AtmoData Scientific documentation

Version 1 for AtmoData 1.1

CEREA - ENPC / EDF R\&D
Hervé Njomgang, Vivien Mallet and Luc Musson-Genon

Contents

Introduction 5
Notations 7
1 Meteorology 9
1.1 Conversion of coordinates 9
1.1.1 ECMWF 9
1.1.2 MM5 9
1.2 Basic meteorology 10
1.2.1 Potential temperature 10
1.2.2 Virtual temperature 10
1.2.3 Specific humidity 10
1.2.4 Relative humidity 10
1.2.5 Winds 11
1.2.6 Module of Winds 11
1.2.7 Richardson number 11
1.2.8 Planetary boundary layer height 12
1.3 Clouds 12
1.3.1 Critical relative humidity 12
1.3.2 Cloud Fraction 13
1.3.3 Cloudiness 13
1.3.4 Clouds basis height 14
1.4 Attenuation 14
1.4.1 "RADM" parameterization 14
1.4.2 ESQUIF parameterization 15
2 Vertical diffusion 15
2.1 Louis' parameterization 16
2.2 Troen's \& Mahrt's parameterization 16
2.2.1 K_{z} 16
2.2.2 $P B L H$ 17
3 Deposition velocities 18
$3.1 \mathbf{R}_{\mathbf{a}}$ 18
3.1.1 Diagnosis with the drag coefficient 18
3.1.2 Using the momentum flux 19
3.1.3 Using the heat flux 20
$3.2 \quad \mathbf{R}_{\mathbf{b}}$ 20
3.2.1 Diagnosis with the drag coefficient 20
3.2.2 Using the friction velocity 20
$3.3 \quad \mathbf{R}_{\mathbf{c}}$ 21
3.3.1 Wesely's parameterization 21
3.3.2 Zhang's parameterization 22
4 Surface emissions 24
4.1 Anthropogenic emissions 24
4.2 Biogenic emissions 25

Introduction

AtmoData ([6]) is a library for data processing and parameterizations in atmospheric chemistry and physics. This document describes the parameterizations and the miscellaneous physical functions available in the library.

Apart from this scientific documentation, additional resources are available on AtmoData website at http://www.enpc.fr/cerea/atmodata/: a more complete introduction, the lastest version this scientific documentation, a user's guide and the reference documentation.

In case you want to refer to AtmoData in a publication, a conference, a poster or so, please include the reference [6]: Vivien Mallet and Bruno Sportisse, Data processing and parameterizations in atmospheric chemistry and physics: the AtmoData library, Submitted to Atmospheric Environment, 2005.

Notations

Variables	
\mathcal{A}	Attenuation
$C F$	Cloud fraction
$C H$	Clouds basis height
$C R H$	Critical relative humidity
D_{s}	Molecular diffusivity of the species s
E_{s}	Emission for the species s
$E F_{s}$	Emission factor for the species s
$E R_{s}$	Emission rate for the species s
f_{h}	Heat flux
f_{m}	Momentum flux
f_{s}	Reactivity of species s
h	Relative humidity
H_{s}	Henry constant for species s
J	Photolysis rate
K_{z}	Vertical diffusion
l	Mixing length
$L M O$	Monin-Obukhov length
$L U C$	Land use coverage
$L W C$	Liquid water content
$L W P$	Liquid water path
\mathcal{N}	Cloudiness
P	Pressure
$P A R$	Photosynthetically active radiation
$P B L$	Planetary boundary layer
$P B L H$	Planetary boundary layer height
$P i$	Partial pressure for species \#i
$P_{i}^{s a t}$	Saturation pressure for species \#i
q	Specific humidity
Q_{0}	Surface sensible heat flux
$R i$	Richardson number
$R i_{c}$	Critical Richardson number
$S R$	Solar radiation
T	Temperature
$T r$	Cloud transmissivity
T_{v}	Virtual temperature
V	Meridional wind

\mathcal{W}	Wind module
U	Zonal wind
u_{*}	Surface friction velocity
V_{d}	Deposition velocity
w_{*}	Convective velocity scale
Z	Zenith angle
Z_{r}	Roughness height
θ	Potential temperature
λ	Asymptotic mixing length
ρ	Mass density
τ	Cloud optical depth

Coordinates

$F_{i} \quad$ Value of field F at node i along longitude
$F_{i_{\text {interf }}} \quad$ Value of field F at interface i along longitude
$F_{j} \quad$ Value of field F at node j along latitude
$F_{j_{\text {interf }}} \quad$ Value of field F at interface j along latitude
$F_{k} \quad$ Value of field F at node k along altitude
$F_{k_{\text {interf }}} \quad$ Value of field F at interface k along altitude
$z \quad$ Altitude
$\sigma \quad$ Ratio of pressure on surface pressure

Note: z_{k} is dedicated to the altitudes of nodes; so $z_{k} \neq 0$ and $z_{0_{\text {interf }}}=0$.

Constants

c_{p}	Specific heat capacity at constant pressure	$\frac{7}{2} r$
c_{p}	Specific heat capacity at constant volume	$\frac{5}{2} r$
g	Standard gravity	$9.80665 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$M_{\text {air }}$	Molar mass of air	$28.96 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$M_{\text {vapor }}$	Molar mass of vapor	$18 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
P_{0}	Standard pressure	$101,325 \mathrm{~Pa}^{2}$
r	Molar gas constant for dry air	$287.0 \mathrm{~J} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$
$r_{v a p}$	Molar gas constant for vapor	$461.5 \mathrm{~J} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$
R	Gas constant	$8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
T_{0}	Standard temperature	
κ	Von Kármán constant	273.15 K
r	V.4	

