting Canyons and Highways (MUNICH) is used to simulate subgrid concentrations in the urban canopy represented by the street network [Kim et al., 2018].

MUNICH consists of two main components:

- street-canyon component, which represents the atmospheric processes in the volume of the urban canopy.
- street-intersection component, which represents the processes in the volume of the intersection.

These components are designed to connect to the Polair3D model at roof level and are also interconnected [Kim et al., 2018].

In this new version, aerosol model SSH-aerosol http://cerea.enpc.fr/ssh-aerosol [Sartelet et al., 2020] is coupled to MUNICH to simulate the concentrations of primary and secondary aerosols.

MUNICH has been used for several modeling studies, for example, Lugon et al. [2020a], Lugon et al. [2020b], Wu et al. [2020], Gavidia-Calderón et al. [2021], Lugon et al. [2021].

License MUNICH is a free software. You can redistribute it and/or modify it under the terms of the GNU General Public License v3 as published by the Free Software Foundation.

2 Download

MUNICH can be downloaded at the homepage http://cerea.enpc.fr/munich/ or the git repository https://github.com/cerea-lab/munich. MUNICH consists of its core part and sub modules including SSH-aerosol. Each sub module has the own git repository. To clone all repositories at same time, using a shell script at https://raw.githubusercontent.com/cerealab/munich/master/utils/munich-public-clone is recommended.

3 Requirements

MUNICH is designed to run under Unix or Linux-based systems. And it is based on three scientific languages: C++, Fortran 77/90 and Python. Tested C++ compilers are GNU gcc 4.x, 5.x, 7.x, 9.x. Corresponding Fortran compilers are tested: GNU gfortran 4.x, 5.x, 7.x, 9.x. For any compiling issue, please report to munich-help@liste.enpc.fr.

Python version 3.x is supported.

3.1 External Libraries and Python Modules

With regard to software requirements, below is a list of requirements

- the C++ library Blitz++ (https://github.com/blitzpp/blitz and see Section 3.1.1).
- Blas/Lapack (compiled libraries): any recent version. If you install Blas/Lapack using a package manager like apt or yum, you need to install liblapack-dev.
- NetCDF library may be required if you have precomputed coagulation repartition coefficients in SSH-aerosol model. You can download from the following site: http://www.unidata.ucar.edu/downloads/netcdf

- SWIG (http://www.swig.org/index.php)
- NumPy: any recent version. Make sure that your versions of NumPy and Matplotlib (see below) are compatible.
- Matplotlib: any recent version and corresponding pylab version (usually, pylab is included in Matplotlib package). It is recommended to install the corresponding version of Basemap in order to benefit from AtmoPy map-visualizations. Basemap is a toolkit available on Matplotlib website (https://matplotlib.org/), but usually not included in Matplotlib package.
- SciPy: any recent version.

3.1.1 Install Blitz++

If you install Blitz++ using a package manager like apt or yum, you need to install libblitz0-dev and libblitz0v5.

If you can not install using a package manager, you can install from source files. To do that, **cmake** is required to build Blitz++ from source files.

cd blitz mkdir build cd build cmake .. make lib

And edit CMakeCache.txt to indicate where blitz is installed.

CMAKE_INSTALL_PREFIX:PATH=YourHome/usr/local

```
make install
```

3.2 Build

MUNICH is supposed to be compiled with SCons. Please make sure that SCons has already been installed on your system https://www.scons.org. SCons is supposed to find the compilers and to properly determine all dependencies, on any platform.

Please set the following paths to the installed packages (Blitz++, Lapack/Blas, etc) in your environment before compiling.

export CPLUS_INCLUDE_PATH=YourHome/usr/local/include:\$CPLUS_INCLUDE_PATH export LD_LIBRARY_PATH=PATH_TO_LAPACK:\$LD_LIBRARY_PATH

If Lapack/Blas is installed by the package manager, PATH_TO_LAPACK should be /usr/lib

cd processing/ssh-aerosol compile

If you are not able to install Scons, you can execute standalone Scons package. Please download any recent scons-local package at https://scons.org/pages/download.html and compile with scons-local package as follows:

```
cd munich
mkdir scons-local
cd scons-local
tar xvf scons-local-4.0.1.tar.gz
cd ../processing/ssh-aerosol
python3 ../../scons-local/scons.py
```

If you experience anyway problems, please contact the MUNICH mailing list munich-help@ liste.enpc.fr.

