Polyphemus 1.11
User’s Guide

CEREA (ENPC — EDF R&D)

Meryem Ahmed de Biasi, Vivien Mallet,
Pierre Tran, Iréne Korsakissok,

Damien Garaud, Edouard Debry, Lin Wu,
Marilyne Tombette, Victor Winiarek,
Régis Briant, Youngseob Kim,

Shupeng Zhu, Florian Couvidat

http://cerea.enpc.fr/polyphemus/
polyphemus-help@lists.gforge.inria.fr

http://cerea.enpc.fr/polyphemus/
polyphemus-help@lists.gforge.inria.fr

Contents

1 Introduction and Installation 11
1.1 Polyphemus Overview it 11
1.2 Requirements oL 13

1.2.1 Operating Systems and Compilers 13
1.2.2 External Libraries and Python Modules 14
1.2.3 Parallel Computing. 14
1.3 Imstallation L 16
1.3.1 Main instructions L Lo 16
1.3.2 AtmoPy 17
1.3.3 NewRan oo e 17
1.3.4 WGRIB 17
1.3.5 ISORROPIA e 18
1.3.6 ISORROPIA_AEC e 18

2 Using Polyphemus 19
2.1 Remark 0 e 19
2.2 Guide Overview e e 19
2.3 Compiling the Programs 21

2.3.1 Compiling with SCons 21
2.3.2 Compiling for Parallel Computing, 24
2.4 Editing your Configuration Files 26
2.5 Running the Programs L 28
2.5.1 Running a Program from Command Line 28
2.5.2 Sharing Configuration oL 29
2.5.3 Notes about the Models 30
2.5.4 Running a parallelized program 31
2.6 Setting Up a Simulation o 33
2.6.1 Suggested Directory Treeo 34
2.6.2 Roadmaps e e e e 34
2.6.3 Mandatory Data in Preprocessing 36
2.6.4 Mandatory Data for Models oL 37
2.6.5 Models / Modules Compatibilities 39
2.7 Checking Results e 40
2.7.1 Checking the output file size of preprocessing programs 40
2.7.2 Checking the output file size of processing programs 42
2.7.3 Checking the values L o 42
2.8 Useful Tools o e 42
2.8.1 Information about Binary Files, 42
2.8.2 Differences between Two Binary Files 43

3

CONTENTS

2.83 MMS5 Files 0 o e 44
2.8.4 Script call dates i e e e 47
2.8.5 Other Utilities 48
2.9 Ensemble Generation Lo 49
2.9.1 Requirements L. L e 49
2.9.2 Configuration Files o 49
2.9.3 Quick Start 52
Preprocessing 55
3.1 Remarko 55
3.2 Imtroduction 55
3.2.1 Running Preprocessing Programs 55
3.2.2 Configuration 56
3.2.3 Dates e o7
324 DataFiles. o e 58
3.3 Ground Data L 58
3.3.1 Land Use Cover — GLCF: luc-glcf 58
3.3.2 Land Use Cover - GLC 2000: luc-glcf 59
3.3.3 Land Use Cover — USGS: luc-usgs 61
3.3.4 Conversions: 1uc-convert o et 62
3.3.5 Roughness: roughness L oo 63
3.3.6 LUC for emissions: extract-glcf 64
3.4 Meteorological Fields Lo 64
3.4.1 Programmeteo Lo e 64
342 Program Kz L 68
3.4.3 Program Kz TM e 69
3.4.4 Program MMb-meteo 71
3.4.5 Program MMb-meteo—-castor i e 74
3.4.6 Program WRF-meteo 76
3.5 Deposition Velocities e e e e 78
3.5.1 Programdep 78
3.5.2 Program dep-emberson 80
3.6 Emissions e e e e 80
3.6.1 Mapping Two Vertical Distributions: distribution 81
3.6.2 Anthropogenic Emissions (EMEP): emissions 81
3.6.3 Biogenic Emissions for Polair3D Models: bio 84
3.6.4 Biogenic Emissions for Castor Models: bio-castor. 85
3.6.5 Sea Salt Emissions: sea-salt oo 85
3.7 [Initial and Boundary Conditions, 86
3.7.1 MOZART 4 e 86
3.7.2 MOZART 2 e 87
3.7.3 Boundary Conditions for Castor: bc-inca 90
3.7.4 Boundary Conditions for Aerosol Species: bc-gocart 91
3.8 Preprocessing for Gaussian Modelso oo oL 95
3.8.1 Program discretization 95
3.8.2 Programs gaussian-deposition and gaussian-deposition_aer 97
3.9 Preprocessing for SCRAM aerosol module 106
3.9.1 Composition conversion v v v vt e e e e 106

3.9.2 Coagulation coefficient oo 106

CONTENTS

4 Drivers

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

4.11

BaseDriver

PlumeDriver e e
PuffDriver e
StreetDriver L L e e e e
PlumeMonteCarloDriver e
MonteCarloDriver e e e e e e e
PerturbationDriver
Data Assimilation Drivers

4.8.1
4.8.2
4.8.3
4.8.4
4.8.5

AssimilationDriver
OptimallnterpolationDriver,
EnKFDriver. e

RRSQRTDriver e
FourDimVarDriver

Drivers for the Verification of Adjoint Coding

4.9.1
4.9.2
4.9.3

AdjointDriver
GradientDriver e
Gradient4dDVarDriver

Output Savers

4.10.1
4.10.2
4.10.3
4.10.4
4.10.5
4.10.6
4.10.7
4.10.8
4.10.9

BaseOutputSaver
SaverUnitDomain and SaverUnitDomain_aer
SaverUnitSubdomain and SaverUnitSubdomain_aer
SaverUnitDomain_assimilation
SaverUnitDomain_prediction
SaverUnitNesting and SaverUnitNesting.aer
SaverUnitPoint and SaverUnitPoint_aer
SaverUnit WetDeposition and SaverUnitDryDeposition
SaverUnitWetDeposition_aer and SaverUnitDryDeposition_aer

4.10.10 SaverUnitBackup and SaverUnitBackup_aer
Observation Managers o e

4.11.1
4.11.2

GroundObservationManager L. L s
SimObservationManager oo

4.12 Perturbation Manager L L o

5 Models
5.1 GaussianPlume e

5.2

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

Configuration File: plume.cfg
Source Description: plume-source.dat
Vertical Levels: plume-level.dat
Species: gaussian-species.dato
Meteorological data file: gaussian-meteo.dat
Correction coeflicients file: correction_coefficients.dat

GaussianPlume_aer

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

Configuration File: plume_aer.cfg
Source Description: plume-source aer.dat
Vertical Levels: plume-level.dat
Species: gaussian-species_aer.dat.
Diameters: diameter.dat
Meteorological data: gaussian-meteo.dat

107
107
107
107
108
108
109
109
110
110
111
111
112
113
114
114
115
115
115
115
116
117
117
117
118
118
120
120
121
122
122
122
123

5.3

5.4

2.5

5.6

5.7

5.8
5.9

5.10

5.11

5.12
5.13

5.14

5.15

5.16

CONTENTS

GaussianPuff: Transport, Chemistry and Aerosol 131
5.3.1 Configuration File: puff.cfg 131
5.3.2 Puff Description: puff.dat 132
5.3.3 Vertical Levels, Species and Meteorological data 132
GaussianPufflaer oo 133
5.4.1 Configuration File: puff aer.cfg 134
5.4.2 Source Description: puff aer.dat 134
5.4.3 Vertical Levels, Species, Meteo and Diameters 134
Polair3DTransport 135
5.5.1 Main Configuration File: polair3d.cfg 135
5.5.2 Data Description: polair3d-data.cfg 136
5.5.3 Vertical Levels and Species 138
PolairdDChemistry o e 139
5.6.1 Main Configuration File: polair3d.cfg 139
5.6.2 Data Description: polair3d-data.cfg 140
5.6.3 Vertical Levels and Specieso . 141
Polair3DAerosol 141
5.7.1 Main Configuration File: polair3d.cfg 141
5.7.2 Data Description: polair3d-data.cfg 143
5.7.3 Vertical Levels and Species oo 144
Polair3DChemistryAssimConc oo 144
CastorTransport L 145
5.9.1 Main Configuration File: castor.cfg 145
5.9.2 Data Description: castor-data.cfg 145
5.9.3 Vertical Levels and Species oo 146
CastorChemistry e 146
5.10.1 Main Configuration File: castor.cfg 146
5.10.2 Data Description and Species 146
5.10.3 Chemistry Files 147
PlumelnGrid: Transport, Chemistry and Aerosol 147
5.11.1 Main configuration fileo oo 147
5.11.2 Data description file Lo 148
5.11.3 Puff configuration file: puff.cfg (when GaussianPuff is used) 149
5.11.4 Plume configuration file: plume.cfg (when GaussianPlume is used) . . . 150
StationaryModel oL 150
LagrangianTransport L L Lo 151
5.13.1 Main Configuration File: lagrangian-stochastic.cfg 152
5.13.2 Data Description: lagrangian-stochastic-data.cfg 152
5.13.3 Vertical Levels and Point Emission 153
5.13.4 Noteworthy Remarks about Output Saving 153
Lagrangian Particles L oo 153
5.14.1 ParticleDIFPAR Horker, 154
5.14.2 ParticleDIFPAR _FokkerPlanck 154
Point Emission Management L o oL 154
5.15.1 Continuous emissions o e e e e 155
5.15.2 Puff emissions 155
5.15.3 Temporal emissions 156
5.15.4 Continuous line emission oo 157

Chimere o e e e 157

CONTENTS 7

5.16.1 Installation e 157
5.16.2 Configuration e 158

5.17 StreetNetwork (MUNICH): Transport and Chemistry 159
5.17.1 Main Configuration File: munich.cfg 159
5.17.2 Input data files: intersection.dat and street.dat 159

5.18 Street-in-Grid (SinG): Transport and Chemistry 160
5.18.1 Main Configuration File: street-in-grid.cfg 160

6 Modules 161
6.1 Transport Modules L 161
6.1.1 AdvectionDST3 161
6.1.2 SplitAdvectionDST3 161
6.1.3 GlobalAdvectionDST3 161

6.1.4 DiffusionROS2 161
6.1.5 GlobalDiffusionROS2 161
6.1.6 TransportPPM L 162

6.2 Chemistry Modules L 162
6.2.1 Photochemistry 162
6.2.2 ChemistryRADM 162
6.2.3 ChemistryCastor e 162
6.2.4 Decay e 162

6.3 Aerosol Modules 165
6.3.1 Aerosol SIREAM_SORGAM 165
6.3.2 Aerosol SIREAM H20 167
6.3.3 Aerosol SIREAM_SOAP 168
6.3.4 Aerosol SCRAM_H20 173
6.3.5 Decay e 173

7 Postprocessing 175
7.1 Graphical Output e 175
7.1.1 Installation and Python Modules 175
7.1.2 A Very Short Introduction to Python and Matplotlib. 177
7.1.3 Visualization with AtmoPy L. 179

7.2 Postprocessing for Gaseous Species 182
7.2.1 Configuration File 182
7.2.2 Script evaluation.py« . v oot et e e e 183
7.2.3 Script disp.py - - -« o oo 183

7.3 Postprocessing for Aerosols e 184
7.3.1 Configuration File 184
7.3.2 Script init aerosol.py ot i e e 184
7.3.3 Script graph aerosol.py o u it e 185

7.4 Computation of Aerosol Optical Parameters 185
7.4.1 OPAC Package e 185
7.4.2 Tabulation of a Mie Code 186
7.4.3 Computation of Optical Parameters 186

7.5 Emsemble Forecasting 188
7.5.1 Loading Data: Configuration File and EnsembleData 188
7.5.2 Sequential Aggregationo 190

7.6 Liquid Water Content Diagnosis i 191

7.6.1 Configuration File: water plume.cfg 191

8 CONTENTS

A Polair3D Test-Case 193
A.1 Preparing the Test-Case 193
A.2 Verifying the General Configuration File 194
A.3 Computing Ground Data e 194

A3.1 Land Use Cover it 194
A3.2 Roughness. e e 195
A.4 Computing Meteorological Data L L. 195
A.5 Launching the Simulation, 196
A.5.1 Modifying the Configuration File 196
A.5.2 Modifying the Data File 0 o 196
A.5.3 Modifying Saver File o 197
A5.4 Simulation e e e 197
A.5.5 Checking your results L 197
A.6 Visualizing Results e 197
A.6.1 Modifying Configuration File 197
A.6.2 Using IPython 198

B Gaussian Test-Case 201
B.1 Preprocessing e e e 201
B.2 Discretization 202
B.3 Simulations 202

B.3.1 Plume e e 202
B.3.2 Puff with Aerosol Species o 203
B.3.3 Puff with Line Source 204
B.4 Result Visualization L 205
B.4.1 Gaussian Plume 205
B.4.2 Gaussian Puff with Aerosol Species 206
B.4.3 Gaussian Puff with Line Source 207

C Castor Test-Case 209
C.1 Modifying the General Configuration File 210
C.2 Computing Input Data 210

C.2.1 Land Data e 210
C.2.2 Meteorological Data 210
C.2.3 Anthropogenic Emissions oL 211
C.2.4 Biogenic Emissions oo e 211
C.2.5 Summing Emissions L oo 212
C.2.6 Deposition Velocities e 212
C.2.7 Boundary Conditions 213
C.3 Launching the Simulationo 214
C.3.1 Modifying the Configuration Files 214
C.3.2 Simulation 214
C.3.3 Checking your results 215
C.4 Visualizing the Results o 215

D Lexical Reference of Polyphemus Configuration Files 217
D.1 Definitions e e e e 217
D.2 Flexibility e 217
D.3 Comments oL e 218

D4 Markupso 219

CONTENTS 9

D.5 Sections e e 219
D.6 Multiple Files 220
D.7 Dates e e e 220

D.8 Booleans e 221

10

CONTENTS

Chapter 1

Introduction and Installation

1.1 Polyphemus Overview
Polyphemus | , | is an air-quality modeling system built to manage:

- several scales: local, regional and continental scales;

- many pollutants: from non-reactive species to particulate matter;

- several chemistry-transport models;

- a bunch of advanced methods in data assimilation and ensemble forecasting;

- model integration.

Further details are available in:
Mallet, V., Quélo, D., Sportisse, B., Ahmed de Biasi, M., Debry, E., Korsakissok, I., Wu, L.,
Roustan, Y., Sartelet, K., Tombette, M., and Foudhil, H. (2007). Technical Note: The air qual-
ity modeling system Polyphemus. Atmospheric Chemistry and Physics, 7(20):5,479-5,487

This is the main reference for Polyphemus. Please cite it if you refer to Polyphemus in a publi-
cation, a talk or so.

Polyphemus is made of:

data processing abilities (available in libraries);

a library for physical parameterizations (library AtmoData);

- programs to compute input data to chemistry-transport models;
- chemistry-transport models (Eulerian, Gaussian and Lagrangian);

- drivers, that is, object-oriented codes responsible for driving models in order to perform,
for instance, simulations and data assimilation;

- automatic generation of large ensembles, and uncertainty estimation tools;

- programs to analyze and display output concentrations (primarily based on the library
AtmoPy).

11

12 CHAPTER 1. INTRODUCTION AND INSTALLATION

Polyphemus
Database Data processing libraries
i (AtmoData, SeldonData, ...) v
l DRI VER
. I (¢]
Files Input data processing Files n _ u
o Numerical Statistics
> > P .) L
1w integration P (AtmoPy)
Computes physical fields i (Polair3D) u
t

Physics

T

Libraries with physical
parameterizations
(AtmoData)

T

Figure 1.1: Polyphemus flowchart (preprocessing, model computations, postprocessing).

Its flowchart is shown in Figure 1.1, in which three steps may be identified: (1) preprocess-
ing (interpolations, physical parameterizations), (2) model computations (possibly with data
assimilation or any other method implemented in a driver), (3) postprocessing (comparisons to
measurements, statistics, visualization).

As a consequence, Polyphemus code is organized with the following directories tree:

preprocessing

be: boundary conditions (Mozart 4, Mozart 2, Gocart, INCA);

bio: biogenic emissions (MEGAN);

dep: deposition velocities;

emissions: pollutant emissions (EMEP);

ground: ground data (land use cover, roughness);

ic: initial conditions (Mozart 4, Mozart 2);

meteo: meteorological data (ECMWF, WRF and MMS5, including photolysis rates

data and vertical diffusion);

processing: subdirectories where to find programs for simulations and data assimilation
with related examples of configuration and data files;

postprocessing: programs for comparisons to measurements;

water_plume: liquid water diagnosis in a plume;
optics: computation of aerosol optical parameters;

ensemble: ensemble forecasting;
include

Talos: C++ library to manage configuration files (used everywhere in Polyphemus),
dates and string processing;

SeldonData: C++ library to perform data processing (interpolations, input/output
operations);

1.2. REQUIREMENTS 13

AtmoData: C++ and Fortran library for physical parameterizations and atmospheric
data processing;

atmopy: AtmoPy is a Python library for statistical analysis and visualization;
common: mostly, functions used to parse and manage the arguments of preprocessing
programs;
models: chemistry-transport, Gaussian and Lagrangian models to be used by the
drivers;
modules
common: base modules from which transport, chemistry and aerosol modules
derive;
transport: numerical schemes for advection and diffusion;
chemistry: chemical mechanisms;

aerosol: chemical mechanisms for aerosol species;
driver

assimilation: drivers for data assimilation;
common: a base driver from which all drivers are derived;
observation: observation managers for data assimilation (ground observa-
tions and simulated observations);
optimization: optimization algorithms;
output_saver: modules to save the results of a simulation;
perturbation: management of model perturbations (Monte Carlo);
local: drivers for local scale applications;
uncertainty: drivers that generate perturbed input data;

utils: useful tools, mostly to get information on binary files;
ensemble_generation: tools useful to ensemble generation.

Polyphemus is an open source software distributed under the GNU General Public Li-
cense. It is available at http://cerea.enpc.fr/polyphemus/ or at http://gforge.inria.
fr/projects/polyphemus/. Polyphemus development and support team can be contacted at
polyphemus-help@lists.gforge.inria.fr.

1.2 Requirements

1.2.1 Operating Systems and Compilers

Polyphemus is designed to run under Unix or Linux-based systems. It should be able to run
under Windows. AtmoPy has been tested under Windows and the Eulerian model Polair3D has
been compiled with Microsoft Visual Studio.NET 2003. There is no obvious reason why other
parts of Polyphemus should not work under Windows.

Polyphemus is based on three computer languages: C++, Fortran 77 and Python. There
are also a very few lines of C.

Supported C++ compilers are GNU GCC (G++) 3.x, 4.x and 5.x. GNU GCC 2.x series is
too old to compile Polyphemus. Intel C++ compiler (ICC, versions 7.1, 8.0 and 9.1) should work.
Any other decent C++ compiler (compliant with the standard) should compile Polyphemus. If
not, please report to polyphemus-help@lists.gforge.inria.fr.

http://cerea.enpc.fr/polyphemus/
http://gforge.inria.fr/projects/polyphemus/
http://gforge.inria.fr/projects/polyphemus/
polyphemus-help@lists.gforge.inria.fr
polyphemus-help@lists.gforge.inria.fr

14 CHAPTER 1. INTRODUCTION AND INSTALLATION

Corresponding Fortran compilers are acceptable: GNU G77 3.2, 3.3 and 3.4 and GNU GFor-
tran 4.x and 5.x (take care: GFortran 4.0 and 4.1 are rather slow according to our tests, you
had better to install more recent versions), and Intel Fortran compilers IFC 7.1, IFORT 8.0 and
IFORT 9.1.

Python versions 2.3 to 2.7 are supported.

1.2.2 External Libraries and Python Modules

With regard to software requirements, below is a list of possible requirements (depending on the
programs to be run):

- the C++ library Blitz++ (http://www.oonumerics.org/blitz/): versions 0.6, 0.7, 0.8
and 0.9 are supported. Note that your compiler may exclude a few versions.

- Blas/Lapack (compiled libraries): any recent version.

- NewRan: C++ library for generation of random numbers, from version 2.0. For installa-
tion of NewRan, see Section 1.3.3.

- NetCDF (compiled libraries and headers): C++ library, any version from series 3.x should
work.

- NumPy: any recent version. Make sure that your versions of NumPy and Matplotlib (see
below) are compatible.