1 Meteorology

1.1 Conversion of coordinates

1.1.1 ECMWF

In the ECMWF model, the vertical coordinates are hybrid σ-P levels. The pressure at level k is computed as follows:

$$
\begin{equation*}
P_{k}=\alpha_{k} P_{\text {surf }}+\beta_{k} P_{\text {ref }} \tag{1}
\end{equation*}
$$

where $P_{r e f}$ is a reference pressure, and α_{k} and β_{k} are hybrid coefficients.
To convert the pressure into meters, one uses the following formula:

$$
\begin{equation*}
z_{n+1}=z_{n}+\frac{r T}{P} \ln \frac{P_{n}}{P_{n+1}} \tag{2}
\end{equation*}
$$

where index n denotes the level and $z_{0}=0 \mathrm{~m}$. This formula can be easily derived from the hydrostatic approximation and the perfect gas law, assuming that the atmosphere is isotherm within two layers.

```
ComputePressure, ComputeHeight,
ComputeInterfHeight, ComputeMiddleHeight
```


1.1.2 MM5

In MM5, the pressure at level k is given by

$$
\begin{equation*}
P_{k}=\sigma_{k} P_{\text {surf }} \tag{3}
\end{equation*}
$$

Then formula (2) can also be used to convert the pressure to altitudes.
ComputeHeight, ComputeInterfHeight, ComputeMiddleHeight

For horizontal coordinates, MM5 uses three projections:

- Lambert Azimuthal Equal Area,
- Lambert Conformal Conic, and
- Mercator.

AtmoData provides classes to perform coordinate transformations from these projections to latitude/longitude coordinates, and vice versa. Note that AtmoData does not manipulate directly the three MM5 coordinates but it handles MM5 indices instead, which is more convenient.

```
LonlatToMM5LccInd, LonlatToMM5MercInd,
LonlatToMM5StereInd, MM5LccIndToLonlat,
MM5MercIndToLonlat, MM5StereIndToLonlat
```


1.2 Basic meteorology

1.2.1 Potential temperature

The potential temperature is computed with:

$$
\begin{equation*}
\theta=T\left(\frac{P}{P_{\text {ref }}}\right)^{-\frac{r}{c_{p}}} \tag{4}
\end{equation*}
$$

Another formula (equivalent):

$$
\begin{equation*}
\theta=T\left(\frac{P}{P_{\text {ref }}}\right)^{\frac{1-\gamma}{\gamma}} \tag{5}
\end{equation*}
$$

where $\gamma=\frac{c_{p}}{c_{v}}, c_{p}=c_{v}+r$ for a perfect gas and, usually, $P_{\text {ref }}=100,000 \mathrm{~Pa}$.

> ComputePotentialTemperature

1.2.2 Virtual temperature

$$
\begin{equation*}
T_{v}=T\left(1-q+\frac{r_{v a p}}{r} q\right) \tag{6}
\end{equation*}
$$

where q is the specific humidity (cf. 1.2.3). So

$$
\begin{equation*}
T_{v}=T(1+0.608 q) \tag{7}
\end{equation*}
$$

ComputeVirtualTemperature

1.2.3 Specific humidity

Definition:

$$
\begin{equation*}
q=\frac{\rho_{\text {vapor }}}{\rho_{\text {vapor }}+\rho_{\text {air }}} \tag{8}
\end{equation*}
$$

It is not computed by AtmoData, but computed by meteorological models.

1.2.4 Relative humidity

First are computed the partial pressure of vapor $P_{\text {vapor }}$ and the saturation pressure of vapor $P_{\text {vapor }}^{s a t}$:

$$
\begin{equation*}
P_{\text {vapor }}=\frac{q}{q+\frac{M_{\text {vapor }}}{M_{\text {air }}}(1-q)} P \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
P_{\text {vapor }}^{\text {sat }}=611.2 \exp \left(\frac{17.67(T-273.15)}{T-29.65}\right) \tag{10}
\end{equation*}
$$

from which is derived relative humidity:

$$
\begin{equation*}
h=\frac{P_{\text {vapor }}}{P_{\text {vapor }}^{\text {sat }}} \tag{11}
\end{equation*}
$$

ComputeRelativeHumidity

1.2.5 Winds

Note: this section deals with a tranformation specific to the chemistrytransport model Polair3D ${ }^{\dagger 1}$.

The zonal and meridional winds U and V from the meteorological models are transformed so as to be input of the chemistry-transport model Polair3D:

$$
\left\{\begin{array}{l}
U_{\text {Polair3D }}=\frac{U}{\cos \varphi} \tag{12}\\
V_{\text {Polair3D }}=V \cos \varphi
\end{array}\right.
$$

where φ represents the latitude.

TransformMeridionalWind, TransformZonalWind

1.2.6 Module of Winds

The wind module is, of course, the Euclidean norm of the vector (U, V) :

$$
\begin{equation*}
\mathcal{W}=\sqrt{U^{2}+V^{2}} \tag{13}
\end{equation*}
$$

ComputeModule

1.2.7 Richardson number

The Richardson number $R i$ is computed as follows. We set:

$$
D \mathcal{W}_{k}=\sqrt{\left(\frac{\Delta U_{k}}{\Delta z_{k}}\right)^{2}+\left(\frac{\Delta V_{k}}{\Delta z_{k}}\right)^{2}}
$$

[^0]with $\Delta X_{k}=X_{k}-X_{k-1}$, and then
\[

$$
\begin{equation*}
R i_{k}=\frac{g \Delta \theta_{k}}{\max \left(D \mathcal{W}_{k}^{2}, W T^{2}\right) \theta_{k-1} \Delta z_{k}} \tag{14}
\end{equation*}
$$

\]

where $W T$ is the wind threshold, set to 0.001 by default.
ComputeRichardson
1.2.8 Planetary boundary layer height

The planetary boundary layer height, $P B L H$, is usually retrieved from the outputs of a meteorological model. Otherwise, two diagnoses are proposed. One returns the height at which the Richardson number reaches a critical value (usually set to 0.21). The other diagnosis follows [12]. Details are provided in section 2.2.2.

```
ComputeBoundaryLayerHeight_Richardson,
ComputeBoundaryLayerHeight_TM
```


1.3 Clouds

1.3.1 Critical relative humidity

The critical relative humidity is the threshold value above which there is formation of clouds.