3.3 Parallel Computing

The chemistry part of MUNICH is parallelized with OpenMPI https://www.open-mpi.org. Versions 1.10, 2.1, 4.0 are tested. The street segments are partitioned for available cores.

By default, MUNICH is compiled with OpenMPI. If you would like to compile without OpenMPI, a compiling option can be added.

```
compile --mpi=no
or
compile -m=no
```

4 Programs

4.1 Main program: ssh-aerosol

If compiling is successful, munich-ssh program is generated. It runs with the main configuration file munich.cfg.

```
cd processing/ssh-aerosol munich-ssh munich.cfg
```

Three configuration files need to be modified: munich.cfg, munich-data.cfg and munich-saver.cfg. To run a test simulation with provided input data at http://cerea.enpc.fr/munich/, please edit Directory field in munich-data.cfg.

Directory: Path_to_input_data

Setting of the configuration files is explained in detail in Section 5.1.

4.2 Legacy program without aerosol model: photochemistry

A legacy program **photochemistry** is also available. Only gas-phase chemistry is taken into account in this program without coupling to SSH-aerosol.

```
cd processing/photochemistry
scons mpi=yes
munich munich.cfg
```

Setting of the configuration files is explained in detail in Section 5.2.

5 Source code

The following diagram shows the tree structure of the source code.

The folder include is where all source code files are stored.

AtmoData is a tool for data processing in atmospheric sciences.

SeldonData: C++ library to perform data processing (interpolations, input/output operations);

Talos: C++ library to manage configuration files, dates and string processing;

common: mostly functions used to parse and manage the arguments of preprocessing programs;

driver contains StreetDriver and subroutines for output saver.

models contains models including three models StreetNetworkAerosol, StreetNetworkChemistry and StreetNetworkTransport which are used by the driver StreetDriver

modules

- aerosol: contains functions which allow to communicate with SSH-aerosol model.
- chemistry: chemical kinetic mechanisms. These routines are generated from a list of reactions and species specified in the folder spack.
- common: base modules and parallelism module

ssh-aerosol contains SSH-aerosol model.

spack contains the gas-phase chemical model generator. It is only used for the legacy program **photochemistry**.

The folder processing contains two subfolders ssh-aerosol and photochemistry.

For the modeling of gas and aerosol species, the program munich-ssh.cpp in its subfolder ssh-aerosol can be used. This program uses functions in aerosol module for communication with SSH-aerosol model. SSH-aerosol model (http://cerea.enpc.fr/ssh-aerosol) version 1.2.2 is coupled to MUNICH to simulate primary and secondary aerosol concentration in the streets. The coupling between MUNICH and SSH-aerosol is done using the API (Application Programming Interface) module of SSH-aerosol. The API allows to use all functions of SSH-aerosol in MUNICH and communicate arrays between the models. The model options of SSH-aerosol are configured in namelist.ssh. SSH-aerosol is described in User Manual of the model (http://cerea.enpc.fr/ssh-aerosol/user_manual.pdf).

The second program munich.cpp in its subfolder photochemistry is provided for the modeling of only gas-phase species. The second module chemistry is used for this program. It implements five chemical mechanisms: RACM, RACM2, CB05, MELCHIOR2, Leighton ozone photostationary state relation [Kim et al., 2009]. It uses a second-order Rosenbrock method for time integration. Computations are performed by Fortran routines (automatically generated by the chemical preprocessor SPACK, see SPACK Guide https://www.cerea-lab.fr/dossiers/ racine/articles/guide-0.pdf) and a C++ program is used as a frame to launch all these calculations.

Chemical mechanisms	no of species	no of reactions
RACM	72	237 including 23 photolysis
RACM2	113	349 including 34 photolysis
CB05	52	155 including 23 photolysis
Leighton	4	3 including 1 photolysis
MELCHIOR2	48	112 including 21 photolysis

Information about species and reactions is given below.

Users can choose a program depending on the purpose of modeling.

Some useful tools are added to generate input data and to visualize output data in the folder **preprocessing** and **postprocessing**, respectively. **scons** folder contains the files necessary for compiling the program.

5.1 Configuration for ssh-aerosol

The main program munich-ssh in the folder processing/ssh-aerosol is configured with three configuration files (munich.cfg, munich-data.cfg and munich-saver.cfg) and data files in-

cluding intersection.dat, street.dat and species-cb05.dat. The main configuration file munich.cfg provides the paths to all other configuration files and data files.