- Matplotlib: any recent version and corresponding pylab version (usually, pylab is included
in Matplotlib package). It is recommended to install the corresponding version of Basemap
in order to benefit from AtmoPy map-visualizations. Basemap is a toolkit available on
Matplotlib website (http://matplotlib.sourceforge.net/), but usually not included
in Matplotlib package.

- SciPy: any recent version.
- WGRIB: see Section 1.3.4.

All of them are open source software. Requirements are shown in Table 1.1.

NewRan is not included in Table 1.1 because it is only needed if one performs data assimi-
lation or stochastic Lagrangian simulations. Similarly, WGRIB is only needed for preprocessing
programs preprocessing/meteo/meteo to work and has not been included in Table 1.1.

1.2.3 Parallel Computing

The main Polyphemus modules have been parallelized and support the following parallel com-
puter memory architectures:

- shared memory (with the specification OpenMP 2.5);
- distributed memory (with the standard MPI-1.1);
- hybrid distributed-shared memory (with both openMP and MPT).

They correspond to different use cases:

http://www.oonumerics.org/blitz/
http://matplotlib.sourceforge.net/

1.2. REQUIREMENTS 15

Table 1.1: Polyphemus requirements.
Blitz++ Blas/Lapack NetCDF NumPy Matplotlib SciPy

preprocessing
/bc
/bio
/dep
/emissions
/ground
/ic
/meteo
processing
postprocessing X X X
/water_plume X
/optics X
include
/atmopy X X X

X

Lol e B T A B -

- parallelized modules of advection (with a splitting method), diffusion, chemistry (RACM)
and aerosol can run on a cluster of multi-core nodes where an MPI library is installed (for
instance, LAM/MPT or Open MPI);

- the same modules can be parallelized with OpenMP if your compiler supports it (for
instance, GNU GCC posterior to 4.2 and Intel compiler 9.1);

- if you can not install, on your system, any MPI library or any compiler suite supporting
openMP, you might still exploit some parallelism within the aerosol modules. Indeed, they
supports kind of multi-threading features taking advantage of multi-core POSIX platforms
(see Section 6.3.2 for details).

Which parallelization do fit to your needs?

We decided to give you the choice between several parallel computing alternatives so that there
are more chances one will fit your specific needs:

- MPI is a must have if you want to perform your parallel job on a cluster of processors
that don’t share their memory. But, it can do more. Indeed, it can also take advantage of
multi-core processors, that is processors made of multiple cores that do share their memory.
It is therefore our most versatile alternative for parallel computing. Its main drawbacks
when comparing with the OpenMP alternative are its increased need for memory (each
core might duplicate the whole memory of the job) and its application that is a little less
direct and simple.

- If your compiler supports OpenMP and your computing platform is limited to a unique
multi-core machine, then OpenMP could be your best pick. It is indeed as simple to compile
and run an OpenMP-parallelized program than its serial counterpart. Nevertheless, it is
limited to shared memory architectures: for instance, it could not run on more than one
node of a standard cluster.

- The so-called hybrid OpenMP/MPI alternative looks advantageous as it combines the
strengths of shared and distributed parallel models: it is not limited to a unique multi-
core processor as OpenMP is and it does not need as much as memory as MPI do. You

16 CHAPTER 1. INTRODUCTION AND INSTALLATION

can then give it a try if you are lucky enough to get both installed in your environment
and you feel too limited with the memory available in your hardware.

Performance gains

On our computing platform, both three alternatives gave performances quite equivalent. At
least, performance depends on your compilers and your hardware but it depends also on the job
you are submitting.

You have then to be aware of two things in Polyphemus to better exploit parallelism:

- parallelism operates below the timestep level. The shorter the computation of a timestep
is, the more the overhead induced by parallelism will weight, then the least parallelism
will offer speed-up;

- the computation domain is primarily partitionned along the X-axis, sometimes along the
Y-axis. Therefore, the number of core processing unit you use, should not be larger than
the number of cells along the X-axis.

1.3 Installation

1.3.1 Main instructions

As soon as libraries and compilers are available, Polyphemus is almost installed. First, extract
Polyphemus sources to a given directory. Polyphemus is usually distributed in a .tar, .tgz,
.tar.gz or .tar.bz2 file. These files are extracted with one of these commands:

tar xvf Polyphemus.tar
tar zxvf Polyphemus.tgz
tar zxvf Polyphemus.tar.gz
tar jxvf Polyphemus.tar.bz2

Polyphemus programs must be compiled by the user when needed. SConstruct files are
provided so that program compilation should be easy. makefiles for make are no longer supported.

SCons is a seductive and powerful alternative to make based on the Python language (http:
//www.scons.org/). You may not install it on your system as it is locally installed within the
Polyphemus package you downloaded.

Depending on the paths to the libraries and maybe your compilers, you might need to slightly
modify the SConstruct files or make files. Note that SCons should detect by itself the suitable
compilers available on your platform.

Then, one may compile the program meteo.cpp in this way:

cd Polyphemus/preprocessing/meteo
../../utils/scons.py meteo

Indeed, SCons is installed in Polyphemus/utils/. It could be interesting to install SCons
on your system or locally, so that you would just launch:

scons meteo

A simple way to achieve such a local installation if you work on a GNU /Linux platform is to
modify the configuration file of your shell program. For example, with bash, you could edit your
.bashrc to define scons as an alias for scons.py and add the path to Polyphemus/utils/ in
the PATH environment variable:

http://www.scons.org/
http://www.scons.org/

1.3. INSTALLATION 17

alias scons=’scons.py’
PATH=.:~/Polyphemus/utils:$PATH

Then the program meteo is compiled and can be run. Launch scons.py in order to compile
all programs in a given directory.

Further explanations about the compilation are shown in Section 2.3. It is highly recom-
mended to read them, at least if you experience any problem.

1.3.2 AtmoPy

A special step is required with the Python library AtmoPy. This library makes calls to a C++
program in order to parse configuration files. Follow the steps below to have AtmoPy fully
installed:

cd Polyphemus/include/atmopy/talos
../../../utils/scons.py

Instead of SCons, you can also perform the compiling job manually:
g++ -I../../Talos -o extract_configuration extract_configuration.cpp

You may replace g++ with any supported compiler (see Section 1.2).

1.3.3 NewRan

The library NewRan is required for Kalman algorithms (RRSQRT and ensemble), for Monte
Carlo simulations, for adjoint-model validation to generate random numbers and for the La-
grangian stochastic model. It should be installed in include/newran/. But if you decided to
use SCons, you just can skip this section and install it by typing from include/newran:

../../utils/scons.py -f SConstruct_newran

This should create include/newran/libnewran.a. To complete the installation, you have
to create a directory where the seed values are stored, for instance:

mkdir ~/.newran
cp fm.txt lgm.txt lgm_mix.txt mother.txt mt19937.txt multwc.txt wh.txt ~/.newran/

Recall the path to your seed directory since this is an entry of a configuration file
(processing/assimilation/perturbation.cfg).

1.3.4 WGRIB

WGRIB is a library used to decode GRIB first edition files. It is only necessary if you use
ECMWF meteorological fields, so for programs meteo.cpp. If you use meteorological data from
MM5 or WRF, you do not need this library.

WGRIB homepage can be found at:
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html.

As of version 1.7 of Polyphemus, the source code of WGRIB is directly included in the
distribution package so that you shouldn’t need to download and install it anymore.

Please notice that we just included the version v1.8.0.120. You might find more recent
versions of WGRIB at

ftp://ftp.cpc.ncep.noaa.gov/wdblwe/wgrib/wgrib. tar
but they might not be compatible with Polyphemus.

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

18 CHAPTER 1. INTRODUCTION AND INSTALLATION

1.3.5 ISORROPIA

ISORROPIA ([]) is an aerosol thermodynamics module which is necessary for
aerosol module Aerosol STREAM_SORGAM to work. It is only needed if there are aerosol species
involved.

In that case, you will need sources for ISORROPIA. You can obtain them from its home
page http://isorropia.eas.gatech.edu. The version of ISORROPIA that is supported in
Polyphemus is 1.7 (released on 2009-05-27).

After you obtained and extracted the files, you have to put the files in directory
include/isorropia and rename them as follows:

e ISOCOM.FOR as isocom.f,
e ISOFWD.FOR as isofwd.f,
e ISOREV.FOR as isorev.f

e ISRPIA.INC as isrpia.inc

If you want to use the module Aerosol _SIREAM_SORGAM parallelized with openMP, you should
also apply the related patch:

cd include/isorropia
patch -pl < ../modules/aerosol/isorropia.patch_v1.7_2009-05-27

Note that this patch can be used for gce-4.6 or former. It means that OpenMP can’t be used
for gce-4.7 and later. This will be fixed in a next version of Polyphemus.

1.3.6 ISORROPIA_AEC

Aerosol module Aerosol_SIREAM_AEC requires a modified version of ISORROPIA. You
are advised, if you need it, to copy include/isorropia (created and patched as
explained in Section 1.3.5) as include/isorropia_aec and apply to it the patch
include/modules/aerosol/isorropia_aec.patch_vXXX where XXX is the supported version of
ISORROPIA:

cd include

cp -r isorropia/ isorropia_aec

cd isorropia_aec/

patch -pl < ../modules/aerosol/isorropia_aec.patch_v1.7_2009-05-27

If the patch does not work, you might have a different release of ISORROPIA 1.7. You can
then try with include/modules/aerosol/isorropia_aec.patch_v1l.7 that was related to a
previous release of ISORROPIA 1.7. It is also possible that the encoding of some of the files in
include/isorropia_aec is not adapted to your filesystem. Check it and modify it if necessary.

http://isorropia.eas.gatech.edu

Chapter 2

Using Polyphemus

2.1 Remark

In configurations files, in output logs, and so on, indices start at 0 (as in C++ and Python, not
at 1 as in Fortran).

2.2 Guide Overview

Now that you managed to complete the intallation of Polyphemus, you should be eager to know
what you finally got and how you could use it. Here are some guidelines that might help you
finding your way in this document and save your time. You are also warmly advised to take
advantage of the test cases or training sessions we keep up-to-date on the Polyphemus website.
Nothing will replace practical training.

Where are the programs?

First of all, you might want to select the processing program that is of interest for your own work.
We hope you will find it among off-the-shelf programs we provided in one of the subdirectory of
processing. Program source files can be recognized thanks to their file extension: *.cpp.

What are they doing?

You can get an idea of what a processing program does by looking at its content so that you
can identify the model with its related driver and modules.
For instance, edit processing/photochemistry/polair3d.cpp:

int main(int argc, char** argv)

{

typedef Polair3DChemistry<real, SplitAdvectionDST3<real>,
DiffusionR0S2<real>,
Photochemistry<real> > ClassModel; (1)

BaseDriver<real, ClassModel, BaseOutputSaver<real, ClassModel> >
Driver(argv[1]); (2)

Driver.Run();

19

20 CHAPTER 2. USING POLYPHEMUS

This gives you precious informations about the objects used in the program:

(1) tells you the model used is Polair3DChemistry. It includes the following terms (or mod-
ules), SplitAdvectionDST3, DiffusionR0OS2 and Photochemistry.

(2) indicates that the driver of the model is BaseDriver and that the output will be managed
according to BaseOutputSaver.

In order to know how all these objects work, read their description in the related sections of
the guide. For the example given above:

e section 5.6 Polair3DChemistry of chapter 5 Models;

e sections 6.1.2 SplitAdvectionDST3, 6.1.4 DiffusionROS2, 6.2.1 Photochemistry of chapter
6 Modules;

e section 4.1 BaseDriver of chapter 4 Drivers;

e subsection 4.10.1 BaseOutputSaver of section 4.10 Output Savers.

You now have all the elements you need to choose the processing program that fits your
needs.

How to set up a simulation?

Section 2.6.4 on mandatory data for models along with the sections devoted to the related
preprocessing programs of chapter 3 should help you figure out where to find the raw data you
need and how to preprocess them.

It will then be time to compile the programs you have to use (see section 2.3). For instance,
in processing/photochemistry to compile polair3d.cpp, type:

../../utils/scons.py polair3d

Afterwards, you will have to edit their related configuration files. In the directory of the
program, you should find an example of configuration files from where to start:

e pre or postprocessing program have usually two configuration files. For instance, program
preprocessing/meteo uses general.cfg and meteo.cfg.

e Processing programs have three of them. For instance, processing/photochemistry/polair3d
uses racm.cfg, racm-data.cfg and racm-saver.cfg.

Section 2.4 might be very helpful along with appendix D for the lexical references. As for
the description of the fields that control configuration, look at:

e the section documenting the program if it is a pre or postprocessing program;

e the sections documenting the objects of the programs, be it a driver, an ouptut saver,
a model or a module as previously described. Indeed, all the fields that are specific to
control the behaviour of a given object should be provided in the section it is related to
and possibly in sections of objects from which it is derived.

At this point, the parts of section 2.6 you have not read yet become a must read.

2.3. COMPILING THE PROGRAMS 21

How to run a program?

For preprocessing or postprocessing programs, examples of command line are usually given in
their related sections. For preprocessing, sections 2.5 and 3.2 should provide you with additional
details. As for processing programs, you will understand it quickly through an example.

Let’s suppose you adopted the directory tree of 2.6.1 and you want to launch a simulation
with processing/photochemistry/polair3d. From the directory MyStudy, if you did not
change the name of the main configuration file racm.cfg, just type:

. ./Polyphemus-{version}/processing/photochemistry/polair3d config/racm.cfg

And then?

Once done, section 2.7 will suggest some ways to check your results and chapter 7 will guide you
through the postprocessing tasks.

2.3 Compiling the Programs

Polyphemus programs are supposed to be compiled with SCons. SCons is the recommended
way to compile the programs: it is more portable and autonomous, it has much more options
and, if you intend to write new programs, it should ease your experience. Take notice that, as
of version 1.6 of Polyphemus, makefiles are no longer supported.

2.3.1 Compiling with SCons
Where is SCons?

Polyphemus includes a version of SCons in utils/ — the command is utils/scons.py. So you
can use this version of SCons, or you can install SCons on your system (which is easy and which
may be more convenient in the long term). Version 0.98.5 or greater is required. In the sequel,
it is assumed that SCons is launched with the command scons, which you may replace with
Polyphemus/utils/scons.py if you rely on the version distributed with Polyphemus.
Compiling

In most Polyphemus directories, you should be able to compile simply by calling SCons:
scons

or, to build a given program (say, meteo):

scons meteo

This is relevant for any directory where there is a C++ program to compile: processing/decay/,
processing/siream-sorgam/, preprocessing/meteo/, postprocessing/optics/, ...

SCons is supposed to find the compilers and to properly determine all dependencies, on any
platform. If you experience anyway problems, the course of action is:

1. try to help SCons with command line options, or by filling the SConstruct file; see below;

2. contact the Polyphemus mailing list polyphemus-help@lists.gforge.inria.fr.

polyphemus-help@lists.gforge.inria.fr

22

Options

CHAPTER 2. USING POLYPHEMUS

In Polyphemus, SCons compilation comes with many enjoyable options, which may increase your
productivity (especially if you are developing) and which can help you solve some problems.

There are two ways to activate the options: through the command line or through some
variables set in the local SConstruct file.

Command Line Options

scons cpp=my_compiler meteo

A command line option, say cpp, is introduced this way:

which tells SCons to compile meteo with the C++ compiler my_compiler (instead of the default
C++ compiler which SCons finds automatically on our system). Of course, if you want to
compile all your programs with my_compiler, you launch:

scons cpp=my_compiler

Below is a list of all supported command line options (in the column of all possible values, the
first value is the default value):

flag cpp
flag fortran

flag link

Option Possible Explanations

values

profilel fast Optimization using full capacities of this computer’s CPU

fast_portable Optimization restricted to be compatible with older CPUs
debug Debugging options
debug_mem Debugging options for memory bugs at the cost of a slower speed
debug _thread Debugging options for thread bugs at the cost of a slower speed
debug 0,-1,1,2 Debug level:
-1 for no option related to the debug level
0 (default) for optimization with -02
1 for debugging mode with -g
2 for optimized debugging mode with -g -02

debug_cpp 0,-1,1,2 Same as debug, but only for C++. It overwrites debug.

debug_fortran 0, -1, 1,2 Same as debug, but only for Fortran. It overwrites debug.

line no, yes Should the compilation lines be shown?

C The C compiler.

cpp The C++ compiler.

fortran The Fortran compiler.

link The linker.

_ 1,0,2 Number of underscores at the end of the symbols of compiled For-
tran routines whose names contain at least one underscore. If set
to 0, Polyphemus tries to guess from the C++ compiler version.

mode_cpp strict, strict compiles C++ with options -Wall -ansi -pedantic,

permissive only if G4+ is used.
permissive compiles C++ without restrictive options.

mode fortran permissive, strict compiles Fortran with options -Wall -pedantic,

strict only if G77 or GFortran is used.

permissive compiles Fortran without restrictive options.
Additional C++ compilation flags.

Additional Fortran compilation flags.

Additional link flags.

2.3. COMPILING THE PROGRAMS 23

openmp no, yes Should the parallelizing library openMP be used? (for models
including modules supporting the openMP parallelization).
flag_openmp Compilation flag for openMP.
mpi no, yes Should the parallelizing library MPI be used? (for models includ-
ing modules supporting the MPI parallelization).
chemistry cb05, racm2, Chemistry mecanism used in the aerosol modules.
racm
nacl no, yes Should the thermodynamics of the aerosol modules include NaCl?

(for models including an aerosol module).

L. type
profile="7

to see the
available

options.

Variables in SConstruct More variables may be changed in the SConstruct file itself. Note
that SConstruct files are Python scripts, sensitive to case. Have a look at
processing/photochemistry/SConstruct. In this SConstruct file, several variables are in-
cluded. They can be defined as strings, e.g.,

cpp_compiler = "my_compiler"

or as list of strings, e.g.,

include_path = ["include/Talos", "include/SeldonData"]
or a list of strings embedded in a string, e.g.,

include_path = "include/Talos include/SeldonData"

or, equivalently,

include_path = """include/Talos
include/SeldonData

nnn

If you do not want to define a variable, remove the line where it is defined or write:
linker = None

You must at least have the variables polyphemus_path and include_path set. polyphemus_path
is the relative or absolute path to Polyphemus (e.g., /home/user/src/Polyphemus/, do not for-
get the last slash).

include path is a list of paths where the dependencies (that are not installed in the system
directories, not in the environment variables CPATH and CPLUS_INCLUDE_PATH) lie. So, if you
install a library yourself, you may need to put the path to the library in this variable. For
instance, if you install Blitz4++ from the sources and not to the system directories (because you
have not the root privileges), you have two options:

(recommended) 1. put the path to Blitz++ directory in the environment variable CPATH (or CPLUS_INCLUDE_PATH)
and put the path to the compiled Blitz++ library in the variable LD_LIBRARY_PATH (or
LIBRARYAPATH)

24

(alternatively) 2. put the path to Blitz4++ directory in include path and put the path to the compiled

CHAPTER 2. USING POLYPHEMUS

Blitz++ library in the variable 1library_path.

See below the list of supported variables. All variables but polyphemus_path and include_path
are optional, which means that these variables may be omitted from the file or may be set to
None. The last column (“Command line”) shows the name of the corresponding command-line
option, if any. In case both a command line option and a variable are set, the command line

option overwrites the variable in the SConstruct file.

Variable Content Command
line
polyphemus_path Path to Polyphemus, i.e., the directory where
one finds preprocessing, processing, utils,
CREDITS, ...
include_path Path(s) to all dependencies not available
in the system directories, in CPATH or in
CPLUS_INCLUDE_PATH
c_compiler Name of the C compiler c
cpp-compiler Name of the C++ compiler cpp
fortran_compiler Name of the Fortran compiler fortran
linker Name of the linker link
library_path Path(s) to compiled libraries not available in
the system directories, in LIBRARY PATH or in
LD_LIBRARY PATH
exclude_target List of targets to ignore
exclude dependency Files to ignore in the directories of
include_path, described by regular expressions
(you need to know what you are doing)
flag cpp Additional C4++ compilation flags. flag cpp
flag fortran Additional Fortran compilation flags. flag fortran
flag 1ink Additional link flags. flag 1ink

Note About the Libraries Search

SCons does not search all the time for the libraries. It caches the results. The first time, you

may read:

Checking for C library blas... yes
Checking for C library gslcblas... no

And the second time:

Checking for C library blas... (cached) yes
Checking for C library gslcblas... (cached) no

If you want to force SCons to search again for the compiled libraries (because you have just
installed one of them, or because you logged in another computer with a different installation),

launch SCons with option --config=force.