There are several parameterizations in AtmoData for CRH, taking in account the dependence upon the altitude and the special case of the planetary boundary layer.

- Parameterization with σ

This is a well known parameterization, widely used (e.g. in CMAQ, [1]).
It approximates CRH with:

$$
\begin{equation*}
C R H_{k}=1-\lambda_{0} \sigma_{k}\left(1-\sigma_{k}\right)\left(1+\lambda_{1}\left(\sigma_{k}-0.5\right)\right) \tag{15}
\end{equation*}
$$

where σ_{k} is the ratio of pressure at level k on the surface pressure, and the λ_{i} are empirical coefficients. Their default values are $\lambda_{0}=2$ and $\lambda_{1}=\sqrt{3}$.
A more general parameterization is derived from the previous one:

$$
\begin{equation*}
C R H_{k}=1-\lambda_{0} \sigma_{k}^{a_{0}}\left(1-\sigma_{k}\right)^{a_{1}}\left(1+\lambda_{1}\left(\sigma_{k}-0.5\right)\right) \tag{16}
\end{equation*}
$$

Default values: $\lambda_{0}=1.1, \lambda_{1}=\sqrt{1.3}, a_{0}=0$, and $a_{1}=1.1$.

- In the planetary boundary layer

Within the planetary boundary layer, one may set the critical relative humidity to a constant (e.g., [1, pages 48-49]):

$$
\begin{equation*}
z_{k}<P B L H \Longrightarrow C R H_{k}=C R H_{P B L} \tag{17}
\end{equation*}
$$

where PBLH is the PBL height, and $C R H_{P B L}=0.98$ by default.

- Pressure parameterization

$$
C R H_{k}=\left\{\begin{array}{lll}
C R H_{0} & , & P_{r e f, 0}<P_{k} \tag{18}\\
C R H_{1} & , & P_{r e f, 1}<P_{k}<P_{r e f}, 0 \\
C R H_{2} & , & P_{k}<P_{r e f}, 1
\end{array}\right.
$$

By default, $P_{r e f, 0}=70,000 \mathrm{~Pa}, P_{r e f, 1}=40,000 \mathrm{~Pa}, C R H_{0}=0.75$, $C R H_{1}=0.95, C R H_{2}=0.95$.

ComputeCriticalRelativeHumidity, ComputeCriticalRelativeHumidity_extended

1.3.2 Cloud Fraction

The cloud fraction $C F$ is computed using $C R H$, by one of the following formulae (one may refer to [1, pages 48-49]):

$$
C F_{k}= \begin{cases}0.34\left(\frac{h_{k}-C R H}{1-C R H}\right) & , \quad z_{k}<P B L H \tag{19}\\ \left(\frac{h_{k}-C R H}{1-C R H}\right)^{2} & , \quad z_{k}>P B L H\end{cases}
$$

In an alternative and simplified parameterization, one uses the second formula for all vertical levels.

ComputeCloudFraction

1.3.3 Cloudiness

The parameterization is similar to that of CMAQ model ([1]). One considers three layers and thus low, medium and high cloudinesses. The layer limits are determined by the two given pressures $P_{l i m, 0}$ and $P_{l i m, 1}$. In each layer, the clouds are contained within the levels $k_{\text {base }}$ (included) and $k_{\text {top }}$ (excluded), with $k_{\text {base }}<k_{\text {top }}$. $k_{\text {base }}$ is the first layer (starting from the ground) where $C F$ reaches 50% of its maximum value along the vertical column and
in the low, medium or high cloud-layer, and $k_{t o p}$ is the first above $k_{\text {base }}$ where $C F$ is less than this threshold. Finally, the low, medium and high cloudinesses are computed with:

$$
\begin{equation*}
\mathcal{N}=\frac{\sum_{k_{\text {base }}}^{k_{\text {top }}-1} C F_{k} \Delta z_{k}}{\sum_{k_{\text {base }}}^{k_{\text {top }}-1} \Delta z_{k}} \tag{20}
\end{equation*}
$$

ComputeCloudiness

1.3.4 Clouds basis height

The height $C H$ of the basis of clouds is

1. at the first level k where the relative humidity exceeds the critical relative humidity, or
2. given by the base of the clouds as it appears when the cloudiness is computed ($k_{\text {base }}$ in section 1.3.3).

ComputeCloudHeight

1.4 Attenuation

The attenuation \mathcal{A} measures the decrease in the photolysis rates of chemical reactions when solar radiation is partially absorbed by clouds. The photolysis rates should be multiplied by \mathcal{A}.

1.4.1 "RADM" parameterization

AtmoData implements the parameterization from [2, 5]. The photolysis rates J become:

$$
J_{\text {below }}=\mathcal{A}_{\text {below }} J_{\text {clear }}
$$

below the clouds, and

$$
J_{\text {above }}=\mathcal{A}_{\text {above }} J_{\text {clear }}
$$

above the clouds, to take in account the enhancement in photolysis rates due to the reflection of radiations. The attenuation coefficients are computed with:

$$
\begin{gather*}
\mathcal{A}_{\text {below }}=1-\operatorname{cfrac}(1-1.6 \operatorname{Tr} \cos Z) \tag{21}\\
\mathcal{A}_{\text {above }}=1+\operatorname{cfrac}(1+(1-\operatorname{Tr}) \cos Z) \tag{22}
\end{gather*}
$$

where cfrac is the cloud coverage fraction (computed, with the sum of medium and high cloudinesses, as $\left.\min \left(1, \mathcal{N}_{\text {medium }}+\mathcal{N}_{\text {high }}\right)\right), Z$ is the zenith angle, and Tr is the cloud transmissivity, calculated with:

$$
\begin{equation*}
\operatorname{Tr}=\frac{5-e^{-\tau}}{4+3(1-f) \tau} \tag{23}
\end{equation*}
$$

where f represents the scattering phase function assymmetry factor, set to 0.86 , and τ the cloud optical depth, following an empirical formula from [11]:

$$
\begin{equation*}
\log (\tau)=0.2633+1.7095 \ln (\log L W P) \tag{24}
\end{equation*}
$$

where $L W P$ is the liquid water path, which is a function of the liquid water content: $L W P=L W C \Delta z$, and Δz is the cloud thickness.