5.1.1 Main Configuration File: munich.cfg

The main configuration file munich.cfg gives information on the options of the simulation. There are many sections, e.g., [display], [domain], in the file.

The section [display] is configured with StreetDriver in the folder driver

	[display]
Show_iterations	If activated, each iteration is displayed on screen.
Show_date If activated, the starting date of each iteration is displayed	
	screen in format YYYY-MM-DD HH:II (For notations, please see Sec-
	tion 9).
$how_configuration$	If activated, some major options are displayed on screen.

The sections [domain], [data] and [output] are necessary to set general information about the simulation.

[domain]		
Date_min	Starting date in any legal format (see Section 9). The	
	date can therefore include seconds.	
Delta_t	Time step in seconds.	
Nt	Number of iterations of the simulation (integer).	
Bin_bounds	List of bounds of aerosol size bin (in μ m).	
Species	Path to the file that defines involved species and their	
	chemical properties.	
	[data]	
Data_description	Path to the configuration file that describes input data.	
	[output]	
Configuration_file	Path to the configuration for the output saver.	

The section [options] describes simulation parameters. For some parameters, default value is used when they are not configured by user.

	[options]
With_initial_condition	If initial concentrations of gas-phase species are taken
	into account.
With_initial_condition_aerosol	If initial mass concentrations of aerosol are taken into
	account.
With_initial_condition_number_aerosol	If initial number concentrations of aerosol are taken into
	account.
With_deposition	Is dry deposition taken into account?
Compute_dep_SVOC	If set to yes, dry deposition velocities for SVOC are com-
	puted.
Config_dep_SVOC	File containing the input data for SVOC deposition
	(svoc-dep.dat).
With_deposition_aerosol	Is dry deposition taken into account for aerosol species?
•	

Particles_dry_velocity_option	Parameterization used to compute dry deposition ve- locities for particles (venkatran, zhang, giardina, muvshondt).
Brownian_diffusion_resistence_option	Parameterization used to compute diffusion resistence for giardina option (paw, chamberlain).
With_scavenging	Is scavenging taken into account?
With_scavenging_aerosol	Is there scavenging for aerosol species?
With_resuspension	Is resuspension taken into account?
Resuspension	File containing the input data for resuspension
•	(resuspension.dat).
With_drainage_aerosol	Is drainage taken into account?
Max_rain	Precipitation that indicates a complete drainage in
	streets (recommended value: 0.254 in mm/h).
Min water drainage	recommended value: 0.5 in mm.
Collect dry flux	Are the dry deposition fluxes collected in order to post-
j	process them if dry deposition is taken into account?
Collect wet flux	Are the wet deposition fluxes collected in order to post-
	process them if wet deposition is taken into account?
Collect_dry_flux_aerosol	Are the dry deposition fluxes are collected in order to
·	postprocess them if dry deposition is taken into account?
Collect_wet_flux_aerosol	Are the wet deposition fluxes are collected in order to
	postprocess them if wet deposition is taken into account?
With_chemistry	Is chemistry taken into account?
With_number_concentration	If yes, number concentration is calculated. If no, number
	concentration is estimated from mass.
With_bg_number_concentration_data	If yes, the model reads the background number concen-
0	tration, if no, these concentration is calculated using
	aerosol mass and size data.
Redistribution_method	Which redistribution method is used
	(moving-diameter, siream, siream-euler-coupled,
	or siream-moving-diameter)?
aqueous_module	Which aqueous module is used (No, simple or VSRM)?
With_fixed_density	Is aerosol density fixed in all cells and all bins?
Fixed_aerosol_density	Fixed aerosol density in kg m^{-3} used in the model.
Wet_diameter_option	Which method is used to compute wet diameter: gerber.
•	chemistry or none. gerber uses Gerber formulation.
	chemistry uses the same wet diameter computed in
	chemical module. none uses dry diameter.

The section [street] describes some additional parameters which are associated with street-scale modeling.

	[street]
With_stationary_hypothesis sub_delta_t_min Numerical_method_parameterization	Stationary hypothesis or not minimum time step for numerical solver when stationary hypothesis is not used. numerical solver: ETR or Rosenbrock.