2.3.2 Compiling for Parallel Computing

The following modules can support an openMP and/or an MPI-parallelization:

2.3. COMPILING THE PROGRAMS 25

- the chemistry modules Photochemistry and ChemistryRADM,
- the advection module SplitAdvectionDST3,
- the diffusion module DiffusionR0S2,

- the aerosol modules (MPI only) Aerosol SIREAM SORGAM, Aerosol SIREAM H20,
Aerosol _STREAM_SOAP, Aerosol_SCRAM_H20.

Among the drivers, apart from BaseDriver who supports both the OpenMP and the MPI-
parallelization, support for MPI is now available with MonteCarloDriver and
OptimallInterpolationDriver.

This list will grow in the versions to come, so you had better to stay tuned if you are
interested. Whatever, numerous programs given as examples in processing/ can already take
advantage of this feature if they make use of at least one of these modules (see Section 2.5.3).

Still, depending on your own context (see Section 1.2.3), you might want to use OpenMP
alone, MPI alone or both OpenMP and MPI simultaneously. Here are the recipes that will get
your programs built the way you want.

OpenMP alone

At first, let us consider the case where you just want an OpenMP parallelization for polair3d
in processing/photochemistry. Using SCons, from processing/photochemistry, just type:

../../utils/scons.py openmp=yes

If you are lucky enough, you might be done!

If not, it means perhaps that you are using a compiler whose OpenMP flag is unknown to our
SCons script. You might then take a look at your compiler’s documentation in order to identify
the related compilation flag. For instance, with PGI as the default compiler suite recognized by
SCons, you should type from processing/photochemistry:

../../utils/scons.py openmp=yes flag_openmp=mp

Note: Be warned that the aerosol modules programming style do not fit with the Intel im-
plementation of OpenMP at least in the version 9.1. Even with one core and no parallelizing
directives, results differ! You are then advised not to use the Intel compiler suite with OpenMP
if you need the aerosol modules.

MPI alone

We tried to make the building with MPI as simple as the one with OpenMP. From
processing/photochemistry, type:

../../utils/scons.py mpi=yes

How could it be easier?

No way. But you could nevertheless encounter some little difficulties. For example, if the
C++ compiler associated to mpiCC is g++-4.xx or posterior (you might get to know it with
the command mpiCC -showme) whereas the Fortran compiler associated to mpif77 is g77-3.xx,
you will have to deal with the GCC “underscore” problem (for further details, see ??7). The
command line shall be modified to:

../../utils/scons.py mpi=yes _=2

26 CHAPTER 2. USING POLYPHEMUS

Both OpenMP and MPI

That could be as easy as typing:
../../utils/scons.py mpi=yes openmp=yes

But, the same difficulties encountered with the OpenMP and MPI buildings (see previous
subsections) might pile up here ... with the same solutions.

2.4 Editing your Configuration Files

Now that you are done with compiling and before you launch your own preprocessing or simu-
lation jobs, you will have to edit and perhaps modify some configuration files to adapt them to
your needs.

We thougt about it: next to each Polyphemus program, you will find at least one example
of suitable configuration files. It shall be a good starting point as you could adapt this example
to your own case with minor changes.

Let’s take an example located in preprocessing/meteo to illustrate the configuration files
of meteo. As you will see in 3.4.1, there are two of them that we will comment successively (in
what follows, (n), where n is a number, refers to the comment written after the verbatim of the
file). The first one, that defines the considered domain with its space and time discretization, is
general .cfg and is located in preprocessing.

[general] (1)

Home: /u/cergrene/a/ahmed-dm (2)
Directory_computed_fields: <Home>/data
Directory_ground_data: <Directory_computed_fields>/ground
Programs: <Home>/src/polyphemus/core/trunk/preprocessing

[domain] (1)

Date: 2004-08-09_03-00 (3)

Delta_t = 3.0 (4)

x_min = -10.0 Delta_x = 0.5 Nx = 65

y_min = 40.5 Delta_y = 0.5 Ny = 33

Nz =5

Vertical_levels: <Programs>/levels.dat (5)

(1) A configuration file is organized with sections like [general] and [domain]. Here, [generall
is used to define paths that will be referred later on and [domain] contains the domain
definition along with its space and time discretization.

(2) Within each section are defined fields like Home. Home: /u/cergrene/a/ahmed-dm indi-
cates that the field Home takes the string ’/u/cergrene/a/ahmed-dm’ as value.

(3) Here is one possible date format with minutes : YYYY-MM-DD_HH-II (see Appendix D
for further informations).

(4) ’Delta_t = 3.0’ indicates that the field Delta_t takes the floating point number 3.0 as
value. We recommend use =’ for numerical values and ’:’ otherwise.

2.4. EDITING YOUR CONFIGURATION FILES 27

(5) <Programs> is a markup to the field Programs. It will be replaced by its actual value
/u/cergrene/a/ahmed-dm/src/polyphemus/core/trunk/preprocessing when the pro-
gram will read the configuration files.

The second one is meteo.cfg to be found in preprocessing/meteo:
[paths]
Inputs. (1)
Database_meteo: /u/cergrene/B/quelo/Meteo_ECMWF/2001/

(2)
Roughness heights on the input ECMWF domain. Only needed if (1)
’Richardson_with_roughness’ is set to true.
Roughness_in: <Directory_ground_data>/Roughness_in.bin (3)
Outputs.
Directory_meteo: <Directory_computed_fields>/meteo/

(2)

[ECMWF]

Date : &D (4)

t_min = 0. Delta_t = 3.0 Nt = 9

x_min = -15.12 Delta_x = 0.36 Nx = 168
y_min = 32.76 Delta_y = 0.36 Ny = 113
Nz = 31

[meteo]

Should the surface Richardson number be computed taking into
account roughness height?
Richardson_with_roughness: no (5)

[accumulated_data]

For ’data’ storing values cumulated in time.

length number of time steps over which data is cumulated.
Accumulated_time = 4

start (optional) index of the first complete cycle. Default: O.
Accumulated_index = 1

(2)

28 CHAPTER 2. USING POLYPHEMUS

(1) In a line, everything that comes after #’ is a comment and is then ignored.

(2) ’...” means that for readibility purpose, we removed here some useless fields or sections you
will find in the actual file example. Indeed, because meteo.cfg serves also as the example
configuration file of programs Kz, fields and sections related to these programs are defined.
But they will be discarded while running meteo.

(3) The markup <Directory_ground data> is still available even if it was defined in general.cfg.
Indeed, configuration files are concateneted before being read. Still, as markups cross sec-
tions you might be careful not to create ambiguous markups, that is markups that refer
to a field name used in several sections!

(4) The field Date of the section [ECMWF] is not the same as the field Date of the section
[domain] because the sections they belong to are distinct.

(5) 'mo’ is considered as a boolean. ’yes’, true’ and ’false’ are also boolean supported by
Polyphemus (see Appendix D for further details).

You might now be equipped to survive in the jungle of configuration files. For further
informations about the configuration files, you are advised to have a look at the lexical reference
given in the Appendix D. For informations about specific configuration files, you should read
the section related to the program, the driver, the model or the module you would like to use.

2.5 Running the Programs

2.5.1 Running a Program from Command Line

Most programs require one or two input configuration files, and sometimes one or two dates
(beginning and end dates, see Section 3.2.3). Most programs provide help when launched without
any input file. Here is an example with the program bio'!:

~/Polyphemus/preprocessing/bio/> ./bio

Usage:
./bio [main configuration file] [secondary config file] [first date] [second date/intervall]
./bio [main configuration file] [first date] [second date/intervall]
./bio [main configuration file] [secondary config file] [first date]
./bio [first date] [second date/interval]
./bio [first date]

Arguments:
[main configuration file] (optional): main configuration file. Default: bio.cfg
[secondary configuration file] (optional): secondary configuration file. Default: "".
[first date]: beginning date in any valid format.
[second date]: end date in any valid format.
[interval] (optional): Interval in format NdMh or Nd-Mh or Nd or Mh where N is the
number of days and M the number of hours. Default: 1d.

Note:
The end date, whether it is given directly or computed by adding the time interval to
the beginning date, is always considered as excluded.

I Further details about specific programs are provided in chapter 3.

2.5. RUNNING THE PROGRAMS 29

Program bio takes from one to four arguments. Below are four possible calls:

./bio 2001-04-22

./bio bio.cfg 2001-04-22

./bio bio.cfg 2001-04-22 2001-04-23
./bio ../general.cfg bio.cfg 2001-04-22

The first three calls are equivalent. The fourth one involves two configuration files. The
program bio behaves as if these two configuration files were merged. It means that the fields
required by the program may be put in any of these two files. Markups defined in one file can
be expanded in the other file. The only constraint is that each section should appear in a single
file only.

2.5.2 Sharing Configuration

The command line:
./bio ../general.cfg bio.cfg 2001-04-22 14

with the two configuration files general.cfg and bio.cfg, is the advocated line. The
configuration file general.cfg gathers information that may be needed by several programs in
the preprocessing/ directory (meteo, luc-usgs, etc.). Such a configuration file is provided
with Polyphemus/preprocessing/general.cfg:

[general]

Home: /u/cergrene/0/bordas

Directory_computed_fields: <Home>/B/data
Directory_ground_data: <Directory_computed_fields>/ground
Programs: <Home>/codes/Polyphemus-HEAD

[domain]

Date: 2001-01-02_00-00-00
Delta_t = 3.0

x_min = -10.0 Delta_x = 0.5 Nx = 65
y_min = 40.5 Delta_y = 0.5 Ny = 33
Nz =5

Vertical_levels: <Programs>/levels.dat

The simulation domain and the simulation date are defined. In addition, markups
(Directory_computed fields, Directory ground data and Programs) are introduced and may
be referred by other configuration files such as meteo.cfg.

Actually most configuration files (meteo.cfg, luc-usgs.cfg, emissions.cfg, etc.) pro-
vided in Polyphemus, along with the programs, are examples that refer to the markups defined
in general.cfg. Essentially three markups are defined in general.cfg:

e Directory computed fields: where output results (i.e., fields computed by preprocessing
programs) are stored.

e Directory ground data: where ground data (land use cover, roughness) is stored.

30 CHAPTER 2. USING POLYPHEMUS

e Programs: path to Polyphemus preprocessing directory.

Polyphemus configuration files are written so that mainly changes in general.cfg should be
needed to perform a reference simulation. In general.cfg, one changes the paths (markups) to
the preprocessing programs (Programs) and to the output results (Directory_computed fields
and Directory_ground_data), and one chooses its simulation domain. Other configuration files
provide paths to input data (meteorological files, emissions data, etc.) and fine options.

2.5.3 Notes about the Models

To launch a simulation you have to compile and execute a C++ program, which is com-
posed of a driver (on top of the model itself), a model and its modules (if any). See Sec-
tion 1.1 for a short description of the flowchart. The program of the simulation looks like
processing/photochemistry/polair3d.cpp: it is a short C++ code that declares the driver,
the model and the modules.

You may have to modify this program in case you change the model, the driver or a module.
In that case, duplicate processing/photochemistry/polair3d.cpp (or another example) and
modify it according to the notes below. Actually it is likely that the model/driver combination
is already in use in one of the examples: have a look in processing/*/*.cpp.

First determine which model you need, depending on your simulation target:
e for a passive simulation: Polair3DTransport or CastorTransport;

e for a simulation with chemistry for gaseous species: Polair3DChemistry or
CastorChemistry;

e for a simulation with aerosol species: Polair3DAerosol;
e for a simulation with gaseous species and data assimilation: Polair3DChemistryAssimConc;

e for a simulation at local scale using an Eulerian model: StationaryModel with another
Eulerian model as the underlying model (for instance Polair3DChemistry);

e for a simulation with a Gaussian plume model: GaussianPlume, or GaussianPlume_aer if
there are aerosol species;

e for a non-stationary simulation at local scale with a Gaussian model: GaussianPuff, or
GaussianPuff _aer if there are aerosol species;

e for a simulation with point sources, you can use the model PlumeInGrid, in order to
improve the way the dispersion of the pollutants inside a cell is modelled;

e to simulate the dispersion of passive particles without deposition nor scavenging;:

LagrangianTransport with its related particle models.
To set the model, just modify the definition of ClassModel:
typedef MyModel<Argument(s)> ClassModel;
For instance:

typedef Polair3DAerosol<real, AdvectionDST3<real>,
DiffusionR0S2<real>, Decay<real> > ClassModel;

2.5. RUNNING THE PROGRAMS 31

If you change a model, you may also change the modules (a model may need less modules or
no module at all: remove them if necessary). The modules are (template) arguments of the model
(AdvectionDST3<real>, DiffusionR0S2<real> and Decay<real>, in the previous example).
The order in which the modules are provided matters: it is always advection, diffusion and
chemistry, or transport (single module which replaces advection and diffusion) and chemistry.
See Section 2.6.5 for the modules you can use with the model you chose.

Then, in your main C++ program, declare the right driver. You may replace BaseDriver
with a new driver at this line (in processing/photochemistry/polair3d.cpp):

BaseDriver<real, ClassModel, BaseOutputSaver<real, ClassModel> >
Driver(argv[1]);

See Chapter 4 for the various drivers available and their use.

Finally make sure to include all models, modules, drivers and output savers you use (at the
beginning of the file — statements #include "...cxx"). The SConstruct file may need changes
too.

If you are not confident with your own changes, have a look at the examples: it is likely that
you find a close combination there. In case you try an unusual combination, you may contact
polyphemus-help@lists.gforge.inria.fr.

The directory named processing provides examples of configuration and data files to use
with the programs. For instance, processing/photochemistry provides an example for a for-
ward eulerian simulation combining advection-diffusion with chemistry. It should be launched in
processing/photochemistry. Outputs will then be stored in the subdirectory
processing/photochemistry/results, so make sure that this directory exists before you start
the simulation (indeed Polyphemus programs do not create directories before saving results).

2.5.4 Running a parallelized program

Given you have compiled your program appropriately to make it parallel (see 2.3.2), let’s see
how to launch a parallel job.

The OpenMP way

The OpenMP way is without any doubt the easiest one. You can use it if you built your paral-
lelized program “with OpenMP alone” (see 2.3.2) and if the field Number of threads_openmp is
set to the desired value in the section [computing] of the main configuration file. For instance,
in processing/photochemistry/racm.cfg:

[computing]

Number of threads if openMP parallelization is used.
Number_of_threads_openmp: 4

Then, launching command for the related processing/photochemistry/polair3d remains
unchanged. From processing/photochemistry, simply type:

polair3d racm.cfg

polyphemus-help@lists.gforge.inria.fr

32 CHAPTER 2. USING POLYPHEMUS

The MPI and OpenMP /MPI way

Whether you chose “MPI alone” or “both MPI and OpenMP” to build your parallel program,
the procedure is the same. We will illustrate it supposing you have installed the Open MPI
environment.

First, you should create a text file containing the hostname of your targeted machines. For
example, let’s call it hostfile:

node001
node002
node003

Then, you are almost done! Just launch your parallel job with the following command:
mpirun -np 8 --hostfile hostfile polair3d polair3d.cfg

where np indicates the number of nodes you want to use. If you are running your job on a single
hexacore with MPI alone, np value has to be set to 6. In this case, there should be only one
hostname in your hostfile. If you are running it on 10 different monocore-nodes, then you
have to use MPI alone: the hostfile will contain 10 hostnames and np will be set to 10.

Using “both MPI and OpenMP” won’t change the basics of the command line. For example,
a job targeting 3 quadcore-nodes might be launched with:

mpirun -np 3 --hostfile hostfile polair3d polair3d.cfg

given hostfile indicates the 3 related nodes and the field Number_of_threads_openmp has been
set to 4 in the configuration file polair3d.cfg.

Note 1: That was the Open MPI case but if you are still stuck with an old LAM/MPI
environment, you will be asked for additional efforts. Finally, the following guidelines might
convince you to migrate towards Open MPI!

Indeed, before launching the parallel job, you have got to create a “LAM universe”. Don’t
panic: the “LAM universe” is only a set of processors which can interact using LAM/MPI
commands. Let’s have a look on the command that creates it but don’t try it now:

lamboot -v -ssi boot_rsh_agent "ssh -A" hostfile
Some important remarks about this command:

- option -ssi boot_rsh_agent "ssh -A" is used to make sure that ssh and not rsh is used
to connect to the other machines. You also have to use an ssh-agent in order to avoid
being prompted for your passphrase when connecting. Indeed, any output from ssh would
cause lamboot to fail. To check the connections with other nodes, it is a good idea to
connect once to each machine “by hand” before using lamboot.

- Your ”LAM universe” is described in a text file called hostfile which gives the name of
the machines to use and the number of cores to use on each machine, for example:

node001 cpu=4
node002 cpu=4
node003 cpu=4
node004 cpu=4
node005 cpu=4
node006 cpu=4

2.6. SETTING UP A SIMULATION 33

Now, if your file hostfile is ready, you can type the lamboot command.
If your run ended with an error, it is advised to make sure that the system is clean (memory
has been de-allocated, no-processes are still running, ...). To do so, launch the command:

lamclean
If you want to shutdown the “LAM universe” , type:
lamhalt

In case lamclean has failed, you can use lamwipe instead which cleans the environment and
closes it. You are advised though to use lamclean then lamhalt.

At this point, we hope you managed to create your “LAM universe”. It is time to show you
how to launch a parallel job. We take the example of a parallelized version of
processing/photochemistry/polair3d. To launch

the run, type:

mpiexec -v -np 14 polair3d racm.cfg

Some remarks about the command above:

- the option -np 14 lets launch the program with 14 nodes (automatically selected). If you
want to use a given number of processes per node, you can use option N instead and for one
process per CPU, use C. If you want to launch the program on nodes 0 to 7 for instance,
put option n0-7.

- The option -v makes mpiexec verbose, which can be useful in order to know on what
nodes the program was launched.

Note 2: In Unix-like systems, the command ipcs can be helpful to check whether lamclean
was entirely successfull. If, for any reason, your program crashed and despite lamclean, some
orphan semaphors are left, you might kill them thanks to ipcrm.

Note 3: In the case of an MPI/OpenMP-built program, the field Number of threads_openmp
has to be propely set in the main configuration file as indicated above in the subsection dedicated
to the OpenMP way.

The good (?) old way

If you followed in 2.3.2 the “good old way” to parallelize one of the aerosol modules
Aerosol SIREAM SORGAM, please consult directly Section 6.3.1). The launching command does
not differ from the one of the serial program. You will just have to set the appropriate field in
the main configuration file.

2.6 Setting Up a Simulation

This section is a quick overview of how a simulation should be set up. It is not meant to and
cannot replace the chapters about preprocessing, models, modules, ...

34 CHAPTER 2. USING POLYPHEMUS

2.6.1 Suggested Directory Tree

It is advocated not to modify Polyphemus code, including the configuration files provided with
it. The whole Polyphemus directory should not be modified (except maybe SConstruct files).
Copy the configuration files you need in a dedicated directory, modify the new configuration
files in this directory, and run Polyphemus programs from this directory. Your directory tree
may look like:

Polyphemus-{version}/include/
/postprocessing/
/preprocessing/
/processing/
/utils/
MyStudy/config/
/data/emissions/
/meteo/
/L0001
/raw_data/
/results/reference/
/nev_emissions/

/0.1

where MyStudy contains Polyphemus configurations files set for the study (configuration with
general.cfg, meteo.cfg, ... init), data generated by preprocessing programs (directory data),
sometimes raw data (directory raw_data) necessary for preprocessing and finally output results
from the simulation (directory results, with results from different runs).

Notice that Polyphemus directory includes the version number (or the date). This is very
useful in order to properly track simulations. In directory MyStudy, you should add a file called
version which should contain Polyphemus version (and maybe the version of other tools).

You may also want to copy configuration files in your output directory. For instance, you
may copy meteo.cfg in directory MyStudy/data/meteo/ so as to know with which configuration
your meteorological data were generated.

2.6.2 Roadmaps
Roadmaps with “Polair3D” Models

In short, the main steps to set up an Eulerian simulation with model Polair3D are:
1. generation of ground data (land use cover, roughness height) — preprocessing/ground;
2. preprocessing of meteorological fields — preprocessing/meteo;
3. other preprocessing steps if relevant (deposition velocities, emissions, ...);

4. compiling the right combination of model, module(s) and driver (see Sections 2.6.5 and 2.5.3).