The attenuation coefficients are computed from the top to the bottom. Until $\tau_{k}<0.5, T r_{k}$ is set to 1 and \mathcal{A}_{k} is computed with the equation (21). Below the clouds and if $\tau_{k}>0.5$, equations (23) and (22) are used. Inside clouds, the attenuation coefficients are linearly interpolated..

ComputeAttenuation_LWC

1.4.2 ESQUIF parameterization

This parameterization was developped during the ESQUIF campaign ([3]) with measurements of the photolysis rates for NO_{2} :

$$
\begin{equation*}
\mathcal{A}=\left(1-a \mathcal{N}_{\text {high }}\right)\left(1-b \mathcal{N}_{\text {medium }}\right) e^{-c B} \tag{25}
\end{equation*}
$$

with:

$$
B=\frac{\int_{z=0}^{z<1500 m} \min (0 ., h(z)-0.7)}{\int_{z=0}^{z<1500 m} 1-0.7}
$$

and h is piecewise linear.
Note that the attenuation coefficients do not depend on the altitude.

ComputeAttenuation_ESQUIF

2 Vertical diffusion

The vertical diffusion coefficient K_{z} is computed in AtmoData using two parameterizations respectively introduced in [4] and [12] (the latter is especially designed for models with a low vertical resolution). Notice that K_{z} is provided at the interfaces of the vertical grid.

2.1 Louis' parameterization

For each vertical cells, the stability function F is first calculated:

$$
F\left(R i_{k}\right)= \begin{cases}\left(1+3 B R i_{k} \sqrt{1+D R i_{k}}\right)^{-1} & R i_{k} \geq 0 \tag{26}\\ 1-3 B R i_{k}\left(1+\frac{3 B C l_{k_{\text {interf }}}{ }^{2}}{\left(z_{\left.k_{\text {interf }}+z_{0}\right)^{2}}\right.} \sqrt{\frac{\left|R i_{k}\right|}{27}}\right)^{-1} & , \quad R i_{k}<0\end{cases}
$$

where $R i$ is the Richardson number (refer to section 1.2.7), and $l_{k_{\text {interf }}}$ is the mixing length at level $k_{\text {interf }}$:

$$
\begin{equation*}
l_{k_{\text {interf }}}=\frac{\kappa z_{k_{\text {interf }}}}{1+\frac{\kappa z_{k_{\text {inter } f}}}{\lambda}} \tag{27}
\end{equation*}
$$

κ is the Von Kármán constant set to $0.40, \lambda$ is the asymptotic mixing length, set to 100 m . The default values of the other parameters are:

$$
B=C=D=5 \text { and } z_{0}=1
$$

In addition, a threshold value $R i_{t}\left(R i_{k}>R i_{t} \Longrightarrow R i_{k}=R i_{t}\right)$ for the Richardson number is computed following [8,9]:

$$
\begin{equation*}
R i_{t}=a\left(\frac{\Delta z_{k}}{\Delta z_{0}}\right)^{b} \tag{28}
\end{equation*}
$$

with $a=0.115, b=0.175$ and $\Delta z_{0}=0.01$, by default.
Finally

$$
\begin{equation*}
K_{z, k_{\text {interf }}}=l_{k_{\text {interf }}}{ }^{2} F\left(R i_{k}\right)\left\|\frac{\partial\left(U_{k}, V_{k}\right)}{\partial z}\right\|_{2} \tag{29}
\end{equation*}
$$

where $\frac{\partial\left(U_{k}, V_{k}\right)}{\partial z}$ is approximated with first-order finite differences.

> ComputeLouisKz

2.2 Troen's \& Mahrt's parameterization

2.2.1 K_{z}

K_{z} is computed with the following formula

$$
\begin{equation*}
K_{z, k_{\text {interf }}}=u_{*} \kappa z_{k_{\text {interf }}} \Phi_{m, k_{\text {interf }}}-1\left(1-\frac{z_{k_{\text {interf }}}}{P B L H}\right)^{p} \tag{30}
\end{equation*}
$$

u_{*} is the surface friction velocity and $\Phi_{m k}$ the nondimensional shear. In stable conditions, it is computed as

$$
\begin{equation*}
\Phi_{m, k_{\text {interf }}}=1+4.7 \frac{z_{k_{\text {interf }}}}{L M O} \tag{31}
\end{equation*}
$$

LMO being the Monin-Obukhov length. In unstable conditions:

- in the surface layer $(z<\varepsilon P B L H$, with $\varepsilon=0.1)$,

$$
\begin{equation*}
\Phi_{m, k_{\text {interf }}}=\left(1-7 \frac{z_{k_{\text {interf }}}}{L M O}\right)^{-1 / 3} \tag{32}
\end{equation*}
$$

- above the surface layer, Φ_{m} is constant

$$
\begin{equation*}
\Phi_{m}=\frac{u_{*}}{w_{s}} \tag{33}
\end{equation*}
$$

w_{s} is the velocity scale given by

$$
\begin{equation*}
w_{s}=\left(u_{*}^{3}+7 \varepsilon \kappa w_{*}^{3}\right)^{1 / 3} \tag{34}
\end{equation*}
$$

where w_{*} is the convective velocity scale:

$$
\begin{equation*}
w_{*}=\left(\frac{g Q_{0}}{T_{2 m}} h\right)^{1 / 3} \tag{35}
\end{equation*}
$$

$T_{2 m}$ being the temperature at 2 m above the ground and Q_{0} the surface sensible heat flux.

The exponent p is set to 2 , but its value can be modified to adjust the vertical profile of K_{z} (see the discussion in [12]).