$Transfer_parameterization$	Parameterization to compute turbulent transfer velocity: "Sirane" or "Schulte"
$Mean_wind_speed_parameterization$	Parameterization to compute mean wind speed within the street-canyon: "Sirane" or "Exponential"
Building_height_wind_speed_parameterization	Parameterization to compute wind speed at the roof level: "Sirane" or "Macdonald"
Zref	Reference altitude for wind speed (m)
With_horizontal_fluctuation	If the horizontal fluctuation is taken into account.
Deposition_wind_profile	Wind profile option for dry deposition: masson or macdon-
	ald.
Intersection	File containing the input data for intersections.
Street	File containing the input data for streets.
Minimum_Street_Wind_Speed	Minimum wind speed within the streets (in m/s).
Building_density	Building density for dry deposition: 0.2 for sparse suburban
	area, 0.4 for suburban area, 0.6 for downtown area.
With_local_data	If meteo data and background concentrations are available
	for each street.

5.1.2 Data Description File: munich-data.cfg

This configuration file describes input data files (binary files). It is divided into sections which describe binary files for input data. A section roughly looks like this:

```
Directory: data-munich/
```

[meteo]

```
Date_min: 20140316_00
Delta_t = 3600.
Nt = 2568
```

```
Fields: WindDirection WindSpeed PBLH UST LMO WindDirectionInter
WindSpeedInter PBLHInter USTInter LMOInter Attenuation
SpecificHumidity SurfacePressure SurfaceTemperature Rain
Filename: <Directory>/meteo/&f.bin
```

It is assumed that all binary files start at the same date, and this date is Date_min (see dates formats in Section 9). The time step is Delta_t, in seconds.

Then a list of fields is provided after Fields. These are fields that the model needs, and their names are determined by the model. Below, all fields required by the model (depending on its options) are listed. A generic path (full file name) is then provided (entry Filename). In this path, the shortcut '&f' refers to a field name.

Note that:

- 1. entries Fields, Filename and additional paths must be at the end of the section.
- 2. at least one element (possibly not a required field) must be provided to Fields and at least one element (possibly not a path) to Filename; for instance:

```
Fields: ---
Filename: --- # means no generic path.
```

but:

Fields: # Illegal: one element required.
Filename: # Illegal: one element required.

In most sections, Fields is used to specify all chemical species involved in the process, e.g.:

[emission]

```
Date_min: 20140316_00
Delta_t = 3600.
Nt = 2568
```

Fields: ALDX API CH4 ETH ETHA ETOH FORM IOLE ISOP LIM MEOH OLE PAR TERP TOL XYL NO NO2 Filename: <Directory>/emission/&f.bin

```
ALD2 ALD2.bin
CO 0.002
```

If a few fields are not stored in a file with a generic path, their specific paths can be provided after the entry Filename. This is the case for ALD2 in the above example.

Notice that CO is not associated with a path but with a numerical value. This is a feature: a binary file may be replaced with a numerical value. In this case, the field (in the example, CO emission) is set to a constant value (in every location and at every time step). This works with any field, including meteorological fields (section [meteo]).

Section	Entries	Comments
[initial_condition]	Fields, Filename	
[initial_condition_aerosol]	Fields, Filename	
[emission]	Date_min, Delta_t, Nt,	
	Fields, Filename	
[meteo]	Date_min, Delta_t, Nt,	Required fields are: WindDirection,
	Fields, Filename	WindSpeed, PBLH, UST, LMO,
		WindDirectionInter, WindSpeedInter,
		PBLHInter, USTInter, and LMOInter.
		Attenuation, SpecificHumidity,
		SurfacePressure, SurfaceTemperature,
		Rain with option with_chemistry.
[background_		
concentration]	Date_min, Delta_t, Nt,	
	Fields, Filename	
[emission_aer]	Date_min, Delta_t, Nt,	
	Fields, Filename	
[bg_concentration_aer]	Date_min, Delta_t,	default value for Format is Internal
	Nt Fields, Filename,	
	Format	
[bg_number_concentration]	Fields, Filename	Date_min, Delta_t, Format of
		<pre>bg_concentration_aer section are used.</pre>

In munich-data.cfg, several sections are required. In the following table, all possible sections are listed, with their entries.

[deposition]	Fields	
[scavenging]	Fields	
[deposition_velocity_aerosol]Fields	List of size sections
[scavenging_aerosol]	Fields	List of size sections
[ground]	Roughness_file,	$Vrban_index_zhang = 10 \text{ for } GLC2000$
	LUC_file,	database
	Urban_index_zhang	
[traffic]	Date_min, Delta_t, Nt,	Required fields are: RoadTraffic_2R,
	Fields, Filename	RoadTraffic_HDV, RoadTraffic_PC,
		RoadTraffic_LCV

The *units* of concentration input data (e.g., initial condition, boundary condition etc.) should be given as $\mu g/m^3$.