Passive tracer Below is a possible sequence of programs to be launched to perform a basic
passive simulation:

preprocessing/ground/luc-glcf
preprocessing/ground/roughness
preprocessing/meteo/MM5-meteo

2.6. SETTING UP A SIMULATION 35

preprocessing/meteo/Kz_TM
processing/transport/polair3d-transport

Program polair3d-transport is mnot provided with Polyphemus (subdirectory
processing/transport should also be created). It should be built with Polyphemus compo-
nents: BaseDriver (driver), Polair3DTransport (model), AdvectionDST3 (module), DiffusionR0OS2
(module). See Section 2.5.3 for details.

Photochemistry Below is a possible sequence of programs to be launched to perform a pho-
tochemistry simulation:

preprocessing/ground/luc-glcf
preprocessing/ground/roughness
preprocessing/meteo/MM5-meteo
preprocessing/meteo/Kz_TM
preprocessing/emissions/emissions
preprocessing/bio/bio
preprocessing/dep/dep
preprocessing/ic/ic
preprocessing/bc/bc
processing/photochemistry/polair3d

Aerosol Below is a possible sequence of programs to be launched to perform a simulation with
aerosol species:

preprocessing/ground/luc-glcf
preprocessing/ground/roughness
preprocessing/ground/luc-convert
preprocessing/meteo/MM5-meteo
preprocessing/meteo/Kz_TM
preprocessing/emissions/emissions
preprocessing/emissions/sea_salt
preprocessing/bio/bio

preprocessing/dep/dep

preprocessing/ic/ic

preprocessing/bc/bc
preprocessing/bc/bc-gocart (4 times in a row)
preprocessing/bc/bc-nh4
processing/siream-sorgam/polair3d-siream-racm

Roadmap with “Castor” Models

The roadmap with “Castor” models is very similar to the one with “Polair3D” models except
that raw data and preprocessing programs used to modify them are often different.

Below is a possible sequence of programs to be launched to perform a photochemistry sim-
ulation with Castor model:

preprocessing/ground/ground-castor.py
preprocessing/meteo/MM5-meteo-castor
preprocessing/emissions/chimere_to_castor
preprocessing/bio/bio-castor

36

CHAPTER 2. USING POLYPHEMUS

preprocessing/dep/dep-emberson
preprocessing/ic/ic
preprocessing/bc/bc-inca
processing/castor/castor

Roadmaps with Gaussian Models

In short, the main steps to set up a Gaussian simulation are:

1.

generation of meteorological data: mno program is available to do it, but as
only little information is required this should be quite easy. Examples of me-
teorological files are provided in processing/gaussian/gaussian-meteo.dat and
processing/gaussian/gaussian-meteo_aer.dat.

. preprocessing: discretization to generate source files for line emission and

gaussian-deposition or gaussian-deposition_aer to compute deposition velocities and
scavenging coefficients(without or with aerosol species respectively). For more details, see
Section 3.8.

compiling the right combination of model (GaussianPlume, GaussianPlume aer,
GaussianPuff, GaussianPuff_aer) and driver (PlumeDriver or PuffDriver).

2.6.3 Mandatory Data in Preprocessing
ECMWEF Fields

In ECMWF files, it is recommended to have the following fields (with their Grib codes):

Volumetric soil water layer 1 (39),

Volumetric soil water layer 2 (40),

Volumetric soil water layer 3 (41),

Volumetric soil water layer 4 (42),

Temperature [3D] (130),

U velocity [3D] (131),

V velocity [3D] (132),

Specific humidity [3D] (133),

Snow depth (141),

Stratiform precipitation (Large-scale precipitation) [accumulated] (142),
Convective precipitation [accumulated] (143),

Snowfall (convective + stratiform) [accumulated] (144),
Surface sensible heat flux [accumulated] (146),

Surface latent heat flux [accumulated] (147),

Logarithm of surface pressure (152),

2.6. SETTING UP A SIMULATION

Not all data may be required, depending on the programs you actually run.

Boundary layer height (159),

Total cloud cover (164),

2 meter temperature (167),

Surface solar radiation downwards [accumulated] (169),
Surface solar radiation [accumulated] (176),
East-West surface stress [accumulated] (180),
North-South surface stress [accumulated] (181),
Evaporation [accumulated] (182),

Low cloud cover (186),

Medium cloud cover (187),

High cloud cover (188),

Skin temperature (235),

Forecast albedo (243),

Cloud liquid water content [3D] (246),

Cloud ice water content [3D] (247),

Cloud cover [3D] (248).

2.6.4 Mandatory Data for Models

37

Table 2.3 presents all variables needed by various models (and the name under which they
appear in the data configuration files). Note that additional data can be necessary to add
initial conditions, boundary conditions, source terms (volume emissions, surface emissions) or
loss terms (deposition velocities, scavenging).

Table 2.3: Mandatory data for each models.

Model Data necessary.

CastorTransport Temperature,

Pressure,
Altitude,
AirDensity,
Meridional Wind
ZonalWind
VerticalDiffusion.

CastorChemistry

SpecificHumidity,

Attenuation.

Same as CastorTransport and

LiquidWaterContent,

38 CHAPTER 2. USING POLYPHEMUS

Polair3DTransport MeridionalWind (for advection),
ZonalWind (for advection),
VerticalDiffusion (for diffusion),
Horizontal diffusion (if Isotropic_diffusion is set to
no; this value is given in the main configuration file),
Temperature (if With_air density is set to yes or for
microphysical scavenging model),
Pressure (if With_air_density is set to yes or for micro-
physical scavenging model).

Polair3DChemistry Same as Polair3DTransport and

SpecificHumidity,
Attenuation or
Photolysis rate files or
CloudOpticalDepth.

Polair3DChemistry AssimConc

Same as Polair3DChemistry.

Polair3DAerosol

Same as Polair3DChemistry and
LiquidWaterContent,
SnowHeight.

PlumeInGrid

Same as Polair3DChemistry and
LowCloudiness,
MediumCloudiness,
HighCloudiness,

SolarRadiation,

FirstLevel WindModule,
FrictionModule,
BoundaryHeight,

LMO (Monin-Obukhov length).

GaussianPlume or GaussianPlume_aer

Temperature,

Wind_angle,

Wind (wind module),

Boundary_height,

Stability (if Briggs or Doury are used),
Friction_velocity (if similarity_theory is used),
Convective_velocity (if similarity_theory is used),
LMO (if similarity_theory is used),

Coriolis (Coriolis parameter) (if similarity_theory is
used).

GaussianPuff or GaussianPuff_aer

Same as Gaussian and

Attenuation (if with_chemistry is set to yes),
Pressure (if with_chemistry is set to yes),
Specific_humidity (if with_chemistry is set to yes).

LagrangianTransport

Meridional Wind,

ZonalWind,

Vertical Diffusion

Horizontal diffusion (not always mandatory depending
on the model of particle; this value is given in the main
configuration file),

Temperature,

2.6. SETTING UP A SIMULATION 39

‘ ‘ Pressure.

For Gaussian models, the data are single values read by the models in a configuration file. All
data for Eulerian and Lagrangian models are 4D-fields, outputs of meteorological preprocessing
programs:

e meteo, Kz (and Kz_TM if you use Troen & Mahrt parameterization for vertical diffusion),
for models of type “Polair3D” or “LagrangianTransport” while using raw meteorological
data from ECMWEF.

e MM5-meteo (and Kz_TM if you use Troen & Mahrt parameterization for vertical diffusion)
for models of type “Polair3D” or “LagrangianTransport” while using raw meteorological
data from model MMJ5;

e MM5-meteo-castor (and Kz_TM if you use Troen & Mahrt parameterization for vertical
diffusion) for models of type “Castor” while using raw meteorological data from model
MM5.

Remember that in addition data from programs emissions, dep, ic, ..., can be needed.

2.6.5 Models / Modules Compatibilities

Models of type “Polair3D” require two transport modules (one for advection and one for dif-
fusion), while models of type “Castor” only require one transport module (which deals with
advection and diffusion). This does not mean that a module could not be shared by both
models (although there is no common module in current Polyphemus version).

Table 2.4 and Table 2.5 present a summary of the compatibility between models and modules.
Note that Gaussian models are not included in these tables because they don’t need any module.

Table 2.4: Compatibility between models and transport modules.

AdvectionDST3 DiffusionROS2 TransportPPM

Polair3dDTransport X X

Polair3DChemistry X X

Polair3DAerosol X X

Polair3DAssim* X X

PlumelnGrid X X

CastorTransport X
CastorChemistry X

SplitAdvectionDST3 GlobalAdvectionDST3 GlobalDiffusionROS2

Polair3DTransport X X X
Polair3dDChemistry X X X
Polair3DAerosol X X X
Polair3DAssim* X X X
PlumelnGrid X X X
CastorTransport

CastorChemistry

In Table 2.4, Polair3DAssim* designates the assimilation model

Polair3DChemistryAssimConc.

40 CHAPTER 2. USING POLYPHEMUS

Table 2.5: Compatibility between models and chemistry modules.

Castor PhotoChem RADM SORGAM AEC Decay
Polair3DChemistry X X X X X
Polair3DAerosol X X X
Polair3DAssim* X X
PlumelInGrid X
CastorChemistry X

In Table 2.5, module names are shortened to be displayed on one line: Castor is ac-
tually ChemistryCastor, PhotoChem is Photochemistry, RADM is ChemistryRADM, SORGAM is
Aerosol SIREAM _SORGAM and AEC is Aerosol SIREAM AEC.

Please note that 4DVar assimilation scheme only works with RACM chemistry module.

As for drivers, BaseDriver is the simplest and the most used of them. The other drivers
available are:

e PlumeDriver: for Gaussian plume model (with or without aerosol species).
e PuffDriver: for Gaussian puff model (with or without aerosol species).

e Data assimilation drivers: OptimalInterpolationDriver (optimal interpolation), EnKFDriver
(ensemble Kalman filter), RRSQRTDriver (reduced rank square root filter), FourDimVarDriver
(4D-Var), to be associated with Polair3DAssimConc model.

e Drivers for the verification of adjoint coding in variational assimilation: AdjointDriver,
GradientDriver, Gradient4DVarDriver.

2.7 Checking Results

It is highly recommended to check the fields generated by Polyphemus programs: meteorological
fields, deposition velocities, output concentrations, ...

First, you should check the size of the binary files. Be it with preprocessing or processing
programs, results are saved as floating point numbers with single precision. As we will express
file size in bytes, a factor 4 will appear below.

2.7.1 Checking the output file size of preprocessing programs
In what follows:

e take N, N,, N, and N; from the section [domain] of the configuration files;

® Ngays is the number of preprocessed days and

® Niotqr is the total number of preprocessing time steps: Niotar = V¢ X Nyays

Here are some indications on what to check depending on the program.

Ground Data

As there are 14 categories in the GLCF description, the size of the binary file obtained from
luc-glcf should be IV, x N, x 4 x 14. As of luc-usgs, it should be IV, x Ny x 4 x 24.

2.7. CHECKING RESULTS 41

Meteorological fields

For programs meteo, Kz, MM5-meteo, WRF-meteo and Kz_TM, related file size :

o for 2D fields is Nyptqr X Ny X Ny X 4;

for 3D fields is Niptqr X N; X Ny X Ny X 4;

except for the fields Kz and Kz_TM, Nyptqr X (N + 1) x Ny x Ny X 4;

for the field MeridionalWind, Nygtqr X N; X (Ny + 1) X Ny x 4;

and for the field ZonalWind, Nytqr X N X Ny X (Ny + 1) x 4.

Deposition Velocities

For program dep, the size of output files should be Niyq1 X Ny X N, x 4.

Anthropogenic Emissions (EMEP)

For program emissions, the time step is of 1 hour so there are 24 time steps per day. Related
file size for surface emissions will then be of Ngqys X 24 X Ny, x N, x 4.

Things are a little bit trickier for volume emissions as we do not know the number of vertical
levels where emissions occur. This number could be lower than IV, as, for instance, there are no
EMEP emissions above 1106 meters. The only thing we know is then that the file size should
be a multiple of Ngays x 24 x Ny X N X 4.

Biogenic Emissions

The time step for biogenic emissions is not the one given in the section [domain] of general.cfg
but the one specified in the section [biogenic| of bio.cfg. 1 hour is a popular value for it. In
this case, the size of bio output files should be 24 X Nggys X Ny X N x 4.

Initial Conditions

Initial conditions generated by program ic should produce files of N, x Ny, x N, x 4 bytes.

Boundary conditions

To compute boundary conditions, programs bc and bc-dates use Mozart files that generally
cover a period of 10 days with a timestep of 24 hours. Take notice that this is not the case
for the beginning of January whose Mozart file provides data for the first 5 days of the month.
As bc and bc-dates generate boundary conditions for the whole period covered by the Mozart
files they use, regardless of the period that is actually of interest for your simulation, you should
figure out how many days they indeed preprocess. It will give you the Ngqys to use.

For example, the command

./bc ../general.cfg bc.cfg h0067.nc

preprocesses one Mozart file. Then, Ngqys = 10.
But with the command

./bc-dates ../general.cfg bc-dates.cfg 2004-07-30 2004-08-12

42 CHAPTER 2. USING POLYPHEMUS

you will deal with the files hc0061.nc and hc0062.nc (see 3.7.2 for details) that is two 10-days
Mozart files. Then, Ngy.ys = 20.
Finally, the size of output files for boundary conditions along:

e 7z, should be Nyuys x Ny x N, X 4,
e y, should be Nyuys X N, x Ny x 2 X 4,

e x, should be Nyqys X N, X Ny X 2 x 4.

2.7.2 Checking the output file size of processing programs

If you set up to save the concentrations for each vertical level and at each time step, results file
should be of size 4 x Ny x N, x N, x N, bytes where N, and N, are the space steps along x and
y directions respectively, NV, is the number of vertical levels of the field and Ny is the number of
time steps, all of them specified in the main configuration file.

But if you specified the levels and a time interval on which to save, you might have to use
the above formula with the suitable values of N, and N;. Indeed, they could be different from
the values N, and N; specified in the main configuration file.

2.7.3 Checking the values

You should also check that the fields have reasonable values using the programs from directory
utils, mainly get_info_float (see Section 2.8.1). The command line to use get_info_float
is:

get_info_float results/03.bin
And the output looks like:

Minimum: 0.0563521
Maximum: 169.219
Mean: 91.3722

2.8 Useful Tools

A few useful tools are provided in directory Polyphemus/utils/. Here is a brief explanation of
their aim and their use.

2.8.1 Information about Binary Files

Two programs provided in Polyphemus/utils/ are meant to provide information about the
content of one or several binary files. It is highly recommended to use these programs to check
the output files of preprocessing programs and drivers/models (e.g. in Section 2.7).

These two programs perform the same thing but on binary files with different floating pre-
cision:

e get_info_float gives the minimum, maximum and mean of binary files in single precision.

e get_info_double gives the minimum, maximum and mean of binary files in double preci-
sion.

2.8. USEFUL TOOLS 43

It is assumed that the binary file to be analyzed by get_info float or get_info_double
contains only floating point numbers. No extra data such as headers should be in the file. Out-
put binary files from preprocessing programs and from drivers/models satisfy this condition and
can be properly read by get_info_float or get_info_double. Note that Polyphemus programs
usually generate single precision files: it is very likely that one only uses get_info_float.

Using get_info_float or get_info_double is straightforward:

$ get_info_float Temperature.bin

Minimum: 257.621
Maximum: 300.882
Mean: 282.262

$ get_info_float Temperature.bin Pressure.bin

-- File "Temperature.bin"
Minimum: 257.621

Maximum: 300.882

Mean: 282.262

-- File "Pressure.bin"
Minimum: 56369.2
Maximum: 102496

Mean: 87544.1

2.8.2 Differences between Two Binary Files

There are two different types of programs to compute statistics about the differences between
two files:

e get diff precision (where precision is float or double) returns statistics about the
difference between two files. The files should only contain floating point numbers without
headers.

e get partial diff precision (where precision is float or double) returns statis-
tics about the difference between two files. If these two files have the same size,
get_partial diff precision does the same as get diff precision. If the files do not
have the same size, only the first values (as much as possible) are compared.

Here is an example with get_diff float launched from processing/photochemistry/results

../../../utils/get_diff_float 03-ref.bin 03-diff.bin

File #0 File #1
Minima: 0.0145559 0.0181665
Maxima: 136.795 175.123
Means: 71.578 65.4088
Standard dev.: 26.958 28.643
Difference

Minimum: -57.324

44 CHAPTER 2. USING POLYPHEMUS

Maximum: 66.9219
Mean: 6.16919
Standard dev.: 14.4999

Correlation between files #0 and #1: 0.865696

2.8.3 MMS5 Files

It can be useful to get information about MMS5 files, in particular to modify the configuration
file MM5-meteo.cfg (see Section 3.4.4). To do so, two programs are provided:

e MM5 var_1list gives a list of all variables stored in a MM5 file. It also gives miscellaneous
information about the file. Information provided can be needed in preprocessing step
(program MM5-meteo — Section 3.4.4): number of space steps, time step and projection

type.

e get_info MM5 gives the minimum, maximum, mean and standard deviation of a variable
stored in a MMS5 file (use program MM5_var list to know what variables are stored in the
file).

For instance, the output of MM5_var_1ist for the file MM5-2004-08-09 used in Polair3D test
case (see Appendix A) is:

Metadata (-999 means unknown) :

OUTPUT FROM PROGRAM MM5 V3 : 11

TERRAIN VERSION 3 MM5 SYSTEM FORMAT EDITION NUMBER : 1

TERRAIN PROGRAM VERSION NUMBER : 6

TERRAIN PROGRAM MINOR REVISION NUMBER : O

COARSE DOMAIN GRID DIMENSION IN I (N-S) DIRECTION : 76

COARSE DOMAIN GRID DIMENSION IN J (E-W) DIRECTION : 86

MAP PROJECTION. 1: LAMBERT CONFORMAL, 2: POLAR STEREOGRAPHIC, 3: MERCATOR : 1

IS COARSE DOMAIN EXPANDED?, 1: YES, O: NO : O

EXPANDED COARSE DOMAIN GRID DIMENSION IN I DIRECTION : 76

EXPANDED COARSE DOMAIN GRID DIMENSION IN J DIRECTION : 86

GRID OFFSET IN I DIR DUE TO COARSE GRID EXPANSION : O

GRID OFFSET IN J DIR DUE TO COARSE GRID EXPANSION : O

DOMAIN ID : 1

MOTHER DOMAIN ID : 1

NEST LEVEL (O: COARSE MESH) : O

DOMAIN GRID DIMENSION IN I DIRECTION : 76

DOMAIN GRID DIMENSION IN J DIRECTION : 86

I LOCATION IN THE MOTHER DOMAIN OF THE DOMAIN POINT (1,1) : 1

J LOCATION IN THE MOTHER DOMAIN OF THE DOMAIN POINT (1,1) : 1

DOMAIN GRID SIZE RATIO WITH RESPECT TO COARSE DOMAIN : 1
: 1

REGRID Version 3 MM5 System Format Edition Number : 2

REGRID Program Version Number : 16

REGRID Program Minor Revision Number : 1

COARSE DOMAIN GRID DISTANCE (m) : 36000

COARSE DOMAIN CENTER LATITUDE (degree) : 47

COARSE DOMAIN CENTER LONGITUDE (degree) : 6

CONE FACTOR : 0.715567

TRUE LATITUDE 1 (degree) : 60

TRUE LATITUDE 2 (degree) : 30

POLE POSITION IN DEGREE LATITUDE : 90

APPROX EXPANSION (m) : 360000

GRID DISTANCE (m) OF THIS DOMAIN : 36000

2.8. USEFUL TOOLS

I LOCATION IN THE COARSE DOMAIN OF THE DOMAIN POINT (1,1)
J LOCATION IN THE COARSE DOMAIN OF THE DOMAIN POINT (1,1)

I LOCATION IN THE COARSE DOMAIN OF THE DOMAIN POINT (IX,JX)
J LOCATION IN THE COARSE DOMAIN OF THE DOMAIN POINT (IX,JX)
TERRAIN DATA RESOLUTION (in degree)
LANDUSE DATA RESOLUTION (in degree)

: 0.0833333
: 0.0833333

MM5 Version 3 MM5 System Format Edition Number : 1

MM5 Program Version Number :

MM5 Program Minor Revision Number : 1

FOUR-DIGIT YEAR OF START TIME :
INTEGER MONTH OF START TIME :

2004

DAY OF THE MONTH OF THE START TIME : 9
HOUR OF THE START TIME :

MINUTES OF THE START TIME :
SECONDS OF THE START TIME :

TEN THOUSANDTHS OF A SECOND OF THE START TIME : O
MKX: NUMBER OF LAYERS IN MM5 OUTPUT : 25

TIMAX:
TISTEP:
TAPFRQ:

Outputs:

Name
U

\

T

Q

CLW

RNW

ICE

SNOW
GRAUPEL
RAD TEND
W

PP
PSTARCRS

GROUND T
RAIN CON

RAIN NON

TERRAIN
MAPFACCR
MAPFACDT
CORIOLIS
RES TEMP

LATITCRS
LONGICRS
LAND USE
TSEASFC
PBL HGT
REGIME
SHFLUX
LHFLUX
UST

Dim. 1

N NNDNDN N N Wwwwwwwwwow

NNNDNDNDNDNDDNDN

76

76

76
76
76
76
76
76
76
76
76
76
76

76
76

76

76
76
76
76
76

76
76
76
76
76
76
76
76
76

86

86

86
86
86
86
86
86
86
86
86
86
86

86
86

86

86
86
86
86
86

86
86
86
86
86
86
86
86
86

SIMULATION END TIME (MINUTES)
COARSE-DOMAIN TIME STEP IN SECONDS : 100
TIME INTERVAL (MINUTES) THAT DATA WERE SAVED FOR GRIN : 60

25

25

25
25
25
25
25
25
25
25
26
25

Stag. Ord.