ComputeTroenMahrtKz

2.2.2 PBLH

Troen \& Mahrt propose to compute PBLH so that it satisfies:

$$
\begin{equation*}
P B L H=R i_{c} \frac{T_{s r f} \mathcal{W}^{2}(P B L H)}{g\left(\theta(P B L H)-\theta_{s}\right)} \tag{36}
\end{equation*}
$$

$R i_{c}$ is the critical Richardson number (set to 0.21 by default), θ is the potential temperature, θ_{s} is the potential temperature of the air near the surface. θ_{s} is estimated as the potential temperature θ_{0} in the first layer plus a scaled virtual temperature excess θ_{e} :

$$
\theta_{s}=\theta_{0}+\theta_{e}
$$

with

$$
\theta_{e}=C \frac{Q_{0}}{w_{s}}
$$

C is a coefficient, usually set to 6.5 , and the velocity scale w_{s} is given by equations (34) and (35). In AtmoData, one searches for the lowest level k_{s} (starting from the first layer) where

$$
\begin{equation*}
\theta_{k_{s}} \geq \theta_{s}+R i_{c} \frac{T_{s r f} \mathcal{W}_{k_{s}}{ }^{2}}{g z_{k_{s}}} \tag{37}
\end{equation*}
$$

Then one performs the following interpolation:

$$
\begin{equation*}
P B L H=z_{k_{s}-1}+\frac{-\Delta_{k_{s}-1}}{\Delta_{k_{s}}-\Delta_{k_{s}-1}}\left(z_{k_{s}}-z_{k_{s}-1}\right) \tag{38}
\end{equation*}
$$

with

$$
\Delta_{k}=\theta_{k}-\left(\theta_{s}+R i_{c} \frac{T_{s r f} \mathcal{W}_{k}^{2}}{g z_{k}}\right)
$$

An additional parameterization is based on the Richardson number. $P B L H$ is determined by the first level where the Richardson number $R i$ becomes greater than its critical value $R i_{c}$. If

$$
k_{c}=\min \left\{k \mid R i_{k}>R i_{c}\right\}
$$

then

$$
P B L H=z_{k_{c}-1}+\frac{R i_{c}-R i_{k_{c}-1}}{R i_{k_{c}}-R i_{k_{c}-1}}\left(z_{k_{c}}-z_{k_{c}-1}\right)
$$

ComputeBoundaryLayerHeight_Richardson,
ComputeBoundaryLayerHeight_TM

3 Deposition velocities

The deposition velocities are assumed to be in the form:

$$
\begin{equation*}
V_{d}=\frac{1}{R_{a}+R_{b}+R_{c}} \tag{39}
\end{equation*}
$$

V_{d} is in $\mathrm{m} \cdot \mathrm{s}^{-1} . R_{a}$ is the aerodynamic resistance, R_{b} is the quasi-laminar sublayer resistance, and R_{c} is the canopy resistance. In general the efforts are dedicated to the calculation of R_{c}.

$3.1 \quad R_{a}$

The value of R_{a} can be either diagnosed according to wind and stability, or parameterized with the momentum flux or the heat flux (function of the Richardson number).

3.1.1 Diagnosis with the drag coefficient

The (rough) formula for R_{a} is

$$
\begin{equation*}
R_{a}=\frac{1}{C_{D} \max (0.1, \mathcal{W})} \tag{40}
\end{equation*}
$$

\mathcal{W} is the wind module and C_{D} is the drag coefficient of momentum. It is computed with

$$
\begin{equation*}
C_{D}=r_{0} \psi \tag{41}
\end{equation*}
$$

and

$$
r_{0}=\frac{\kappa^{2}}{\ln \frac{25}{Z_{r}}}
$$

Z_{r} is the roughness height. ψ is the stability function:

$$
\psi= \begin{cases}1-9.4 \frac{R i}{1+r_{1} \sqrt{-R i}} & , \quad R i<0 \tag{42}\\ (1+4.7 R i)^{2} & , \quad R i>0\end{cases}
$$

with

$$
r_{1}=9.4 \times 7.4 r_{0} \sqrt{\frac{25}{Z_{r}}}
$$

The Richardson number is taken at the surface.
ComputeRa_drag

3.1.2 Using the momentum flux

First, to estimate the momentum flux, we introduce:

$$
f_{m}= \begin{cases}1-2 b_{1} \frac{R_{i}}{1+3 c \sqrt{-R i}} & , \quad R i<0 \tag{43}\\ \left(1+2 b_{1} \frac{R_{i}}{\sqrt{1+d_{1} R i}}\right)^{-1} & , \quad R i>0\end{cases}
$$

where $b_{1}=d_{1}=5$. The value of c is more complicated:

$$
c=b_{1} c_{1} A_{u} A_{t} \sqrt{1-\frac{Z_{t}}{z_{0}+Z_{t}}}\left(\left(\frac{z_{0}+Z_{t}}{Z_{t}}\right)^{1 / 3}-1\right)^{3 / 2}
$$

where $c_{1}=5$ and Z_{t} is the roughness length for heat assumed to be equal to $\frac{Z_{r}}{10}$.

$$
A_{u}=\frac{\kappa}{\ln \left(\frac{z_{0}+Z_{r}}{Z_{r}}\right)}
$$

and A_{t} has the same expression where Z_{r} is replaced with Z_{t}.
Then

$$
\begin{equation*}
R_{a}=\left(A_{u}{ }^{2} f_{m} \mathcal{W}\right)^{-1} \tag{44}
\end{equation*}
$$

ComputeRa_momentum

3.1.3 Using the heat flux

The heat flux is

$$
f_{h}= \begin{cases}1-3 b_{1} \frac{R_{i}}{1+3 c \sqrt{-R i}} & , \quad R i<0 \tag{45}\\ \left(1+3 b_{1} \frac{R_{i}}{1+d_{1} R i}\right)^{-1} & , \quad R i>0\end{cases}
$$

The coefficients b_{1}, c and d_{1} are the same as for the momentum flux.
Then

$$
\begin{equation*}
R_{a}=\left(A_{u} A_{t} f_{h} \mathcal{W}\right)^{-1} \tag{46}
\end{equation*}
$$

ComputeRa_heat

$3.2 \mathrm{R}_{\mathrm{b}}$

R_{b} can also be diagnosed as R_{a}, or is computed as function of the friction velocity.