5.1.3 Output Description File: munich-saver.cfg

Some parameters must be provided to save output results. The file type of output files is binary as input data.

```
Output_dir: results/
[save]
# Put "all" to output all species.
Species: all
Date_beg: -1 # Put -1 to start from the simulation initial date.
Date_end: -1 # Put -1 to end at the simulation final date.
Interval_length: 36 # 1 for all steps.
Averaged: yes
# Save initial concentrations in case concentrations are not averaged?
Initial_concentration: no
# Choices: streeet
```

Type: street

Output_file: <Output_dir>/&f.bin

Text_file: no

	[save]	
Species	Chemical species to be saved. If it is set to all, concentrations for	
	all species are saved.	
Date_beg The date from which the concentrations are saved. I		
	trations are averaged, the first step at which concentrations are	
	actually saved if not Date_beg, but Date_beg plus the number of	
	steps over which concentrations are averaged. If the value - 1 i supplied, Date_beg is set at the start of the simulation.	
Date_end	nd The last date at which concentrations may be saved. If the val- 1 is supplied, Date_end is set at the end of the simulation.	

Interval_length	The number of steps between saves.
Туре	see the below table for the list of available types
Output_file	The full path of output files, in which &f will be replaced by the
	name of the chemical species. Note that the directory in which the
	files are written must exist before the simulation is started.
Text_file	output files in a text type are provided for an easy and fast file
	checking

Note that Species, Date_beg, Date_end, Interval_length must appear before Type. After Type, put additional options relevant for the chosen output saver. All possible Type are listed:

* List of output saver Type

For gas-phase species

- street: concentration of gas-phase species

- street_dry_deposition_vel: dry deposition velocity

For aerosol species

- street_aer: concentration of aerosol species
- street_dep_mass_aer: aerosol mass deposition
- $\mathtt{street_resusp_aer:}$ aerosol resuspension rate

- street_washoff_aer: aerosol wash-off rate

- street_surf_dry_dep_aer: aerosol dry deposition rate

If multiple [save] sections are required when several output type are used.

5.2 Configuration for photochemistry

The program munich in the folder processing/photochemistry is configured with three configuration files (munich.cfg, munich-data.cfg and munich-saver.cfg) and data files including intersection.dat, street.dat and species-cb05.dat. The main configuration file munich.cfg provides the paths to all other configuration files and data files.

Many options are same to those of **ssh-aerosol** program. Here only differences between the programs are explained.

	[options]
Option_chemistry	provides the list of available chemical kinetic mechanisms. $\tt CB05$,
	Leighton, MELCHIOR2, RACM and RACM2
With_adaptive_time_step_for_gas_chemistry	With adaptive time stepping for gaseous chemistry?
Adaptive_time_step_tolerance	Tolerance for the adaptive time step.
Min_adaptive_time_step	Minimum for the adaptive time step.
Max_adaptive_time_step	Maximum for the adaptive time step.
With_photolysis	Should photolysis occur?
Photolysis_tabulation_option	Read only if With_tabulated_photolysis. If 1, the tabulation
	generated by SPACK is used. If 2, the binary files obtained by
	preprocessing tools (JProc or FastJ) are used.

5.2.1 Main Configuration File: munich.cfg

5.2.2 Data Description File: munich-data.cfg

A section [photolysis_rates] may be required (if the chemical mechanism includes photolysis reactions). Depending on the chosing option for photolysis rates, different fields are read. If photolysis rates are tabulated, they depend on days, time angle, latitude and altitude. During the time integration, they are linearly interpolated in all cells. The following fields describe the tabulation parameters that must be filled.

Section	Entries	Comments			
[photolysis_rates]	Ndays	Number of steps.			
	Time_angle_min	Starting time angle in hours.			
	Delta_time_angle	Time angle step in hours.			
	Ntime_angle	Number of time angles.			
	Latitude_min	First latitude in degrees.			
	Delta_latitude	Step along latitude in degrees.			
	Nlatitude	Number of latitude steps.			
	Altitudes	List of altitudes in meters at which photolysis			
		rates are provided.			
	Date_min	Starting dates of photolysis rates.			
	Delta_t	Time step (in days if tabulated photolysis			
		rates).			
	Fields, Filename	Photolysis reaction names and the paths to the			
		files in which photolysis rates are stored.			