D YXS

D YXS

YXS
YXS
YXS
YXS
YXS
YXS
YXS
YXS
YXW
YXS
YX

oo

Q

YX

YX
YX
YX
YX
YX

QU oaaQn

YX
YX
YX
YX
YX
YX
YX
YX
YX

oo aQ

: 5760

Units
m/s

m/s

kg/kg
kg/kg
kg/kg
kg/kg
kg/kg
kg/kg
K/DAY
m/s
Pa

Pa

cm
cm

m
(DIMENSIONLESS)
(DIMENSIONLESS)
1/s

K

DEGREES
DEGREES
category

K

m
(DIMENSIONLESS)
W/m~2

W/m"2

m/s

45

1
1
: 76
: 86

Description

U COMPONENT OF
HORIZONTAL WIND

V COMPONENT OF
HORIZONTAL WIND
TEMPERATURE

MIXING RATIO

CLOUD WATER MIXING RATIO
RAIN WATER MIXING RATIO
CLOUD ICE MIXING RATIO
SNOW MIXING RATIO
GRAUPEL MIXING RATIO
ATMOSPHERIC RADIATION TENDENCY
VERTICAL WIND COMPONENT
PRESSURE PERTURBATION
(REFERENCE) SURFACE PRESSURE
MINUS PTOP

GROUND TEMPERATURE
ACCUMULATED CONVECTIVE
PRECIPITATION
ACCUMULATED NONCONVECTIVE
PRECIPITATION

TERRAIN ELEVATION

MAP SCALE FACTOR

MAP SCALE FACTOR
CORIOLIS PARAMETER
INFINITE RESERVOIR SLAB
TEMPERATURE

LATITUDE (SOUTH NEGATIVE)
LONGITUDE (WEST NEGATIVE)
LANDUSE CATEGORY

SEA SURFACE TEMPERATURE
PBL HEIGHT

PBL REGIME

SENSIBLE HEAT FLUX
LATENT HEAT FLUX
FRICTIONAL VELOCITY

46

SWDOWN
LWDOWN
SWouUT
LwOoUT

SOIL
SOIL
SOIL
SOIL
SOIL
SOIL
SOIL
SOIL
SOIL
SOIL
SOIL
SOIL W
CANOPYM
WEASD
SNOWH
SNOWCOVR
ALB
GRNFLX
VEGFRC
SEAICE
SFCRNOFF
UGDRNOFF
T2

Q2

U10

V10

ALBD
SLMO
SFEM
SFZ0
THERIN

SE=S=REERAA44
B WD R D WD RS WN R

SFHC
SCFX
SIGMAH

NNNNDNNNNDNDNNNDNDNNNONNDNDMNDNNNNNMNDNNDNDNDNDNDNDNDNDDNDND

N

76

76

76

76

76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
27
27
27
27
27

27
27
25

86

86

86

86

oo NN NN N N Es NI N NN NN No o NoNoNoNoNeo o]

H

YX

YX

YX

YX

YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
YX
CA
CA
CA
CA
CA

CA
CA

CHAPTER 2. USING POLYPHEMUS

W/m~2

W/m~2

W/m~2

W/m~2

~ X=X =

m~3/m"3
m~3/m"3
m~3/m"~3
m~3/m"3
m~3/m"3
m~3/m"~3
m~3/m"3
m~3/m"3

m

mm

m
fraction
fraction
W m{-2}
fraction
(DIMENSIONLESS)
mm

mm

K

kg kg{-1}
m s{-1}

m s{-1}
PERCENT
fraction
fraction
cm

100*cal cm™-2
K™-1 s~1/2
J m™-3 K™°-1
fraction
sigma

Total number of time steps read in the file: 97

For each variable is provided:

e its name;

e its number of dimensions;

e its length along dimension 1 (if applicable);

e its length along dimension 2 (if applicable);

e its length along dimension 3 (if applicable);

e its length along dimension 4 (if applicable);

SURFACE DOWNWARD SHORTWAVE
RADIATION

SURFACE DOWNWARD LONGWAVE
RADIATION

TOP OUTGOING SHORTWAVE
RADIATION

TOP OUTGOING LONGWAVE
RADIATION

SOIL TEMPERATURE IN LAYER
SOIL TEMPERATURE IN LAYER
SOIL TEMPERATURE IN LAYER
SOIL TEMPERATURE IN LAYER
TOTAL SOIL MOIS IN LYR 1
TOTAL SOIL MOIS IN LYR 2
TOTAL SOIL MOIS IN LYR 3
TOTAL SOIL MOIS IN LYR 4
SOIL LQD WATER IN LYR
SOIL LQD WATER IN LYR
SOIL LQD WATER IN LYR
SOIL LQD WATER IN LYR
CANOPY MOISTUR E CONTENT
WATER EQUIVALENT SNOW DEPTH
PHYSICAL SNOW DEPTH
FRACTIONAL SNOW COVER

ALBEDO

GROUND HEAT FLUX

VEGETATION COVERAGE

SEA ICE FLAG

SURFACE RUNOFF

UNDERGROUND RUNOFF

2-meter Temperature

2-meter Mixing Ratio

10-meter U Component

10-meter V Component

SURFACE ALBEDO

SURFACE MOISTURE AVAILABILITY
SURFACE EMISSIVITY AT 9 um
SURFACE ROUGHNESS LENGTH

[N N N N N N R N R VS

B W N -

SURFACE THERMAL INERTIA
SOIL HEAT CAPACITY

SNOW COVER EFFECT
VERTICAL COORDINATE

2.8. USEFUL TOOLS 47

e the position at which the variable is given (Stag.): dot points (D, corner of the grid
squares) or cross points (C, center of the grid squares);

e its dimensions ordering;
e its unit (or (DIMENSIONLESS));
e a short description.

Then you can use the program get_info MM5 to have statistical data about one of the variables.
Note that some variables have a blank space in their name so in that case you need to put the
name between quotes to use get_info MM5. If the name has no blank spaces, quotes are not
necessary but can be used.

~/TestCase/raw_data/MM5> get_info_MM5 MM5-2004-08-09 ’GROUND T’

Min: 271.911

Max: 327.747

Mean: 294.112

Std. dev.: 6.46779

~/TestCase/raw_data/MM5> get_info_MM5 MM5-2004-08-09 ALB

Min: 0.0738

Max: 0.8

Mean: 0.122658

Std. dev.: 0.0501975

Note that get_info MM5 only gives information on one field stored in the MM5 file.

2.8.4 Script call_dates

The script call dates allows to call a program (in particular for preprocessing) over several
consecutive days. Launch it without arguments to get help:

~/Polyphemus/utils> ./call_dates

Script "call_dates" calls a program over a range of dates.
Usage:

"call_dates" [program] {arguments} [first date] [second date / number of days]
Arguments:

[program] : program to be launched over the range of dates.

{arguments}: arguments. Any occurence of %D is replaced with the date;

otherwise the date is assumed to be the last argument.
[first date]: first date of the range of dates.
[second date / number of days]: last date of the range of dates
or number of days of this range.

Below is an example:

48 CHAPTER 2. USING POLYPHEMUS

~/Polyphemus/utils> call_dates echo "Current date:" 20060720 20060722

nice time echo Current date: 20060720

Current date: 20060720

0.00user 0.00system 0:00.00elapsed 0%CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (Omajor+176minor)pagefaults Oswaps

nice time echo Current date: 20060721

Current date: 20060721

0.00user 0.00system 0:00.00elapsed 0%CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (Omajor+177minor)pagefaults Oswaps

nice time echo Current date: 20060722

Current date: 20060722

0.00user 0.00system 0:00.00elapsed 200%CPU (Oavgtext+Oavgdata Omaxresident)k
Oinputs+Ooutputs (Omajor+177minor)pagefaults Oswaps

For each day, the command that is launched is shown (note that nice time has been prepended)
and its output is displayed below.

Please note that call_dates can only process dates given in the format YYYYMMDD and
not any of the other formats given in the Section D.7.

2.8.5 Other Utilities

The program check_observation checks that the content of an observation data file is consis-
tent with Polyphemus conventions. This program can identify several problems in the data files.
Launch check_observation -h to get help.

Many other utilities to be compiled with scons.py are provided to manipulate binary and
text files. Below are short descriptions of these utilities:

e add_float: adds two single-precision binary files;

e add nb_float: adds a number to a single-precision binary file;

e double_to_float: converts a double-precision binary file to a single-precision binary file;
e float_to_text: converts a single-precision binary file to a text file;

e mult nb_float: multiplies a single-precision binary file by a given number;

e reverse: switch from big-endian to little-endian, or vice versa;

e subtraction_float: subtracts two single-precision binary files;

e text_to_float: converts a text file to a single-precision binary file.

To get further help on a program, launch this program without arguments. It will print help
on screen.

Three Python scripts are provided for convenience:

2.9. ENSEMBLE GENERATION 49

e replace_string which performs string replacement in one or more files;
e apply_on files which applies a given command to a list of files;

e format which formats a source code to meet certain requirements of Polyphemus coding
standards.

Launch these programs with option -h to get help.

2.9 Ensemble Generation

In directory utils/ensemble _generation/, the Python module ensemble_generation is pro-
vided. It helps generating ensembles of any size.

2.9.1 Requirements

About dsh dsh is an implementation of a wrapper for executing multiple remote shell com-
mands. Further information about this tool is available on the web site http://www.netfort.
gr.jp/~dancer/software/dsh.html.en. You have to create a directory $HOME/.dsh/group
and put a file in it with the list of hosts. Each line of this file has to contain a host name.

To check that dsh is working, one may for instance check the number of CPUs of each host:

dsh -g all -r ssh -Mc "cat /proc/cpuinfo | grep “processor | wc -1"

where all is the name of the file where you have the hosts list ($HOME/.dsh/group/all).

Installation You do not have to compile anything but you must add the path
utils/ensemble_generation/ to your environment variable PYTHONPATH. Then, you can load
the module with:

from ensemble_generation import *
Note: This tools library is written in Python and uses the library AtmoPy. The shell Bash is
also required.

2.9.2 Configuration Files

Ensemble Parameters The file parameter.cfg is used to design the ensemble. It contains
four sections: general, physic, numeric and input_data. In the section general, you have
some general information about the simulation like in the configuration file general.cfg:

date_min: 2001-04-22 date_max: 2001-04-30

x_min = -10. Delta_x = 2. Nx = 16
36. Delta_y = 2. Ny = 11

y_min

Moreover, you have to specify the number of models in your ensemble and two directories
where the preprocessing results (data_dir) and the models results (model dir) will be stored:

Nmodel = 25

data_dir: /nfs/polyphemus/user/work/ensemble/2001/data
model_dir: /nfs/polyphemus/user/work/2001/ensemble

http://www.netfort.gr.jp/~dancer/software/dsh.html.en
http://www.netfort.gr.jp/~dancer/software/dsh.html.en

50 CHAPTER 2. USING POLYPHEMUS

For the sections physics and numerics, you have to specify the name of the physical pa-
rameterizations and the numerical approximations. In the both sections, you have to specify the
multiple choices for each parameter. Moreover, it is possible to give the occurrence frequency
for each choice. You may add the keyword preprocessing to indicate that this parameter takes
part to preprocessing.

[physics]

luc: usgs (50), glcf (50) preprocessing
chemistry: racm (60), radm (40)
deposition_velocity: zhang, wesely preprocessing
kz: tm - louis preprocessing
[numerics]

time_step: 600. (90), 1800. (10)
vertical_resolution: 5 (70) - 9 (30) preprocessing
with_air_density: yes, no

You must specify the occurrence frequency between brackets just after a parameter value. You
can separate the values by a coma or a dash. You do not have to specify the occurrence frequency
every time. In this case, the random choice will be uniform. Nevertheless you can not specify
the occurrence frequency just for one value. For example:

deposition_velocity: zhang (75), wesely preprocessing

is wrong.

For the perturbations of input data, you have to specify the name of the field which will
perturbed, the uncertainty encompassing 95% of all possible values and the type of distribution.
For a normal distribution, the random choice will be made between the raw field, the raw field
minus the standard deviation and the raw field plus the standard deviation.

[input_datal

Name # Uncertainty # Law
wind_velocity: 1.3 log-normal
wind_angle: 40. normal
temperature: 3. normal
emissions_NOx: 1.5 log-normal
dep: 2. log-normal

Each randomly built model has its own identity. The model identity is a list of integers.
Each integer represents a physical parameterization, a numerical approximation or a perturbed
input field. The value of each integer represents a parameter value. Assume you have this
configuration file:

[physic]

2.9. ENSEMBLE GENERATION ol

luc: usgs, glcf preprocessing
chemistry: racm, radm

[numeric]

time_step: 600., 1800.
vertical_resolution: 5, 7, 9 preprocessing
first_layer_height: 40., &0. preprocessing

[input_datal

temperature: 3. normal
wind_angle: 40. normal
wind_velocity: 1.5 log-normal
emissions_NOx: 1.5 log-normal

You have nine different parameters. The model identity 010210221 represents:

0 luc usgs

1 chemistry radm

0 time step 600 s

2 | vertical resolution 7

1 | first layer height 50 m

0 temperature raw field

2 wind angle raw field + 20 degrees
2 wind velocity raw field * 1.24

1| NO, emissions raw field * 0.82

Ensemble Programs The configuration file program.cfg contains the names of the pro-
grams, their dependencies and an integer which gives the group index. A list of programs with a
group index equal to 0 will be launched before an other list of program with a group index equal
to 1. The dependencies are the names of physical parameterizations or numerical approxima-
tions which are going to change the preprocessing results. For example, the deposition velocities
from the program dep depend on the LUC, the vertical resolution, the first layer height and
a physical parameterization (zhang or wesely). The results will depend on the values of each
parameter. Each program belongs to a specific section. The section general must contain the
path to the directory where all generic configuration files are. In the other sections, before each
programs list, you have to specify the directory that contains the generic configuration files.

[generall

home: /home/garaud

generic_cfg: <home>/src/ensemble_generation/example/configuration
[ground]

config_directory: <generic_cfg>/preprocessing/ground
luc: luc 0

52 CHAPTER 2. USING POLYPHEMUS

roughness: luc 10

[meteo]

config_directory: <generic_cfg>/preprocessing/meteo

meteo: vertical_resolution, first_layer_height 20

Kz: luc, vertical_resolution, first_layer_height, min_kz 40
Kz_TM: luc, vertical_resolution, first_layer_height, min_kz, apply_vert 50
[dep]

config directory: <gemneric_cfg>/preprocessing/dep
dep: luc, vertical_resolution, first_layer_height, deposition_velocity 40

Each dependency has to match a physical parameterization or a numerical approximation de-
scribed in the configuration file parameter.cfg.

In the generic configuration files, you have a lot of variables between % which will be replaced
by certain values according to the model identity. For example, the generic configuration file
meteo.cfg contains:

[paths]
LUC_file: <Directory_ground_data>/%luc_dir%/LUC-<LUC_origin>.bin
Directory_meteo: <Directory_computed_fields>/meteo/Ymeteo_dir’/

[(Kz]
Min = Ymin_kz%
Apply_vert: Yapply_vert,

The preprocessing results will be stored in different directories named after the values of the
parameters. For example, the program Kz may output results in:

/home/garaud/results/data/meteo/Kz/usgs/Nz-5/£1h-40/min-0.2/

2.9.3 Quick Start

Ensemble Generation You can quickly build an ensemble of models with these three Python
lines:

from ensemble_generation import *

p = EnsembleParameter(’parameter.cfg’)
p.GenerateIdEnsemble ()

You can save your ensemble identities in a file or load them from a file with these two methods:

p.WriteIdEnsembleFile(’id_ensemble.dat’)
p-ReadIdEnsembleFile(’id_ensemble.dat’, copy = True)

2.9. ENSEMBLE GENERATION 93

Programs Launching You can launch several Polyphemus programs with the class
EnsembleProgram. First, you can implement an object based on ConfigReplacement in the file
modules/ConfigReplacement.py. This class contains four different methods which return dic-
tionaries:

e GetConfigVariable

— keys: The variables between % in the generic configuration files.

— values: The names of the parameters values and the directories where the prepro-
cessing results will be stored. These values depend on the model identity.

o GetDefaultDict

— keys: The names of the parameters in the configuration file parameter.cfg

— values: The default values of parameters which would not appear in the configura-
tion file.

e GeBinaryFile

— keys: The names of the programs.

— values The names of the binary files generated by the programs.
e GetPerturbedFieldList

— keys: The variables between % in the generic configuration file perturbation.cfg.

— values: The name of the perturbed fields, the uncertainties and the types of distri-
bution (normal or log-normal).

For example:

In[1]: d = ConfiReplacement.GetConfigVariable(model_index = 0, ensemble_program)

In[2]: d

Out [2] :

{’%Date%’: 2200104227,

YN s 0167,

YUNy%R s 2117,

>%hluct’: ’usgs’,

>Yideph’: ’wesely’,

*%luc_dir’,’: ’luc/usgs’,
*Ydep_dir%’: ’dep/usgs/Ns-5/wesely’
}

Your class ConfigReplacement must contain these four methods and an empty constructor.
Then, you can launch your Polyphemus programs:

from ensemble_generation import *
Reads the configuration files.
epr = EnsembleProgram(’parameter.cfg’, ’program.cfg’,

only_preprocessing = True)

Sets the Polyphemus directory.

54 CHAPTER 2. USING POLYPHEMUS

epr.SetPolyphemusDirectory(’ /home/garaud/src/polyphemus’)

Generates a new ensemble.
epr.parameter.GenerateIdEnsemble ()

Sets the ConfigReplacement object.
config_replacement = modules.ConfigPolair3D()
epr.SetConfigReplacement (config_replacement)

Gets an instance ’Polyphemus’ and creates all directories where you
will have the results.
ens = epr.GetEnsemble(group = ’polyphemus’)

Gets the available hosts from your hosts list (in the file
’$HOME/.dsh/group/polyphemus’) .
load_averages = ens.net.GetAvailableHosts()

You can launch all programs.
ens.RunNetwork ()

Chapter 3

Preprocessing

This chapter introduces all preprocessing programs. It details the input files (data files and
configuration files) of every program, and it describes their output files. In Section 3.2, config-
urations and features shared by almost all programs are explained.

3.1 Remark

In the descriptions of preprocessing programs, there are references to functions like
ComputePressure, ComputeAttenuation LWC, etc. These functions are part of AtmoData and
are described in AtmoData scientific documentation |)].

3.2 Introduction
3.2.1 Running Preprocessing Programs
Most preprocessing programs:
e accept one or two configuration files as arguments;

e append their results at the end of binary files (if they already exist) or create them. Note
that they cannot create the directory so you have to make sure it exists before launching
a preprocessing program.