3.2.1 Diagnosis with the drag coefficient

The formula is

$$
\begin{equation*}
R_{b}=\frac{2}{\kappa}\left(\frac{\nu \sqrt{M_{i} / 18}}{D_{e} \operatorname{Pr}}\right)^{2 / 3} \frac{1}{C_{D} \max (0.1, \mathcal{W})} \tag{47}
\end{equation*}
$$

where ν is the kinematic viscosity of air, set to $0.15, M_{i}$ is the molar mass of the species for which R_{b} is calculated, D_{e} is the molecular diffusivity of water, set to 0.25 , and Pr is the Prandtl number, set to 0.74 .

ComputeRb_drag

3.2.2 Using the friction velocity

In this case

$$
\begin{equation*}
R_{b}=\frac{1}{\kappa u_{*}}\left(\frac{S c(s)}{P r}\right)^{2 / 3} \tag{48}
\end{equation*}
$$

where $S c(s)$ is the Schmidt number for species s, which is the ratio of the kinematic viscosity of air upon the molecular diffusivity D_{s} of the species.

$$
S c(s)=\frac{\nu}{D_{s}}
$$

The formula 48 is multiplied by two in presence of vegetation.
ComputeRb_friction

$3.3 \quad \mathrm{R}_{\mathrm{c}}$

Two parameterizations are proposed to compute R_{c} for a given species $s . H_{s}$ is the Henry constant of this species, f_{s} its reactivity and D_{s} its molecular diffusivity.

3.3.1 Wesely's parameterization

Warning: in this section, temperatures are in degrees Celsius.
This parameterization is described in [14]. R_{c} is divided into four parallel resistances:

$$
\begin{equation*}
\frac{1}{R_{c}}=\frac{1}{R_{s t o m}+R_{m}}+\frac{1}{R_{l u}}+\frac{1}{R_{d c}+R_{c l}}+\frac{1}{R_{a c}+R_{g s}} \tag{49}
\end{equation*}
$$

- $R_{\text {stom }}$ is the stomatal resistance, computed with

$$
\begin{equation*}
R_{\text {stom }}=\operatorname{Ri}\left(1+\frac{200}{S R+0.1}\right)^{2} \frac{400}{T_{s r f}\left(40-T_{\text {srf }}\right)} \frac{D_{s}}{D_{e}} \tag{50}
\end{equation*}
$$

if $0^{\circ} \mathrm{C}<T_{s r f}<40^{\circ} \mathrm{C}$. Otherwise it is set to $\infty . T_{s r f}$ is the surface temperature, and $S R$ the solar radiation.

- R_{m} is the mesophyll resistance

$$
\begin{equation*}
R_{m}=\frac{1}{H_{s} / 3000+100 f_{s}} \tag{51}
\end{equation*}
$$

- $R_{l u}$ is the cuticle resistance

$$
\begin{equation*}
R_{l u}=\frac{R_{L U C}}{10^{-5} H_{s}+f_{s}} \tag{52}
\end{equation*}
$$

where $R_{L U C}$ is the leaf cuticle resistance for the current land cover ($L U C$ means "land use coverage"). Note that typical values of $R_{L U C}$ are provided in [14].

- $R_{d c}$ is the buoyant convection (at sunlight) resistance

$$
\begin{equation*}
R_{d c}=\frac{100}{1+\frac{1000}{S R+10}} \tag{53}
\end{equation*}
$$

- Finally $R_{c l}$, (the resistance of the exposed surfaces in the lowest structures above the ground) and $R_{g s}$ (resistance to uptake at the ground) are computed as function of the values for O_{3} and SO_{2} (notably provided in [14]):

$$
\begin{equation*}
\frac{1}{R_{c l, g s}^{s}}=\frac{\alpha_{s}}{R_{c l, g s}^{O_{3}}}+\frac{\beta_{s}}{R_{c l, g s}^{S O_{2}}} \tag{54}
\end{equation*}
$$

- $R_{a c}$ (for transfers that depend only on the canopy height) is given in tables (in [14]).

ComputeWesely

3.3.2 Zhang's parameterization

Warning: in this section, temperatures are in degrees Celsius.
A detailed description of this parameterization may be found in [15]. The whole resistance is

$$
\begin{equation*}
\frac{1}{R_{c}}=\frac{1-W_{\text {st }}}{R_{\text {stom }}+R_{m}}+\frac{1}{R_{c u t}}+\frac{1}{R_{a c}+R_{g}} \tag{55}
\end{equation*}
$$

- $W_{s t}$ is the fraction of stomatal blocking, which is added to the model in presence of dew or rain

$$
\left\{\begin{array}{lll}
0 & , & S R \leq 200 \mathrm{~W} \cdot \mathrm{~m}^{-2} \tag{56}\\
\frac{S R-200}{800} & , & 200<S R \leq 600 \mathrm{~W} \cdot \mathrm{~m}^{-2} \\
0.5 & , & 600<S R
\end{array}\right.
$$

- $R_{\text {stom }}$ is the stomatal resistance. His parameterization is quite complicated

$$
\begin{equation*}
R_{s t o m}=\left(G_{s}(P A R) f_{c r}(T) f_{c r}(\mathcal{D}) f_{c r}(\psi) \text { frac }_{s} D_{e}\right)^{-1} \tag{57}
\end{equation*}
$$

First, G_{s} is the unstressed canopy stomatal conductance, depending on the photosynthetically active radiations (PAR). It may be computed as proposed in [16], through the formula

$$
\begin{equation*}
G_{s}(P A R)=\frac{F_{\text {sun }}}{r_{s t}\left(P A R_{\text {sun }}\right)}+\frac{F_{\text {shade }}}{r_{s t}\left(P A R_{\text {shade }}\right)} \tag{58}
\end{equation*}
$$