5.3 Input data files

5.3.1 intersection.dat and street.dat

- intersection.dat: intersection id, longitude and latitude of the intersection, number of streets whice are connected to the intersection followed by the connected street id.

```
#id;lon;lat;number_of_streets;lst_street_id;2nd_street_id;...
1;2.49961040621;48.8639959388;6;1;605;852;3;8;11;
2;2.49977706824;48.8650938211;1;1;
6;2.49810836399;48.8642684425;1;3;
7;2.50328738802;48.8643530022;1;4;
8;2.50263219496;48.8630192684;4;4;5;10;19;
10;2.50111432732;48.8635255708;4;5;7;664;851;
11;2.48158743003;48.8656369541;1;6;
12;2.48236756109;48.8639495836;3;6;749;710;
13;2.50067262662;48.8626783551;4;7;8;23;676;
```

- street.dat: street id, two intersection id which connect the street, street length, width and averaged building height, street typologies. typo is set to 1 for highway and 0 for the others. It is used to compute the resuspension rate.

```
#id;begin_inter;end_inter;length;width;height;typo
1;1;2;122.686160495;7.5;6.9;0
3;1;6;107.94798805;7.5;6.9;0
4;7;8;155.856467313;7.5;6.9;0
5;8;10;124.490042998;7.5;6.9;0
```

```
6;11;12;196.113095869;41.0;10.2;0
7;13;10;99.5930099431;7.5;6.9;0
8;1;13;169.563212564;7.5;6.9;0
```

5.3.2 Input data files: species-cb05.dat

This file indicates information about the used chemical kinetic mechanism including the species list.

Please do not make a change in this [species] section. The order of the chemical species in this section is determined by SPACK during compiling. If you need to change chemical kinetic mechanism, e.g., add species and/or reactions, please see SPACK Guide (https://www.cerea-lab.fr/dossiers/racine/articles/guide-0.pdf).

When the program **ssh-aerosol** is used, the information in this file should match that in the folder **species-list**/ of SSH-aerosol model.

Section	Comments
[species]	list of gas-phase species
[aerosol_species]	list of aerosol species
[molecular_weight]	molecular weight of gas-phase species in g/mol
[molecular_weight_aer]	molecular weight of aerosol speceis in g/mol
[mass_density_aer]	mass density in g/cm^3
[gas_species_cloud_interact]	list of gas species interacting with cloud phase, the order is imposed
	by VSRM.
[diffusivity]	gas-phase diffusivities: cm^2 / s .
[henry]	Henry constant: mol / L / atm. It must be effective Henry con-
	stant except HONO, HNO3, HCL, NH3 and SO2.
[dissolution_heat]	Heat of dissolution: kcal / mol at 298K.
[reactivity]	Chemical reactivity.
[alpha]	Alpha scaling factor for deposition.
[beta]	Beta scaling factor for deposition.
[drainage_efficiency]	Drainage efficency.
[Rm]	Mesophyll resistance.

[species]

HC8	NH3	HCL	01D	ETOH	
CH4	ETHA	TOL	XYL	S02	
SULF	HUM	BiBmP	BiBlP	POAlP	
POAmP	POAhP	SOAlP	SOAmP	SOAhP	
RppO2	Rppp02	BENZ	PHEN	CAT	
ACIDMAL	CRESp	MCAT	DHMB	SYR	
GUAI	NAPH	MNAPH	RelvocO2	2	Dimer
Monomer	BiA3D	T02	N205		BiMGA

• • •

[aerosol_species]

Water must be the last species.
PMD PBC PNA PSO4 PNH4 PNO3

```
PHCLPBiA2DPBiA1DPBiA0DPAGLYPAMGLYPBiMTPBiPERPBiDERPBiMGAPAnB1PPAnBmPPBiB1PPBiBmPPBiNGAPBiNIT3PBiNITPAnC1PPSOA1PPSOAmPPSOAhPPPOA1PPPOAmPPPOAhPPMonomerPDimerPBiA3DPACIDMALPDHMBPPAH1NPPAHhNPPSYRPGHDPeroxPH20...
```

For the program photochemistry, an additional section photolysis_reaction_index is necessary. It indicates the photolysis reactions numbers in the used chemical kinetic mechanism. The number begins from 0 which corresponds to the first reaction.