For instance, program meteo processes meteorological data over one day. To generate data
from day 2001-05-19 to day 2001-05-21, one should launch:

./meteo ../general.cfg meteo.cfg 2001-05-19
./meteo ../general.cfg meteo.cfg 2001-05-20
./meteo ../general.cfg meteo.cfg 2001-05-21

Another option is to use the script call_dates (see Section 2.8.4). In that case, to generate
data from day 2005-05-19 to day 2005-05-21, one should launch:

../../utils/call_dates ./meteo ../general.cfg meteo.cfg 20050519 20050521
or

../../utils/call_dates ./meteo ../general.cfg meteo.cfg 20050519 3

95

56 CHAPTER 3. PREPROCESSING

Remember that the results are appended at the end of the output files if they already exist.
If you decide to recompute your fields from the first day, you have to first remowve old output
binary files.

In order to know what are the arguments of a program, you may launch it without arguments.
For instance

emissions> ./emissions

Usage:
./emissions [main configuration file] [secondary configuration file] [date]
./emissions [main configuration file] [date]
./emissions [date]

Arguments:
[main configuration file] (optional): main configuration file. Default: emissions.cfg
[secondary configuration file] (optional): secondary configuration file.
[date]: date in any valid format.

3.2.2 Configuration

Almost all programs require the description of the domain over which computations
should be performed. Since this configuration is shared by many programs, it is put
in a common configuration file called general.cfg. An example of such a file is
Polyphemus/preprocessing/general.cfg, whose content is quoted below:

[general]

Home: /u/cergrene/0/bordas

Directory_computed_fields: <Home>/B/data
Directory_ground_data: <Directory_computed_fields>/ground
Programs: <Home>/codes/Polyphemus-HEAD

[domain]

Date: 2001-01-02
Delta_t = 3.0

x_min = -10.0 Delta_x
y_min = 40.5 Delta_y
Nz =5

Vertical_levels: <Programs>/levels.dat

0.5 ©Nx = 65
0.5 Ny = 33

Entries in section [general] are markups provided for convenience. See Section 2.5.2 for
further explanations.

3.2. INTRODUCTION o7

The section [domain] contains the domain (in space and time) description.

Date

Delta_t
Xx_min

Delta x

Nx

y_min

Delta.y

Ny

Nz

Vertical_ levels

[domain]
The date at which the simulation (of the chemistry-transport model) is start-
ing. It is also the date at which meteorological data (processed by Polyphe-
mus — output from programs meteo, MM5-meteo or WRF-meteo) starts. As a
consequence, any program that needs to read this meteorological data refers
to this date. The date must be in a format described in Section D.7.
Time step in hour of output meteorological data processed by Polyphemus.
Abscissa of the center of the lower-left cell. It is usually in longitude (de-
grees).
Step length along x, usually in degrees (longitude).
Number of cells along x (integer).
Ordinate of the center of the lower-left cell. It is usually in latitude (degrees).
Step length along y, usually in degrees (latitude).
Number of cells along y (integer).
Number of vertical levels (integer).
Path to the file that defines vertical levels interfaces in m.

3.2.3 Dates

Many preprocessing programs require a starting and end date. In that case, the starting date
must always be provided in command line, but there are three possibilities for the end date:

1. provide an end date in any valid format (see Section D.7), e.g.

./dep ../general.cfg dep.cfg 2004-08-09_12-00-00 2004-08-11_06-00-00

2. provide a duration in format NdMh or Nd-Mh for N days and M hours. Alternatively, you
can put a duration of Mh for M hours or Nd for N days. Valid duration can be, for instance,
3d5h, 2d-8h, 5d or 14h, e.g.

./dep ../general.cfg dep.cfg 2004-08-09_12-00-00 1d-12h

3. provide no end date nor duration. In that case a duration of one day is used, e.g.

./dep ../general.cfg dep.cfg 2004-08-09_12-00-00

Please note that in all three cases the end date is excluded. The advantage of it is that, if
for whatever reason you want to use the preprocessing program several times in a row, you can
use the end date as the starting date for the next time.

The number of iterations is computed from the interval between the starting and end dates
and from the time step you provided in the general configuration file.

The first date given in command line is the date at which the preprocessing starts this time.
It might differ from the date given in general.cfg if the preprocessing program is launched
several times in a row, for example because the meteorological data file does not cover the whole

time span of the simulation.

58 CHAPTER 3. PREPROCESSING

3.2.4 Data Files

Polyphemus reads ECMWF Grib files, MM5 files, NetCDF files (for WRF files or Mozart 2),
text files and binary files. All files generated by Polyphemus are text files or binary files.

Unless specified otherwise, all binary files store single-precision floating-point numbers. They
do not contain any header. Each binary file only stores the values of a single field. Four-
dimensional fields are stored this way:

Loop on time t
Loop on z
Loop on y
Loop on x

Let this storage be symbolized by {t, z,y,x}. Dimensions ¢, z, y and = always appear in this order.
For instance, three-dimensional fields may be stored in formats {z,y,x} or {¢,y,z}, {t,z, 2} or

{t,z,y}.

3.3 Ground Data

Computing ground data is the first step of a preprocessing as they are necessary to pro-
cess meteorological fields. All programs related to ground-data generation are available in
Polyphemus/preprocessing/ground.

The first step should be program luc-usgs or luc-glcf depending on what raw data you
have. Land use data may come from the US Geological Survey (USGS), from the Global Land
Cover Facility (GLCF), or from the Global Land Cover 2000 Project (GLC 2000).

3.3.1 Land Use Cover — GLCEF: luc-glcf

In order to prepare land use cover from GLCF, one should use program luc-glcf. It is rec-
ommended to download the global land use cover file at 1 km resolution provided in latitude—
longitude coordinates and with extension .bsgq.

At the time this documentation is written, the file is available at:

ftp://ftp.glcf.umiacs.umd.edu/glcf/Global_Land_Cover/Global/
gl-latlong-1km-landcover/gl-latlong-1lkm-landcover.bsq.gz (single line, no white
space — you may use wget to download it, or copy and paste the URL in your favorite browser).

You need to uncompress this file (e.g., gunzip gl-latlong-1km-landcover.bsq.gz).

In case the file has been moved, try to find it from http://glcfapp.glcf.umd.edu:8080/
esdi/index. jsp. Select “Product Search”, then “AVHRR, Global Land Cover Product” and
finally use:

e Region: Global
e Projection: Lat/Long
e Resolution: 1 km

Click on “Download” and select the file gl-latlong-1km-landcover.bsq.gz.

Finally you have to fill the configuration file luc-glcf.cfg. Note that the default values in
section [GLCF] are for file gl-latlong-1km-landcover.bsq: there is no need to change them
if you downloaded this recommended file.

ftp://ftp.glcf.umiacs.umd.edu/glcf/Global_Land_Cover/Global/gl-latlong-1km-landcover/gl-latlong-1km-landcover.bsq.gz
ftp://ftp.glcf.umiacs.umd.edu/glcf/Global_Land_Cover/Global/gl-latlong-1km-landcover/gl-latlong-1km-landcover.bsq.gz
http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp
http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp

3.3. GROUND DATA

99

Database_luc-glcf

LUC_in

Directory_luc-glcf
LUC_out

Step
xmin
y_min
Nx
Ny
Nc
Shift

[paths]
Directory where the raw data from GLCF can be found (directory
where gl-latlong-1km-landcover.bsq lies).

Name of the file containing raw data (i.e.
gl-latlong-1km-landcover.bsq or its new name if you re-
named it).

Output directory.
Output filename. The default filename LUC-glcf.bin is recom-
mended for clarity.

[GLCF]
Space step in degrees in GLCF input file.
Minimum longitude in the input file (degrees).
Minimum latitude in the input file (degrees).
Number of cells along longitude in the input file.
Number of cells along latitude in the input file.
Number of land use categories.
Starting index of LUCs. 0 for GLCF.

The output land-cover file is in format {c,y, x} where ¢ stands for (land use) category.

Table 3.5 presents land-use categories as they are computed with luc-glcf.

Table 3.3: Land-use categories in GLCF description.

S
i
D

Label

0O T W+~ O

Water.

Evergreen Needleleaf Forest.
Evergreen Broadleaf Forest.
Deciduous Needleleaf Forest.
Deciduous Broadleaf Forest.
Mixed Forest.

Woodland.

Wooded Grassland.

Closed Shrubland.

Open Shrubland.

Grassland.

Cropland.

Bare Ground.

Urban and Built.

Program luc-glcf does not require any date as an input in command line. To launch

luc-glct, just type:

./luc-glcf ../general.cfg luc-glcf.cfg

3.3.2 Land Use Cover — GLC 2000: luc-glcf

In order to prepare land use cover from GLC 2000, one should use program luc-glcf. It is
recommended to download the global land use cover file at 1 km resolution with extension .bil.

60 CHAPTER 3. PREPROCESSING

At the time this documentation is written, the file is available at: http://forobs.jrc.ec.
europa.eu/products/glc2000/glc2000. php.

Select “Global Product” and “Binary” fily type. The file name to download is g1c2000_v1_1 Bil.zip.
You need to uncompress this file unzip glc2000_v1_1 Bil.zip. A new folder Bil will be cre-
ated. In this folder, the file g1c2000_v1_1.bil is found and used for Polyphemus simulations.

Finally you have to fill the configuration file 1uc-gl1c2000.cfg. Note that the default val-
ues in section [GLCF] are for file g1c2000_v1_1.bil: there is no need to change them if you
downloaded this recommended file.

[paths]
Database_luc-glcf Directory where the raw data from GLC 2000 can be found (di-
rectory where glc2000_v1_1.bil lies).
LUC_in Name of the file containing raw data (i.e. glc2000_vi_1.bil or
its new name if you renamed it).
Directory_luc-glct Output directory.
LUC_out Output filename. The default filename LUC-gl1c2000.bin is rec-

ommended for clarity.

[GLCF]
Step Space step in degrees in GLCF input file.
x_min Minimum longitude in the input file (degrees).
y-min Minimum latitude in the input file (degrees).
Nx Number of cells along longitude in the input file.
Ny Number of cells along latitude in the input file.
Nc Number of land use categories.
Shift Starting index of LUCs. 1 for GLC 2000.

The output land-cover file is in format {c,y, x} where ¢ stands for (land use) category.

Table 3.5 presents land-use categories as they are computed with luc-glc2000.

Table 3.5: Land-use categories in GLCF description.

5
o
D

Label

Tree Cover, broadleaved, evergreen

Tree Cover, broadleaved, deciduous, closed
Tree Cover, broadleaved, deciduous, open

Tree Cover, needle-leaved, evergreen

Tree Cover, needle-leaved, deciduous

Tree Cover, mixed leaf type

Tree Cover, regularly flooded, fresh water

Tree Cover, regularly flooded, saline water
Mosaic: Tree Cover / Other natural vegetation
Tree Cover, burnt

Shrub Cover, closed-open, evergreen

Shrub Cover, closed-open, deciduous
Herbaceous Cover, closed-open

Sparse herbaceous or sparse shrub cover
Regularly flooded shrub and/or herbaceous cover
Cultivated and managed areas

© 00 O Ui WK

[E—
= O

[
T W N

—_
D

http://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php
http://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php

3.3. GROUND DATA

17
18
19
20
21
22
23

61

Mosaic: Cropland / Tree Cover / Other natural vegetated areas
Mosaic: Cropland / Shrub and/or grass cover

Bare Areas

Water Bodies

Snow and Ice

Artificial surfaces and associated areas

Unknown (missing data)

Program luc-glcf does not require any date as an input in command line. To launch

luc-glct, just type:

./luc-glcf ../general.cfg luc-glc2000.cfg

3.3.3 Land Use Cover — USGS: luc-usgs

For a simulation over Europe, program luc-usgs requires two files found at http://edcsns17.

cr.usgs.gov/glcc/:

e USGS Land Use/Land Cover Scheme for Eurasia in Lambert Azimuthal Equal Area Projec-
tion (optimized for Europe) available at http://edcftp.cr.usgs.gov/pub/data/glcc/
ea/lamberte/eausgs2_0le.img.gz in compressed format.

e USGS Land Use/Land Cover Scheme for Africa in Lambert Azimuthal Equal Area Projec-
tion available at http://edcftp.cr.usgs.gov/pub/data/glcc/af/lambert/afusgs2_01.
img.gz in compressed format.

The configuration file luc-usgs.cfg requires:

Database_luc-usgs
LUC_in_ea

LUC_in_af
Directory_luc-usgs
LUC_out

Step
lon_origin_ea
lat_origin_ea
lon_origin_af
lat_origin_af
lon_upper_left_ea
lat_upper_left_ea
lon_upper_left_af
lat_upper_left_af
Nx_ea

Nx_af

Ny_ea

Ny_af

Nc

Sea_index

[paths]
Directory where the raw data from USGS can be found.
Input file containing raw data for Eurasia (eausgs2 Ole.img).
Input file containing raw data for Africa (afusgs2_0l.img).
Output directory.
Output file name. The default filename LUC-usgs.bin is recom-
mended for clarity.

[USGS]
Space step in meters.
Longitude of the center of lower-right cell for Eurasia.
Latitude of the center of the lower-right cell for Eurasia.
Longitude of the center of the lower-right cell for Africa.
Latitude of the center of the lower-right cell for Africa.
Longitude of the center of the upper-left cell for Eurasia.
Latitude of the center of the upper-left cell for Eurasia.
Longitude of the center of the upper-left cell for Africa.
Latitude of the center of the upper-left cell for Africa.
Number of cells along longitude in the input file for Eurasia.
Number of cells along longitude in the input file for Africa.
Number of cells along latitude in the input file for Eurasia.
Number of cells along latitude in the input file for Africa.
Number of land categories.
Index of the sea in land categories (normally 15).

http://edcsns17.cr.usgs.gov/glcc/
http://edcsns17.cr.usgs.gov/glcc/
http://edcftp.cr.usgs.gov/pub/data/glcc/ea/lamberte/eausgs2_0le.img.gz
http://edcftp.cr.usgs.gov/pub/data/glcc/ea/lamberte/eausgs2_0le.img.gz
http://edcftp.cr.usgs.gov/pub/data/glcc/af/lambert/afusgs2_0l.img.gz
http://edcftp.cr.usgs.gov/pub/data/glcc/af/lambert/afusgs2_0l.img.gz

62 CHAPTER 3. PREPROCESSING

The output land-cover file is in format {c,y, x} where ¢ stands for (land use) category.

Table 3.7 presents land-use categories as they are computed with luc-usgs, that is to say
with indices starting at 0.

Table 3.7: Land-use categories in USGS description.

Value Label

0 Urban and Built-Up Land.

1 Dryland Cropland and Pasture.
2 Irrigated Cropland and Pasture.
3 Mixed Dryland/Irrigated Cropland and Pasture.
4 Cropland/Grassland Mosaic.

5 Cropland/Woodland Mosaic.

6 Grassland.

7 Shrubland.

8 Mixed Shrubland/Grassland.

9 Savanna.

10 Deciduous Broadleaf Forest.

11 Deciduous Needleleaf Forest.

12 Evergreen Broadleaf Forest.

13 Evergreen Needleleaf Forest.

14 Mixed Forest.

15 Water Bodies.

16 Herbaceous Wetland.

17 Wooded Wetland.

18 Barren or Sparsely Vegetated.
19 Herbaceous Tundra.

20 Wooded Tundra.

21 Mixed Tundra.

22 Bare Ground Tundra.

23 Snow or Ice.

Program luc-usgs does not require any date as an input in command line. To launch
luc-usgs, just type:

./luc-usgs ../general.cfg luc-usgs.cfg

3.3.4 Conversions: luc-convert

The output of luc-glcf or luc-usgs are land use cover described with GLCF, GLC 2000 or
USGS categories. It is often useful to convert these descriptions to another set of land use
categories. This means, for example, summing up the contributions of sparsely vegetated and
bare ground tundra (USGS categories #19 and #22) to estimate the proportion of barren land
in Wesely description (category #8). An input category may also be split into several output
categories. In practice, one may want to convert in Wesely or Zhang land use cover using
luc-convert. In particular it is necessary to convert land data from USGS or GLCF to Zhang
categories before computing deposition velocities with program dep (see Section 3.5.1).

In addition to the domain definition (Section 3.2.2), below is the information required in the
configuration file (or configuration files) for luc-convert:

3.3. GROUND DATA

63

Database_luc-convert
File_in
Directory_luc-convert

File_out

Nc_in
Nc_out

[paths]
Directory where the input file (input land use categories) is located.
Input file name (in Database_luc-convert).
Directory where the output file (output land use categories) should
be stored.
Output file name (in Directory_luc-convert).

[dimensions]
Number of land categories in the input format.

Number of land categories in the output format.

[coefficients]

Correspondence matrix between input land categories and output land categories.

Each line corresponds to an input category. Each line contains: the index of the category
(or any number: this first column is not read) and the distribution of the input category
in all output categories (columns). The distribution is a set of numbers in [0, 1]

whose sum should be 1.

Several configuration files are provided to convert GLCF or USGS categories to We-
sely or Zhang categories: glcf_to_wesely.cfg, glcf_to_zhang.cfg, g1c2000_to_wesely.cfg,
g1c2000_to_zhang.cfg, usgs_to_wesely.cfg and usgs_to_zhang.cfg.

The output land-cover file is in format {c¢,y,x} where ¢ stands for (land use) category.

The conversion can be launched with:

./luc-convert ../general.cfg usgs_to_wesely.cfg

3.3.5 Roughness: roughness

After land use cover has been computed, roughness data can be estimated, using program

roughness.
[domain]
Nx Number of grid points along longitude.
Ny Number of grid points along latitude.
[paths]
LUC_file File where the land use cover data are stored (e.g., computed using

Directory_roughness
Roughness_out

Roughness_data_file

luc-glcf or luc-usgs).
Directory where the output file will be stored.
Output file name.

[datal
Path to the file giving the roughness of land categories. This file
should be a text file with three columns: the land category in-
dex (starting at 0), the roughness height (in m) and the cate-
gory name. Two examples are provided: roughness-glcf.dat
and roughness-usgs.dat

A field named LUC_origin is also defined. It is used for markup substitution in the various

64 CHAPTER 3. PREPROCESSING

filenames. The value of this field must be glcf or usgs.
The program may be launched with:

./roughness ../general.cfg roughness.cfg

Section [domain] is in general.cfg and the other sections are read in roughness.cfg.

3.3.6 LUC for emissions: extract-glcf

This program is only necessary in order to generate anthropogenic emissions from EMEP in-
ventories (see Section 3.6.2). The output is the land category (read from GLCF global land-use
classification, gl-latlong-1km-landcover.bsq) over a subdomain. Make sure that the out-
put domain (described in section [subdomain] of the configuration file) entirely contains your
simulation domain.

The configuration file should contain (see example extract-glcf.cfg):

[paths]
File_GLCF GLCF input file (global). It is the same as the one used for
luc-glcft.
File_out Output file. That is, the file given in section [LUC] of

emissions.cfg.

[GLCF]
xmin Minimum longitude of the GLCF domain (whole world).
Nx Number of steps along the longitude.
y-max Maximum latitude of the GLCF domain (whole world).
Ny Number of steps along the latitude.
Step Space step (in degrees) of the input GLCF file. The output file

will have the same resolution.

[subdomain]
X_min Minimum longitude of the subdomain.
Nx Number of steps along the longitude.
y_min Minimum latitude of the subdomain.
Ny Number of steps along the latitude.

The program may be launched with
./extract-glcf ../general.cfg extract-glcf.cfg

Note that the file ../general.cfg is not compulsory providing no markup from it is used in
extract-glcf.cfg.
The output is a binary file of integers between 0 and 13.

3.4 Meteorological Fields

3.4.1 Program meteo

Program Polyphemus/preprocessing/meteo/meteo reads ECMWEF Grib files and generates
meteorological fields required by chemistry-transport models. Most fields are interpolated from
ECMWF grid to a regular grid (latitude/longitude in the horizontal, altitudes in meters in the
vertical). It is assumed that ECMWF input data are stored in daily Grib files. That is why

3.4. METEOROLOGICAL FIELDS 65

this program (as well as Kz) only processes data daily and requires only one date as an input in
command line. To extract Grib files, Polyphemus uses the WGRIB package whose a compatible
version should now be included in our distribution package as explained in Section 1.3.4.

Note that meteo needs as input data the land use cover which can be built using programs

in preprocessing/ground/.

The reference configuration files for meteo is Polyphemus/preprocessing/meteo/meteo.cfg
together with Polyphemus/preprocessing/general.cfg.