$F_{\text {sun }}$ and $F_{\text {shade }}$ are the total sunlit and shaded leaf area indexes given by:

$$
\begin{gathered}
F_{\text {sun }}=\left(1-e^{\frac{L A I}{2 \cos Z}}\right) 2 \cos Z \\
F_{\text {shade }}=L A I-F_{\text {sun }}
\end{gathered}
$$

Z is the zenith angle, and LAI the leaf area index (given in the tables). If $Z>90^{\circ}, F_{\text {sun }}$ and $F_{\text {shade }}$ are set to 0 .
$r_{s t}$ is the unstressed leaf stomatal resistance, given by equation 59 , depending on $P A R_{\text {sun }}$ and $P A R_{\text {shade }}$, the PAR received by sunlit and shaded leaves (equations 60 and 61):

$$
\begin{equation*}
r_{s t}=r_{s t \min }\left(1+\frac{b_{r s}}{P A R}\right) \tag{59}
\end{equation*}
$$

$r_{\text {stmin }}$ depends on the LUC category, and $b_{r s}$ is an empirical constant. Both are given in tables.
When $L A I<2.5$ or $S R<200$ W.m ${ }^{-2}$

$$
\begin{align*}
P A R_{\text {shade }}= & R_{\text {diff }} e^{\frac{1}{2} L A I^{0.7}} \\
& +0.07 R_{d i r}(1.1-0.1 L A I) e^{-\cos Z} \\
P A R_{\text {sun }}= & R_{\text {dir }} \frac{\cos \alpha}{\cos Z}+P A R_{\text {shade }} \tag{60}
\end{align*}
$$

otherwise

$$
\begin{align*}
P A R_{\text {shade }}= & R_{d i f f} e^{\frac{1}{2} L A I^{0.8}} \\
& +0.07 R_{d i r}(1.1-0.1 L A I) e^{-\cos Z} \\
P A R_{\text {sun }}= & R_{\text {dir }}^{0.8} \frac{\cos \alpha}{\cos Z}+P A R_{\text {shade }} \tag{61}
\end{align*}
$$

$R_{d i f f}$ and $R_{d i r}$ are the downward visible radiation fluxes above the canopy from diffuse and direct-beam radiations, respectively. They are computed following [13]. α is the angle between the leaves and the sun, and has a mean value of 60° for a canopy assumed to have a spherical leaf angle distribution.
In equation 57, the $f_{c r}$ factors are the conductance-reducing effects of temperature T, water-vapor-pressure deficit \mathcal{D} and water stress ψ, given by:

$$
\begin{equation*}
f_{c r}(T)=\frac{T-T_{\min }}{T_{o p t}-T_{\min }}\left(\frac{T_{\max }-T}{T_{\max }-T_{o p t}}\right)^{b_{t}} \tag{62}
\end{equation*}
$$

with $b_{t}=\frac{T_{\max }-T_{o p t}}{T_{\text {opt }}-T_{\min }} . T_{\min }, T_{\max }$ and $T_{o p t}$ depend on the LUC category, and are provided in tables.

$$
\begin{equation*}
f_{c r}(\mathcal{D})=1-b_{v p d} \mathcal{D} \tag{63}
\end{equation*}
$$

with $\mathcal{D}=\frac{P_{\text {vapor }}^{s a t}-P_{\text {vapor }}}{1000} . b_{v p d}$ is the water-vapor-pressure-deficit constant, given in tables. $P_{\text {vapor }}^{s a t}$ and $P_{\text {vapor }}$, the saturation and ambient water vapor pressure, are computed with:

$$
\begin{gathered}
P_{\text {vapor }}=\frac{q_{s r f} P_{s r f}}{q_{s r f}+0.622\left(1-q_{s r f}\right)} \\
\quad P_{\text {vapor }}^{\text {sat }}=610.78 e^{\frac{17.2694 T_{s r f}}{T_{\text {srf }+237.29}}}
\end{gathered}
$$

And

$$
\begin{equation*}
f_{c r}(\psi)=\frac{\psi-\psi_{c_{2}}}{\psi_{c_{1}}-\psi_{c_{2}}} \tag{64}
\end{equation*}
$$

with $\psi=-0.72-0.0013 S R$ in presence of tall vegetation. Otherwise $\psi=102\left(-0395-0.043 T_{s r f}\right)$. If $\psi>\psi_{c_{1}}$ (no water potential stress), $f_{c r}(\psi)$ is set to 1 .
Note that if the temperature is out of the limits $T_{\min }$ and $T_{\max }$ (usually at night), $R_{s t}$ is set to ∞.

- The mesophyll resistance R_{m} is given in the tables (as function of the species - refer to [16]).
- $R_{a c}$, the aerodynamic resistance in canopy is computed with

$$
\begin{equation*}
R_{a c}=\frac{R_{a c 0} L A I^{1 / 4}}{u_{*}{ }^{2}} \tag{65}
\end{equation*}
$$

where the reference value $R_{a c 0}$ is to be found in tables, and depends on the LUC category.

- Finally the ground resistance R_{g} and the cuticular resistance $R_{c u t}$ are computed with equation 54 .
Meanwhile, if $T_{s r f}<-1^{\circ} \mathrm{C}$, they are multiplied by an empirical coefficient: $e^{-0.2\left(1+T_{s r f}\right)}$.

ComputeZhang

4 Surface emissions

The surface emissions are divided in two parts: the anthropogenic emissions, that come from human activities (transport, industry, etc.), and the biogenic emissions, which are emitted by the vegetation.

4.1 Anthropogenic emissions

They are interpolated from $\mathrm{EMEP}^{\dagger 2}$ data to a grid with fixed steps along latitude and longitude. The EMEP emissions are adjusted so that, within a given EMEP cell, the ratios of urban emissions and forest emissions upon remaining emissions are equal to 1.6 and 1.2 respectively. They are also multiplied by monthly, daily (especially to adjust the saturday and sunday emissions) and hourly factors. The chemical species are handled as advocated in [7].