[photolysis_reaction_index]

NO2	0	0303P	7	0301D	8	NO3NO2	13
NO3NO	14	HONO	23	H2O2	34	HNO4	49
HNO3	50	N205	51	ORGNIT	60	HOP	62
MHP	69	HCHOrad	72	HCHOmol	73	ALD	84
PAN	88	PACD	94	C2CHO	99	PANX	103
OPEN	133	MGLY	138	ISPD 1	46		

6 preprocessing

A python script **sing_preproc.py** can be used and run with a configuration file **sing_preproc.cfg**.

cd preprocessing python sing_preproc.py sing_preproc.cfg

The sections [input], [option], [output], [domain] and [background] are necessary.

[input]			
t_min	Initial date of the simulation.		
Delta_t	Time step in hours.		
Nt	Number of time step.		
emission_dir_weekday	Directory where emission data for weekday are stored.		
emission_dir_weekend	Directory where emission data for weekend are stored.		
weekday_file_prefix	Prefix in file names for weekday emission data as the		
	format of $iprefix_{i} + ihour$ in two digits.		
weekend_file_prefix	Prefix in file names for weekend emission data as the		
	format of $iprefix_i + i$ hour in two digits _i .		
epsg_code	Map projection type used for emission data.		
country_code	Country code to consider holidayss.		
is_local_hour	Are emission data given as local hour.		
time_zone	Time zone of local hour.		
emission_species	Species for emission: CH4 (methane), NMHC (non-methane		
	hydro-carbon), CO (carbon monoxide), NOx (nitrogen ox-		
	ide). For the species NMHC, emission data need to be		
	calculated for model species. For this version, informa-		
	tions for CB05 chemical kinetic mechanism are included		
	$aggregation_cb05-siream.dat.$		

geog_info	File describing the geographic data.				
background_concentration	File describing the background concentration.				
meteo_dir	Directory where meteorological data are stored. Only				
	WBF data can be used				
wrfout prefix	Prefix in file names of WRF output				
speciation dir	Input files for speciation				
specialition_all					
	[option]				
is_street_merged	Using these options is recommended only if traffic emis-				
3	sion data are estimated for the vehicle flow for each traffic				
	direction of a two-way street.				
is_street_manually_merged	Streets are merged as indicated in street-merging.txt				
is_near_node_merged	Two nodes are merged when their distance is less than a				
5	given value.				
is_node_manually_merged	Nodes are merged as indicated in				
,	intersection-merging.txt.				
meca	cb05 or melchoir2 for speciation.				
is voc speciated	If VOC is speciated.				
is nox speciated	If NOx is speciated.				
is isvoc speciated	If ISVOC is speciated				
is pm10 speciated	If PM ₁₀ is speciated				
Nsize sections	Number of aerosol size sections for PM_{10} speciation				
Size dist ac om emis	Redistribution factor for EC and OM				
Size dist dust emis	Redistribution factor for dust				
om redist	neurstitution factor for dust.				
Om_redibt	couvidat of may for Own redistribution.				
	[output]				
Output dir	Directory where output data will be saved.				

Sections [domain] and [background] are not mandatory for MUNICH simulation. [domain] is used to generate emission data for grid cells of Polair3d simulation from traffic emission. These data are necessary for Street-in-Grid simulation.

[domain]			
Date_min_polair	Initial date of Polair3d simulation.		
Delta_t_polair	Time resolution in hour.		
Nt_polair	Number of time step.		
x_min, Delta_x, Nx	Grid information in x.		
y_min, Delta_y, Ny	Grid information in y.		

[background] is used to generate background concentration from Chimere simulation results.

[background]			
chimere_bg	False if background comes from another source.		
chimout_dir	Directory of Chimere output.		
chimout_lab			
melch2molmass_file	Molar mass of species.		
Species	List of species.		

Figure 1: Emission map obtained by display_emission.py.

Please check that the unit of emissions input data is /microg/km/h. The unit is converted to /microg/s.

In Output_dir, the following data are generated. All files are binary except those in the directory textfile.

background - background concentration in the street canyons.

emission - traffic emission in the street canyons.

meteo - meteorological data in the street canyons and the street intersections.

grid_emission - Averaged emission data for a given grid cells (not necessary in MUNICH).

textfile - emission data and geographic data (street.dat and intersection.dat are used in munich.cfg).

A python script display_emission.py is provided to visualize emission data which are computed for a given domain.

```
cd preprocesing/utils
python display_emission.py
```

7 Postprocessing

disp_concentrations.py is provided to draw simulation results on the map.

```
cd postprocesing python disp_concentrations.py disp_concentrations.cfg
```


Figure 2: NO and NO₂ concentrations map obtained by disp_concentration.py.

emission.txt and node.txt are used. You need to copy them from preprocessing/output/textfile
if they are not found in the directory.