66

CHAPTER 3. PREPROCESSING

In addition to the domain definition, below are options of meteo:

Database_meteo

Roughness_in

FastJ parameter_files

Directory_meteo
Directory_attenuation

[paths]
Directory in which ECMWEF input files may be found. It is as-
sumed that ECMWF file names are in format ECMWF-YYYYMMDD
where YYYY is the year, MM the month and DD the day. If program
meteo is launched for a day D, ECMWF data files for days D-1
and D must be available. Data for day D-1 are needed to process
cumulated data (e.g., solar radiation).
Path to the binary file that describes roughness heights (in meters)
in ECMWF grid cells. Its format is {y,z}. It is needed only if
option Richardson with roughness is activated.
Path to the directory where the photolysis rate model (FastJ) and
its parameter files can be found.
Directory where output meteorological files are stored.
Directory where output attenuation files are stored

Directory_photolysis_rates Directory where output files related to photolysis rate calculation

Date

tmin
Delta_t
Nt
x_min

Delta x
Nx
y_min
Delta.y

Ny
Nz

Compute_Meteo
Richardson_with_roughness

Accumulated_time

Accumulated_index

are stored

[ECMWF]
Date at which the meteorological file begins. It is referred as &D
which is the date given in command line because it is supposed
that ECMWEF Grib files store data daily.
First hour stored in the Grib file.
Time step (in hour) of data stored in every ECMWF file.
Number of time steps stored in every ECMWF file.
Longitude in degrees of the center of the lower-left cell in ECMWF
grid.
Step length (in degrees) along longitude of ECMWF grid.
Number of cells along longitude (integer) in ECMWF grid.
Latitude in degrees of the center of the lower-left cell in ECMWF
grid.
Step length (in degrees) along latitude of ECMWEF grid.
Number of cells along latitude (integer) in ECMWF grid.
Number of vertical layers (integer) in ECMWEF grid.

[meteo]
Should meteo data be computed ?
Should the surface Richardson number be computed taking into
account roughness height?

[accumulated_datal
For data storing values cumulated in time (e.g., solar radiation),
length number of time steps over which data is cumulated.
Start index of the first complete cycle of cumulated data. Data
is then cumulated from t.min plus Accumulated_index times
Delta_t.

[photolysis rates]

3.4. METEOROLOGICAL FIELDS 67

Compute Photolysis Data Should photolysis rate related data be computed ?

Photolysis_option options for photolysis rate computation. 3 choices are available
: put 1 for attenuation (compute cloud attenuation, a coefficient
that range between 0 and 2), put 2 for photolysis rate computation
in the meteo prepocessing stage, or put 3 if photolysis rates are to
be computed on-line in the processing stage (then only cloud and
ice optical depth are computed).

Attenuation_Type Parameterization to be used to compute cloud attenuation for Pho-
tolysis_option 1. Put 1 to use RADM parameterization or put 2 to

use ESQUIF parameterization.
Species List of photolysis rates output for Photolysis_option 2.

Ice_cloud If Photolysis_option 2 or 3 is chosen, should ice cloud data be taken

into account ?

[clouds]

Critical_relative humidity T'wo options are available for computing critical relative humidity:

1 for sigma parametrisation and 2 for two_layers parametrisation
Min height Minimum cloud basis height in m.

To launch the program, just type :
./meteo ../general.cfg meteo.cfg 2001-04-22

The program basically reads data in the ECMWEF Grib file and interpolates it in time and
space to Polyphemus grid. ECMWF data is described in meteo.cfg and Polyphemus grid is
described in general.cfg. For the sake of simplicity, it is recommended to work with ECMWF
files containing data for one day. Program meteo should be called for each day (preferably from
Oh to 24h), that is, for each available ECMWF file (except the first one — see below). If ECMWF
files are not provided on a daily basis, it is recommended to contact the Polyphemus team at
polyphemus-help@lists.gforge.inria.fr.

In order to process the ECMWEF file for a given day, the ECMWF file for the previous day
must be available. Indeed, ECMWF files contain data that is accumulated over several time
steps (like rain), and values from previous steps (including from the previous day) must be
subtracted to get the actual value of the field.

Here is the list of input data needed in ECMWF files (with their Grib code): surface temper-
ature (167), skin temperature (235), surface pressure (152), temperature (130), specific humidity
(133), liquid water content (246), ice water content (247) (if Ice_cloud = true), medium cloudi-
ness (187), high cloudiness (188), meridional wind (132), zonal wind (131), zonal friction velocity
(180), meridional friction velocity (181), solar radiation (169), boundary layer height (159), soil
water content (39), sensible heat (146), evaporation (182).

The list of output variables is: pressure, surface pressure, temperature, surface temper-
ature, skin temperature, Richardson number, surface Richardson number, specific humidity,
liquid water content, ice water content (if Ice_cloud = true), solar radiation, photosynthetically
active radiations (direct beam, diffuse and total), zonal wind, meridional wind, wind module,
wind friction module, boundary layer height, soil water content, evaporation, sensible heat,
first-level wind module, rain intensity (in mmh~!, convective rain intensity, cloud height and
photolysis rates data (attenuation factors, photolysis rates or cloud optical depths depending on
Photolysis_option).

polyphemus-help@lists.gforge.inria.fr

68 CHAPTER 3. PREPROCESSING

Inside meteo, ECMWF variables are decumulated (in time) if necessary. Pressures at
ECMWEF levels are computed with ComputePressure and altitudes are computed with ComputeInterfHeight
and ComputeMiddleHeight. Richardson number is then estimated with ComputeRichardson.
Cloud data are then computed: the relative humidity and the critical relative humidity are com-
puted respectively with ComputeRelativeHumidity and ComputeCriticalRelativeHumidity.
The cloud fraction is computed with ComputeCloudFraction. For it the cloudiness and cloud
height are diagnosed using ComputeCloudiness and ComputeCloudHeight. Depending on pho-
tolysis rates computation option, the attenuation coefficient or the cloud extinction may be
computed (see photolysis rate specific section below). All input fields are then interpolated on
the output grid. Photolysis rates data may then be computed using a photolysis model. Finally
photosynthetically active radiation are estimated, based on solar radiation and zenith angle
(ZenithAngle).

To get the complete set of input meteorological data for a transport model, one should then
launch Kz and maybe Kz_TM.

Photolysis rates treatment

This section is common to meteo, MM5-meteo and WRF-meteo. In Polyphemus there is 3
ways to treat photolysis rates. The first one is called Attenuation method and followed

[|. It is a first order method to treat cloud impact on photolysis rates. Attenuation
coefficents ranging from 0 to 2 are computed with ComputeAttenuation LWC (RADM parameter-
ization) or ComputeAttenuation ESQUIF (ESQUIF parameterization) in meteo (or MM5-meteo
or WRF-meteo). In the processing stage, attenuation coefficients will multiply clear sky tabulated
photolysis rates.

The second treatment of photolysis rates consists in directly computing photolysis rates in
the presence of clouds using a photolysis model (the Fast-J model). In that case, call to the
photolysis model is done in the program meteo (or MM5-meteo or WRF-meteo) and output of
these program are photolysis rates (as .bin files) according to the list given in meteo.cfg (or
MM5-meteo.cfg or WRF-meteo.cfg). At the processing stage, these photolysis rates will be
directly used instead of using clear-sky tabulation. This method is less parameterized and more
accurate than the attenuation one. However, it is only valid when the top of the vertical output
grid (in general.cfg) is not lower than clouds. At mid-latitude, 10 km should be reasonable.

The last treatment of photolysis rates consists in computing photolysis rates in the presence
of clouds but also aerosols. Clouds are diagnosed using ECMWF data and can be treat during the
preprocessing stage (as it is the case in the 2 previous treatments) but aerosols are computed
during the processing stage. In that case, meteo prepocessing stage will consist only in the
computation of cloud optical depth using ComputeExtinction (a function of AtmoData). These
cloud optical depth will then be read during the processing stage.

For the second and third treatment, one can decided to take into account ice clouds by
setting the Ice_cloud parameter to true (but MM5 and WRF data does not always contain
information on ice clouds).

Cloud optical depths are stored in Directory meteo when attenuation is stored in
Directory_attenuation and photolysis rates in Directory_photolysis_rates.

3.4.2 Program Kz

Program Kz computes the vertical diffusion coefficients (needed in almost all applications) using
Louis parameterization |) .

3.4. METEOROLOGICAL FIELDS 69

The reference configuration files for Kz is Polyphemus/preprocessing/meteo/meteo.cfg
together with Polyphemus/preprocessing/general.cfg. In addition to the domain definition
and to the entries of meteo.cfg introduced in Section 3.4.1, below are options for Kz:

File Kz

LUC_file

Urban_index

Min

Min urban
Max
Apply_vert

[paths]
Name of the file where the vertical diffusion coefficients (output)
are stored.
Path to the binary file that describes land use cover over the output
grid (described in section [domain]). This file must be in format
{l,y,x} (I is the land category) and it must contain proportions
(in [0,1]) of each land category in every grid cell.
Index of cities in land categories. It is 13 for GLCF description
and 0 for USGS description.

[Kz]
Lower threshold for vertical diffusion in m
Lower threshold for vertical diffusion over urban areas, in m
Higher threshold for vertical diffusion in m?s™!

2.—1

S .

2.1

s,
s,
If set to no, the lower threshold is applied only at the top of the
first layer, otherwise it is applied to all levels.

This programs mainly computes the vertical diffusion coefficients with a call to ComputeLouisKz.
Simple corrections are also performed to take into account convective conditions.
The output is a 3D time-dependent field (format {¢, z,y,2}) of vertical diffusion coefficients

(in m?s71). Along the vertical, the coefficients are defined on the interfaces. So the size of the
field (for each day) is 4 X Nt x (Nz+ 1) x Ny x Nz. It is stored in the path given by entry
File Kz.

To launch the program, just type :

./Kz ../general.cfg meteo.cfg 2001-04-22

3.4.3 Program Kz _TM

Program Kz_TM “overwrites”, in the boundary layer height, the vertical diffusion coefficients com-
puted with Louis parameterization, with coefficients computed according to Troen & Mahrt pa-
rameterization | ,]. Tt should be launched either after Kz, after MM5-meteo
or after WRF-meteo.

The reference configuration files for Kz_TM is Polyphemus/preprocessing/meteo/meteo.cfg
or Polyphemus/preprocessing/meteo/MM5-meteo.cfg or

Polyphemus/preprocessing/meteo/WRF-meteo.cfg together with
Polyphemus/preprocessing/general.cfg.

In addition to the domain definition in general.cfg, below are the entries for Kz_TM:

[pathl]

Directory Kz_TM

LUC_file

Name of the directory where the vertical diffusion coefficients (out-
put) are stored (the filename being Kz TM.bin).

Path to the binary file that describes land use cover over the output
grid (described in section [domain]). This file must be in format
{l,y,x} (I is the land category) and it must contain proportions
(in [0, 1]) of each land category in every grid cell.

70

Sea_index
Urban_index
Roughness_file
Directory_meteo
File Kz

Directory Kz_TM

Min
Min_urban
Max
Apply_vert

p
C
SBL

Ric

Fluxes_diagnosed

BL_diag

Perturbed_BL

TM_stable

CHAPTER 3. PREPROCESSING

Index of sea in land categories. It is 0 for GLCF description and
15 for USGS description.

Index of cities in land categories. It is 13 for GLCF description
and 0 for USGS description.

Path to the binary file that describes roughness heights (in meters)
in output grid cells. Its format is {y, z}. It is needed only if option
Flux_diagnosed is activated.

Directory where output meteorological files are stored.

Name of the file where the vertical diffusion coefficients as com-
puted with the Louis parameterization are stored.

Name of the directory where the vertical diffusion coefficients (out-
put) are stored (the filename being Kz TM.bin).

(Kz]
Lower threshold for vertical diffusion in m?s~!.
Lower threshold for vertical diffusion over urban areas, in m
Higher threshold for vertical diffusion in m?s~!

2

2 .—1

S
s
If set to no, the lower threshold is applied only at the top of the
first layer, otherwise it is applied to all levels.

Coefficient used in Troen and Mahrt parameterization (see

[19806]).

Coefficient used in Troen and Mahrt parameterization (see
[1986]).
Ratio between the surface layer and the atmospheric boundary
layer (0.1 in [D-
Critical Richardson number used to estimate the atmospheric
boundary layer height (in case BL_diag is set to 2).
Should the friction module, the evaporation and the sensible heat
be diagnosed? If not, they are read in input data (which is recom-
mended).
What kind of diagnosis is used to estimate the boundary layer
height? Put 1 to use Troen and Mahrt diagnosis | ,
|; put 2 to rely on a critical Richardson number; and put 3 to
use ECMWF (or MM5 or WRF) boundary layer height (so, there
is no diagnosis — this option is more robust and it is recommended).
Multiplication factor for the boundary layer height in the Troen &
Mahrt parameterization.
The vertical diffusion as computed by Troen and Mahrt parame-
terization is applied only within the boundary layer. It is possible
to further restrict its application: if TM_stable is set to no, the
parameterization is not applied in stable conditions. In this case,
the Troen and Mahrt parameterization is only applied in unstable
boundary layer.

Several meteorological

fields are computed with ComputePotentialTemperature,

ComputeSaturationHumidity and ComputeSurfaceHumidity diag. If fluxes are not di-
agnosed, the Monin-Obukhov length is computed with ComputeLMO. Then the boundary
layer height may be diagnosed with ComputePBLH.TM (Troen & Mahrt parameterization)
or ComputePBLH Richardson (critical Richardson number). Finally the vertical diffusion

3.4. METEOROLOGICAL FIELDS 71

coefficients are computed with ComputeTM Kz.

The main output is a 3D time-dependent field (format {¢,z,y,z}) of vertical diffusion co-
efficients (in m?s™1). Along the vertical, the coefficients are defined on the interfaces. So
the size of the field (for each day) is Nt x (Nz + 1) x Ny x Nz. It is stored in Kz_TM.bin
in the directory given by entry Directory Kz TM. The surface relative humidity is saved in
SurfaceRelativeHumidity.bin. Depending on the options, additional fields may be saved,
such as the Monin-Obukhov length in file LMO.bin.

3.4.4 Program MM5-meteo

Program Polyphemus/preprocessing/meteo/MM5-meteo processes MM5 data and generates
meteorological fields required by chemistry-transport models. Most fields are interpolated from
MMS5 grid to a regular grid (latitude/longitude in the horizontal, altitudes in meters in the
vertical).

Note that MM5-meteo needs as input data the land use cover which can be built using pro-
grams in preprocessing/ground.

Note for ECMWF users: program MM5-meteo is equivalent to what is performed by
meteo, and Kz successively. Similarly to ECMWF files, Kz_TM can be used afterwards.

Program MM5-meteo can be launched as follows:

./MM5-meteo ../general.cfg MM5-meteo.cfg 2004-08-09_09-00-00
./MM5-meteo ../general.cfg MM5-meteo.cfg 2004-08-09_09-00-00 2004-08-10_09-00-00
./MM5-meteo ../general.cfg MM5-meteo.cfg 2004-08-09_09-00-00 1d

The configuration file MM5-meteo.cfg contains several options:

[paths]

Database MM5 meteo Directory in which MM5 input files may be found. If &D appears
in the file name, it is replaced by YYYY-MM-DD where YYYY is the
year, MM the month and DD the day of the date given in command
line.

LUC_file Path to the binary file that describes land use cover over the output
grid (described in section [domain]). This file must be in format
{l,y,z} (I is the land category) and it must contain proportions
(in [0, 1]) of each land category in every grid cell.

Sea_index Index of sea in land categories. It is 0 for GLCF description and
15 for USGS description.

Urban_index Index of cities in land categories. It is 13 for GLCF description
and 0 for USGS description.

FastJ_parameter files Path to the directory where the photolysis rate model (FastJ) and
its parameter files can be found.

Directory meteo Directory where output meteorological files are stored.

Directory_attenuation Directory where output attenuation file is stored.

Directory_photolysis_rates Directory where output files related to photolysis rate calculation
are stored

File Kz Name of the file where the vertical diffusion coefficients as com-

puted with the Louis parameterization are stored.

72

Directory Kz_TM

Delta_t
Nt
x_min
Delta_x
Nx
y-min
Delta_y
Ny

Nz
projection_type

Compute_Meteo

Prev_accumulated_rain

Compute_Photolysis_Data
Photolysis_option

Attenuation_Type

Species
Ice_cloud

Min height

Min
Min_urban

CHAPTER 3. PREPROCESSING

Name of the directory where the vertical diffusion coefficients (out-
put) are stored (the filename being Kz_TM.bin).

[(MM5]
Time step (in hour) of data stored in every MMS5 file.
Number of time steps stored in every MMS5 file.
Index in MM5 coordinates of the center of the lower-left cell in
MMS5 grid. This is most likely 0.5.
Index (MM5 coordinates) increase along longitude of MM5 grid.
This is most likely 1.
Number of cells (or dot points) along longitude (integer) in MM5
grid.
Index in MM5 coordinates of the center of the lower-left cell in
MMS5 grid. This is most likely 0.5.
Index (MM5 coordinates) increase along latitude of MM5 grid.
This is most likely 1.
Number of cells (or dot points) along latitude (integer) in MMS5
grid.
Number of vertical layers (integer) in MM5 grid.
Type of projection. 1 corresponds to Lambert conformal conic, 2
to Mercator and 3 to stereographic.

[meteo]
Should meteo data be computed ?

[accumulated rain]
Is the rain accumulated from the previous day?

[photolysis_rates]
Should photolysis rate related data be computed ?
options for photolysis rate computation. 3 choices are available
: put 1 for attenuation (compute cloud attenuation, a coefficient
that range between 0 and 2), put 2 for photolysis rate computation
in the meteo prepocessing stage, or put 3 if photolysis rates are to
be computed on-line in the processing stage (then only cloud and
ice optical depth are computed).
Parameterization to be used to compute cloud attenuation for Pho-
tolysis_option 1. Put 1 to use RADM parameterization or put 2 to
use ESQUIF parameterization.
List of phtotolysis rates output for Photolysis_option 2.
If Photolysis_option 2 or 3 is chosen, should ice cloud data be taken
into account ?

[clouds]
Minimum cloud basis height in m.

(Kz]
Lower threshold for vertical diffusion in m?s—!.
Lower threshold for vertical diffusion over urban areas, in m

2

2 .—1

s .

3.4. METEOROLOGICAL FIELDS 73

2.1

Max Higher threshold for vertical diffusion in m<s™".
Apply_vert If set to no, the lower threshold is applied only at the top of the

first layer, otherwise it is applied to all levels.

The program basically reads data in MM5 output file and interpolates it in time and space
to Polyphemus grid. MMS5 file is described in MM5-meteo.cfg and Polyphemus grid is described
in general.cfg. Note that each time a field is loaded by MM5-meteo, all time steps are loaded
in memory. Note that the fields are released from memory when unused, but you may still need
a lot of memory for big MMS5 output files.

The program first computes the altitude of MM5 layers, and converts the Polyphemus
grid coordinates (latitude/longitude) to MM5 grid coordinates (Lambert, Mercator or stere-
ographic) for interpolations. Interpolations on the horizontal are performed in MM5 grid for
efficiency. The pressure is computed based on MMS5 fields. The winds are rotated: this gives
meridional and zonal winds. The Richardson number is then computed (ComputeRichardson).
The relative humidity and the critical relative humidity are computed respectively with
ComputeRelativeHumidity and ComputeCriticalRelativeHumidity. The cloud fraction is
computed with ComputeCloudFraction. For it the cloudiness and cloud height are diagnosed
using ComputeCloudiness and ComputeCloudHeight.

Photolysis rates data are then computed: depending on Photolysis_option, it
can be attenuation coefficients, cloud optical depths or photolysis rates. Attenua-
tion coefficients are computed with ComputeAttenuation LWC (RADM parameterization)
or ComputeAttenuation ESQUIF (ESQUIF parameterization), cloud optical depths with
ComputeExtinction and photolysis rates (for every species specified in MM5-meteo.cfg) with a
photolysis model (Fast-J). The vertical diffusion coefficients are computed with ComputeLouisKz
[, |. Finally photosynthetically active radiation are estimated, based on solar radiation
and zenith angle (ZenithAngle).