> ReadEmep, EmepToPolair, SpeciationAggregation, GridCorrespondences,
> ComputeVerticalDistribution

[^1]
4.2 Biogenic emissions

They are computed for three species: isoprene, terpenes and NO. As proposed in [10], the biogenic emissions are computed as follows:

$$
\begin{equation*}
E_{s, i, j}=\sum_{c=1}^{N_{c}} \gamma_{s, i, j}(c) d(c) E F_{s}(c) L U C_{i, j}(c) \tag{66}
\end{equation*}
$$

where N_{c} is the number of LUC classes, $d(c)$ is the foliar biomass density of the class $c, E F_{s}(c)$ is the emission factor of the species s for the class c, and $L U C_{i, j}(c)$ is the proportion (in $[0,1]$) of the class c in the cell. $\gamma_{s, i, j}(c)$ is a correction factor depending on s, c, the temperature and the PAR in the cell (i, j).

For isoprene, $\gamma=c_{l} * c_{t}$, with

$$
c_{l}=\frac{\alpha c_{l 1} P A R}{\sqrt{1+\alpha^{2} P A R^{2}}}
$$

where $\alpha=0.0027$ and $c_{l 1}=1.066$. And

$$
c_{t}=\frac{e^{\frac{c_{t 1}\left(T_{s r f}-T_{r}\right)}{R T_{r} T_{s r f}}}}{1+e^{\frac{c_{2}\left(T_{s r f}-T_{m}\right)}{R T_{r} T_{s r f}}}}
$$

where $T_{r}=303 \mathrm{~K}, T_{m}=314 \mathrm{~K}, c_{t 1}=95,000$ and $c_{t 2}=230,000 . T_{s r f}$ is the surface temperature and R the gas constant.

For terpenes, $\gamma=e^{0.09\left(T_{s r f}-T_{r}\right)}$.
For NO $\gamma=e^{0.071 T_{r}^{N O}}$ where

$$
T_{r}^{N O}= \begin{cases}0.67\left(T_{\text {srf }}-273.15\right)+8.8 & , \quad E F_{N O, c}=0.9 \\ 0.84\left(T_{\text {srf }}-273.15\right)+3.6, & \text { otherwise }\end{cases}
$$

One can get the emission rates, too:

$$
\begin{equation*}
E R_{s i, j}=\sum_{c=1}^{N_{c}} d(c) E F_{s}(c) L U C_{i, j}(c) \tag{67}
\end{equation*}
$$

```
ComputeBiogenicEmissions, ComputeBiogenicRates
```


References

[1] D. W. Byun and J. K. S. Ching, eds., Science algorithms of the EPA models-3 community multiscale air quality (CMAQ) modeling system, EPA, 1999.
[2] J. Chang, R. Brost, I. Isaken, S. Madronich, P. Middleton, W. Stockwell, and C. Walcek, A three-dimensional eulerian acid deposition model: physical concepts and formulation, Journal of Geophysical Research, 92 (1987), pp. 14,681-14,700.
[3] ESQUIF, Étude et simulation de la qualité de l'air en île de France rapport final, June 2001.
[4] J.-F. Louis, A parametric model of vertical eddy fluxes in the atmosphere, Boundary-Layer Meteorology, 17 (1979), pp. 187-202.
[5] S. Madronich, Photodissociation in the atmosphere: 1. actinic flux and the effects of ground reflections and clouds, Journal of Geophysical Research, 92 (1987), pp. 9,740-9,752.
[6] V. Mallet and B. Sportisse, Data processing and parameterizations in atmospheric chemistry and physics: the AtmoData library, Submitted to Atmospheric Environment, (2005).
[7] P. Middleton, W. R. Stockwell, and W. P. L. Carter, Aggregation and analysis of volatile organic compound emissions for regional modeling, Atmospheric Environment, 24A (1990), pp. 1,107-1,133.
[8] T. E. Nordeng, Parameterization of physical processes in a threedimensional numerical weather prediction model, Tech. Rep. 65, Norwegian Meteorological Institute, 1986.
[9] R. A. Pielke, Mesoscale meteorological modeling, Academic Press, 2nd ed., 2002.
[10] D. Simpson, W. Winiwarter, G. Börjesson, S. Cinderby, A. Ferreiro, A. Guenther, C. N. Hewitt, R. Janson, M. A. K. Khalil, S. Owen, T. E. Pierce, H. Puxbaum, M. Shearer, U. Skiba, R. Steinbrecher, L. Tarrasón, and M. G. Öquist, Inventorying emissions from nature in Europe, Journal of Geophysical Research, 104 (1999), pp. 8,113-8,152.
[11] G. L. Stephens, Radiation profiles in extended water clouds. II: parameterization schemes, Journal of the Atmospheric Sciences, 35 (1978), pp. 2,123-2,132.
[12] I. Troen and L. Mahrt, A simple model of the atmospheric boundary layer; sensitivity to surface evaporation, Boundary-Layer Meteorology, 37 (1986), pp. 129-148.
[13] A. Weiss and J. M. Norman, Partitioning solar radiation into direct and diffuse, visible and near-infrared components, Agricultural and Forest Meteorology, 34 (1985), pp. 205-213.
[14] M. L. Wesely, Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmospheric Environment, 23 (1989), pp. 1,293-1,304.
[15] L. Zhang, J. R. Brook, and R. Vet, A revised parameterization for gaseous dry deposition in air-quality models, Atmospheric Chemistry and Physics, 3 (2003), pp. 2,067-2,082.
[16] L. Zhang, M. D. Moran, P. A. Makar, J. R. Brook, and S. Gong, Modelling gaseous dry deposition in AURAMS: a unified regional air-quality modelling system, Atmospheric Environment, 36 (2002), pp. 537-560.

[^0]: ${ }^{\dagger 1}$ http://www.enpc.fr/cerea/polair3d/

[^1]: ${ }^{\dagger 2}$ Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe -www.emep.int/