8 Markups

In order to avoid duplications in a configuration file, Polyphemus features a markup management. A markup is denoted with surrounding '<' and '>', e.g. <path>. A markup is automatically replaced with its value whenever it is found. Its value should be provided somewhere in the configuration file with a proper field; for instance, <path> refers to the field path. Here is a complete example:

Root: /home/user Input_directory: <Root>/input/ Output_directory: <Root>/output/

means:

Input_directory: /home/user/input/
Output_directory: /home/user/output/

The markup can be used before its value is defined:

Input_directory: <Root>/input/
Output_directory: <Root>/output/
Root: /home/user # After calls to <Root>. This is legal.

Any field may be used as a markup. The user may define any new markup (that is a new field). Moreover, several markup substitutions can be performed in a single value, and nested markups are properly handled:

Home: /home/user Root: <Home>/Polyphemus/work Number = 7
Input_directory: <Root>/input-<Number>/

is accepted and means:

Input_directory: /home/user/Polyphemus/work/input-7/

Notice that markups may also replace numbers and may be based on preexisting fields:

x_min = 12.5 Delta_x = 0.5 Nx = 100 y_min = <x_min> Delta_y = 1. Ny = <Nx>

9 Dates

Date formats are:

YYYY	#	Year	•	
ҮҮҮҮ-ММ	#	With	the	month.
YYYY-MM-DD	#	With	the	day.
YYYY-MM-DD_HH	#	With	the	hour.
YYYY-MM-DD_HH-II	#	With	the	minute.
YYYY-MM-DD_HH-II-SS	#	With	the	second.

Months range from 01 to 12. Days range from 01 to 31. Hours range from 00 to 23. Minutes and seconds range from 00 to 59.

If the month is not specified (format YYYY), then the month is set to 01 (January). If the day is not specified (formats YYYY and YYYY-MM), it is set to 01 (first day of the month). If the hour, the minute or the second is not specified, it is set to zero (00).

Hyphens and underscores may be replaced with any character that is neither a delimiter nor a cipher. They can also be removed. Examples:

19960413 1996-04-13_20h30 1996/04/13@2030

Recommandation – Use hyphens around the month and around minutes. Use an underscore between the day and the hour (YYYY-MM-DD_HH-II-SS).

10 References

References

- Gavidia-Calderón, M. E., Ibarra-Espinosa, S., Kim, Y., Zhang, Y., and Andrade, M. D. F. (2021). Simulation of o_3 and no_x in so paulo street urban canyons with vein (v0.2.2) and munich (v1.0). *Geoscientific Model Development*, 14(6):3251–3268.
- Kim, Y., Sartelet, K., and Seigneur, C. (2009). Comparison of two gas-phase chemical kinetic mechanisms of ozone formation over Europe. J. Atmos. Chem., 62(2):89–119.
- Kim, Y., Wu, Y., Seigneur, C., and Roustan, Y. (2018). Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1). Geosci. Model Dev., 11:611–629.

- Lugon, L., Sartelet, K., Kim, Y., Vigneron, J., and Chrétien, O. (2020a). Nonstationary modeling of no_2 , no and no_x in paris using the street-in-grid model: coupling local and regional scales with a two-way dynamic approach. *Atmospheric Chemistry and Physics*, 20(13):7717–7740.
- Lugon, L., Sartelet, K., Kim, Y., Vigneron, J., and Chrtien, O. (2021). Simulation of primary and secondary particles in the streets of paris using munich. *Faraday Discuss.*, 226:432–456.
- Lugon, L., Vigneron, J., Debert, C., Chrétien, O., and Sartelet, K. (2020b). Black carbon modelling in urban areas: investigating the influence of resuspension and non-exhaust emissions in streets using the street-in-grid (sing) model. *Geoscientific Model Development Discussions*, 2020:1–27.
- Sartelet, K., Couvidat, F., Wang, Z., Flageul, C., and Kim, Y. (2020). Ssh-aerosol v1.1: A modular box model to simulate the evolution of primary and secondary aerosols. *Atmosphere*, 11(5).
- Wu, L., Chang, M., Wang, X., Hang, J., Zhang, J., Wu, L., and Shao, M. (2020). Development of the real-time on-road emission (roe v1.0) model for street-scale air quality modeling based on dynamic traffic big data. *Geoscientific Model Development*, 13(1):23–40.