Among output files one may find:

e the pressure and the surface pressure in Pa,

e the temperature, the surface temperature and the skin temperature in K,

e the meridional and zonal winds (MeridionalWind.bin and ZonalWind.bin) in ms™!,
e the Richardson number and the surface Richardson number,

e the boundary layer height in m,

e the vertical diffusion coefficients (time-dependent 3D field, defined on layer interfaces on
the vertical, Kz_Louis.bin) in m%s~!

s,
e the specific humidity in kgkg™?,

e the liquid water content in kgkg™?,

e the cloud attenuation coefficients (3D field, Attenuation.bin) in [0, 2] or
e the water and ice cloud optical depths or

e the photolysis rates in s~! (for every species specified in the configuration file)

e the solar radiation intensity (SolarRadiation.bin) in Wm™2,

74

CHAPTER 3. PREPROCESSING

e the rain intensity (Rain.bin) in mmh~1,

e the convective rain intensity (ConvectiveRain.bin) in mmh~!,

e the cloud height in m.

3.4.5 Program MM5-meteo-castor

Program MM5-meteo-castor processes MMb5 data and generates meteorological fields required

by chemistry-transport model Castor.

Vertical_levels

Database_MM5_meteo

Roughness_file

Directory_meteo

Delta_t
Nt
x_min
Delta_x
Nx
ymin
Delta.y
Ny

Nz
projection_type

Horizontal_interpolation

[domain]

File containing the parameters alpha and beta used
to compute the pressure at various levels and
the altitudes. Note that for most prepro-
cessing programs, this field designates file
preprocessing/levels.dat but not for this spe-
cific application, for which you can wuse file
preprocessing/meteo/hybrid_coefficients.dat.

[paths]

Directory in which MMS5 input files may be found. If &D
appears in the file name, it is replaced by YYYY-MM-DD
where YYYY is the year, MM the month and DD the day.
Path to the binary file that describes roughness heights
(in meters) per month in output grid cells. Note that
this file is not the output of program roughness.
Directory where output meteorological files are stored.

[MM5]
Time step (in hour) of data stored in every MMS5 file.
Number of time steps stored in every MM5 file.
Index in MM5 coordinates of the center of the lower-left
cell in MM5 grid. This is most likely 0.5.
Index (MM5 coordinates) increase along longitude of
MMS5 grid. This is most likely 1.
Number of cells (or dot points) along longitude (integer)
in MM5 grid.
Index in MM5 coordinates of the center of the lower-left
cell in MM5 grid. This is most likely 0.5.
Index (MMS5 coordinates) increase along latitude of MM5
grid. This is most likely 1.
Number of cells (or dot points) along latitude (integer)
in MM5 grid.
Number of vertical layers (integer) in MM5 grid.
Type of projection. 1 corresponds to Lambert conformal
conic, 2 to Mercator and 3 to stereographic.
Type of horizontal interpolation used. MM5 corresponds
to MM5 coordinates and latlon to latitude/longitude
coordinates.

3.4. METEOROLOGICAL FIELDS

Dot_coordinates

Relative_humidity_threshold

Low_cloud_top_max

Min dry
Min_wet

Min_above_PBLH
Max

75

File containing coordinates of dot points. Used if
Horizontal_interpolation is set to latlon.

[meteo]
Minimum relative humidity above which cloud are
formed.
Low clouds maximum height (in m).

Kz]
Minimum value of Kz in PBLH for dry conditions (in
ms~2).
Minimum value of Kz in PBLH for cloudy conditions (in
ms~2).
Minimum value of Kz above PBLH (in ms~2).
Maximum value for Kz (in ms~2).

Among output files one may find:

e the altitude in meters,

e the air density (AirDensity.bin),

e the pressure in Pa (Pressure.bin),

e the temperature and temperature at 2 m in K (Temperature.bin and Temperature 2m.bin),

e the meridional wind, zonal wind, convective velocity and wind module at 10 m
(MeridionalWind.bin, ZonalWind.bin, ConvectiveVelocity.bin and WindModule_10m.bin)

inms™!,

e the boundary layer height in m (PBLH.bin),

e the vertical diffusion coefficients using Troen and Mahrt parameterization (Kz.bin) in

m? sfl,

e the specific humidity in kgkg~! (SpecificHumidity.bin),

e the surface relative humidity (SurfaceRelativeHumidity.bin,

e the liquid water content in kgkg~! (LiquidWaterContent.bin),

e the cloud attenuation coefficients (Attenuation.bin),

e the soil moisture (SoilMoisture.bin),

e the aerodynamic resistance (AerodynamicResistance.bin),

e the friction velocity in ms™! (FrictionModule.bin).

76 CHAPTER 3. PREPROCESSING

3.4.6 Program WRF-meteo

Program Polyphemus/preprocessing/meteo/WRF-meteo processes WRF data and generates
meteorological fields required by chemistry-transport models. Most fields are interpolated from
WRF grid to a regular grid (latitude/longitude in the horizontal, altitudes in meters in the

vertical).

Note that WRF-meteo needs as input data the land use cover which can be built using pro-
grams in preprocessing/ground.

Note for ECMWF users: program WRF-meteo is equivalent to what is performed by
meteo, attenuation and Kz successively. Similarly to ECMWF files, Kz_TM can be used after-

wards.

Program WRF-meteo can be launched as follows:

./WRF-meteo ../general.cfg WRF-meteo.cfg 2004-08-09_09-00-00
./WRF-meteo ../general.cfg WRF-meteo.cfg 2004-08-09_09-00-00 2004-08-10_09-00-00
./WRF-meteo ../general.cfg WRF-meteo.cfg 2004-08-09_09-00-00 1d

The configuration file WRF-meteo.cfg contains several options:

Database_WRF_meteo

LUC_file

Sea_index

Urban_index

FastJ parameter _files

Directory_meteo

File Kz

Directory Kz_TM

Compute_Meteo

Prev_accumulated_rain

Compute_Photolysis_Data

[paths]
Filename of the WRF input files. If &D appears in the file name, it
is replaced by YYYY-MM-DD where YYYY is the year, MM the month
and DD the day of the date given in command line.
Path to the binary file that describes land use cover over the output
grid (described in section [domain]). This file must be in format
{l,y,x} (I is the land category) and it must contain proportions
(in [0,1]) of each land category in every grid cell.
Index of sea in land categories. It is 0 for GLCF description and
15 for USGS description.
Index of cities in land categories. It is 13 for GLCF description
and 0 for USGS description.
Path to the directory where the photolysis rate model (FastJ) and
its parameter files can be found.
Directory where output meteorological files are stored.

Directory_photolysis_rates Directory where output files related to photolysis rate calculation

are stored.

Name of the file where the vertical diffusion coefficients as com-
puted with the Louis parameterization are stored.

Name of the directory where the vertical diffusion coefficients (out-
put) are stored (the filename being Kz_TM.bin).

[meteo]
Should meteo data be computed 7

[accumulated rain]
Is the rain accumulated from the previous day?

[photolysis rates]
Should photolysis rate related data be computed?

3.4. METEOROLOGICAL FIELDS 7

Photolysis_option

Attenuation_Type

options for photolysis rate computation. 3 choices are available
: put 1 for attenuation (compute cloud attenuation, a coefficient
that range between 0 and 2), put 2 for photolysis rate computation
in the meteo prepocessing stage, or put 3 if photolysis rates are to
be computed on-line in the processing stage (then only cloud and
ice optical depth are computed).

Parameterization to be used to compute cloud attenuation for Pho-
tolysis_option 1. Put 1 to use RADM parameterization or put 2 to

use ESQUIF parameterization.
Species List of phtotolysis rates output for Photolysis_option 2.

Ice_cloud If Photolysis_option 2 or 3 is chosen, should ice cloud data be taken

into account ?

[clouds]
Min_height Minimum cloud basis height in m.
[Kz]
Min Lower threshold for vertical diffusion in m?s~1.
Min_urban Lower threshold for vertical diffusion over urban areas, in m?s=!.
Max Higher threshold for vertical diffusion in m?s~!.
Apply vert If set to no, the lower threshold is applied only at the top of the

first layer, otherwise it is applied to all levels.

The program basically reads data in WRF output file and interpolates it in time and space
to Polyphemus grid. WREF’s files grids are described in its attributes and global variables (as
every NetCDF file) and Polyphemus grid is described in general.cfg. Note that each time
a field is loaded by WRF-meteo, all time steps are loaded in memory. Note that the fields are
released from memory when unused, but you may still need a lot of memory for big WRF output
files.

The program first computes the altitude of WRF layers, and converts the Polyphe-
mus grid coordinates (latitude/longitude) to WRF grid coordinates (Lambert, Mercator or
stereographic) for interpolations. Interpolations on the horizontal are performed in WRF
grid for efficiency. The pressure is computed based on WRF fields. The winds are ro-
tated: this gives meridional and zonal winds. The Richardson number is then computed
(ComputeRichardson). The relative humidity and the critical relative humidity are computed
respectively with ComputeRelativeHumidity and ComputeCriticalRelativeHumidity. The
cloud fraction is computed with ComputeCloudFraction. For it the cloudiness and cloud
height are diagnosed using ComputeCloudiness and ComputeCloudHeight. Finally attenua-
tion coefficients are computed with ComputeAttenuation LWC (RADM parameterization) or
ComputeAttenuation ESQUIF (ESQUIF parameterization). The vertical diffusion coefficients
are computed with ComputeLouisKz | , |. Finally photosynthetically active radiation
are estimated, based on solar radiation and zenith angle (ZenithAngle).

Among output files one may find:

e the pressure and the surface pressure in Pa,
e the temperature, the surface temperature and the skin temperature in K,

e the meridional and zonal winds (MeridionalWind.bin and ZonalWind.bin) in ms™*,

78 CHAPTER 3. PREPROCESSING

e the Richardson number and the surface Richardson number,
e the boundary layer height in m,

e the vertical diffusion coefficients (time-dependent 3D field, defined on layer interfaces on

the vertical, Kz_Louis.bin) in m%s™!,

e the specific humidity in kgkg™!,

e the liquid water content in kgkg™*,

e the cloud attenuation coefficients (3D field, Attenuation.bin) in [0, 2], or

e the water and ice cloud optical depths or

e the photolysis rates in s~! (for every species specified in the configuration file)
e the solar radiation intensity (SolarRadiation.bin) in Wm™2,

e the rain intensity (Rain.bin) in mmh~1,

e the convective rain intensity (ConvectiveRain.bin) in mmh~!,

e the cloud height in m.

3.5 Deposition Velocities

Deposition velocities are generated on the basis of meteorological fields and land data. The
programs must be launched after meteorological and ground preprocessing.
The computation of deposition velocities for Gaussian models is presented in Section 3.8.2.

3.5.1 Program dep

The program dep computes deposition velocities according to [| or

[2003].

In addition to general.cfg, the program reads the configuration in dep.cfg. In this file,
paths to several files generated by programs meteo, MM5-meteo or WRF-meteo are given.

[paths]

SurfaceTemperature File where surface temperature is stored.

SurfaceRichardson File where surface Richardson number is stored.

SolarRadiation File where solar radiation is stored.

WindModule File where wind module is stored.

PAR File where photosynthetically active radiation is stored.

PARAiff File where the diffuse part of the photosynthetically active radia-
tion is stored.

PARdir File where the direct beam part of photosynthetically active radi-
ation is stored.

SpecificHumidity File where (3D) specific humidity is stored.

SurfacePressure File where surface pressure is stored.

FrictionVelocity File where friction velocity is stored.

CanopyWetness File where canopy wetness is stored.

Rain File where rain is stored.

3.5. DEPOSITION VELOCITIES 79

RoughnessHeight
Type

ChemicalMechanism

Data

Directory_dep

Ns

CellRoughness

Ra

Rb
Rc

Save_resistance

File where roughness height is stored.
Configuration file that describes land use cover (see below for de-
tails about this file).
Chemical mechanism used in your simulation. You can choose
among racm, racm2 and cb05.
File containing the data for species. This file should contain:
the species name, the molecular weight (gmol~!), Henry con-
stant, diffusivity, reactivity, alpha | , |, beta |

,], Rm. An example for RACM/RADM is available in
preprocessing/dep/input/species_data_racm.txt. Similar ex-
amples for RACM2 and CB05 mechanisms are also found.
Directory where the output files are stored.

[Species]
Number of species for which data are provided. This should be the
number of columns in the file containing the data for species, for
example, preprocessing/dep/input/species_data racm.txt.

[Options]

If this option is set to yes, the roughness height used in calculations
only depends on the model cell (and not on the land use category).
In this case, it uses the data file whose path is given in entry
RoughnessHeight (section [paths]). If the options is set to no
(recommended), the roughness height depends on the land use
category (see entry Type).
Parameterization used to compute the aerodynamic resistance.
You can choose between fh (heat flux), fm (momentum flux) or
diag (diagnostic).
Parameterization used to compute the quasi-laminar sublayer re-
sistance. You can choose between friction and diag.
Parameterization used to compute the canopy resistance (

[2003] or [1989)).
Should Ra, Rb and Rec be saved? This may take a lot of storage
space: put no if you do not work on the deposition parameteriza-
tions.

Entry Type is the path to a configuration file whose entries should be:

File

Midsummer
Autumn
Late_autumn
Snow
Spring

Path to the file describing the land use cover. The number of cate-
gories in the file is deduced from its size, but it must be consistent
with the data provided in the following entries (Midsummer, etc.)
Data file for midsummer (see below for details).

Data file for autumn (see below for details).

Data file for late autumn (see below for details).

Data file for snow (see below for details).

Data file for spring (see below for details).

The data files mentioned above for the five “seasons” must contain a column for each land
use category with 22 parameters in each column. You may modify these files or create new files
only if you are well aware of deposition parameterizations. With Polyphemus, a set of 5 files

80 CHAPTER 3. PREPROCESSING

is provided for convenience, and any beginner should use them. They are suited for land use
categories as defined in [].

A key step is therefore to generate a land use description with these categories (referred as
Zhang categories). The recommended program to generate this file is luc-convert which is
described in Section 3.3.4. You should use this program to convert GLCF or USGS land cover
to Zhang categories.

Please note that the program dep chooses which land use file to use according to the month
of the beginning date only. Therefore, if you need deposition velocities for a date range during
which the “season” changes, make sure to launch different simulations for the different seasons.

The program may be launched this way:

./dep ../general.cfg dep.cfg 2004-08-09 2d4h

3.5.2 Program dep-emberson

The program dep-emberson is used to compute deposition velocities for Castor model, using
Emberson parameterization.

[paths]
Altitude File where altitude is stored.
SurfaceTemperature File where surface temperature is stored.
SurfaceRelativeHumidity File where surface relative humidity is stored.
FrictionVelocity File where the friction velocity is stored.
Attenuation File where the attenuation is stored.
AerodynamicResistance File where the aerodynamic resistance is stored.
LUC file File containing the land use cover.
Nc Number of land use cover categories.
Nveg Number of vegetation classes.
Land data File containing land data in Chimere format.
Species_data File containing the data for species (molecular weight, Henry con-
stant, reactivity).
Directory_dep Directory where the output files are stored.
[Species]
Ns Number of species for which data are provided.

The program must be launched with:

./dep-emberson ../general.cfg dep-emberson.cfg 2004-08-09 2004-08-12

3.6 Emissions

Emissions are generated on the basis of land data (anthropogenic emissions) and meteorological
fields (biogenic emissions). The programs must be launched after meteorological and ground
preprocessing.

For Gaussian models, a preprocessing step may also be required in case line emissions are
included (see Section 3.8.1).

3.6. EMISSIONS 81

3.6.1 Mapping Two Vertical Distributions: distribution

Program distribution may be used to define the distribution of emissions along the vertical.
It reads the vertical distribution of emissions in some input grid and maps this distribution on
an output vertical grid. Thus it generates a file with the vertical distribution of emissions in the
output grid. It is based on AtmoData function ComputeVerticalDistribution.

Running this program is not compulsory. Even if the vertical distribution of emissions is
required to compute anthropogenic emissions (program emissions), the vertical distribution
can be generated by other means (including “by hand”).

In addition to the domain definition (Section 3.2.2), program distribution reads a config-

uration file such as emissions.cfg:

Nz
Ve

Nz
Ve

Ve

Po

[domain]
Number of output vertical levels.
rtical_levels Path to the text file that stores the altitudes (in m) of
output level interfaces (hence Nz+1 values are read).

[EMEP]

_in Number of input vertical levels.

rtical_levels Path to the text file that stores the altitudes (in m) of
input level interfaces (hence Nz_in+1 values are read).

rtical_distribution Path to the file with the input vertical distribution of
emissions. This file should contain one line per emission
sector. Each line contains the percentage of emissions at
ground level (first column) and the percentage of emis-
sions in each vertical level (Nz_in following columns).

lair_vertical_distribution Path to the output file where the output vertical distri-
bution of emissions should be stored. The format is the

same as in file Vertical distribution.
Nsectors Number of activity sectors.

The program must be launched with:

./distribution ../general.cfg emissions.cfg

3.6.2 Anthropogenic Emissions (EMEP): emissions

Program emissions processes an EMEP emission inventory and generates (anthropogenic) sur-
face and volume emissions needed by Castor or Polair3D.

First you must download the “emissions used in EMEP models” from http://www.ceip.
at/emission-data-webdab/emissions-used-in-emep-models/. Download emissions for CO,
NH3, NMVOC, NOx, SOx, PM2.5 and PMcoarse and make sure to have a file for each pollutant
called CO.dat, NH3.dat, NMVOC.dat, NOX.dat, SOX.dat, PM2.5.dat and PMcoarse.dat.

Download the files with the following options:
e for all countries (“ALL”);
e for the year of your choice;

e for all activity sectors (SNAP): “All Sectors”; note that emissions for the eleventh sec-
tor will be ignored by emissions — they are better estimated with program bio (see
Section 3.6.3);

http://www.ceip.at/emission-data-webdab/emissions-used-in-emep-models/
http://www.ceip.at/emission-data-webdab/emissions-used-in-emep-models/

82

CHAPTER 3. PREPROCESSING

e a single pollutant: you must download the emissions for one pollutant at a time so that
you should have one file for each pollutant (CO.dat, NH3.dat, ...);

e in format “Grid (50 km x 50 km), Semicolon-Separated”;

e whatever for entries “HTML Table x-Axis” and “HTML Table y-Axis”;

e with the footnotes (recommended but not mandatory).

Then click on “Show Data” and save the data in the right file (NOX.dat, SOX.dat, ...). The
EMEP website is subject to changes, so if the explanations provided above are not consistent
with EMEP website, you may contact Polyphemus team (polyphemus-help@lists.gforge.

inria.fr).

In addition to the domain definition (Section 3.2.2), program emissions reads a configuration

file such as emissions.cfg:

Directory_surface_emissions

Directory_volume_emissions

Chemical_mechanism

Molecular weights

Polair_vertical_distribution

Input_directory
Hourly_factors
Weekdays_factors
Monthly factors
Time_zones
Nx_emep

Ny_emep
Ncountries

Species
Nsectors
Urban_ratio
Forest_ratio

[paths]

Directory where the computed surface emissions are
stored.

Directory where the computed volume emis-
sions are stored. This should be different from
Directory_surface_emissions since files for surface
emissions and volume emissions have the same names
(species names).

[options]
Chemical mechanism used in your simulation. You can
choose among racm, racm2, cb05 and cb05-siream.
File containing molecular weights of species.

[EMEP]
File where the vertical distribution of emissions is stored.
This file should contain one line per emission sector.
Each line contains the percentage of emissions at ground
level (first column) and the percentage of emissions in
each vertical level (Nz following columns).
Directory containing EMEP emissions inventory.
File defining hourly factors (see below).
File defining weekdays factors (see below).
File defining monthly factors (see below).
File defining the time zone for various countries.
Number of cells along longitude (integer) in EMEP grid.
Number of cells along latitude (integer) in EMEP grid.
Maximum code number of the countries covered by the
inventory. If a code number in the inventory is greater
than or equal to Ncountries, an error message is thrown.
Names of inventory species.
Number of activity sectors.
Emission ratio for urban areas (see below).
Emission ratio for forest (see below).

polyphemus-help@lists.gforge.inria.fr
polyphemus-help@lists.gforge.inria.fr

3.6. EMISSIONS

Other_ratio
File

x_min
Delta_x

Nx

y-min
Delta.y

Ny

N

Aggregation

Speciation_directory

83

Emission ratio for other areas (see below).

[Luc]
Path to land use cover file.
Longitude in degrees of the center of the lower-left cell
in LUC grid.
Step length (in degrees) along longitude of LUC grid.
Number of cells along longitude (integer) in LUC grid.
Latitude in degrees of the center of the lower-left cell in
LUC grid.
Step length (in degrees) along latitude of LUC grid.
Number of cells along latitude (integer) in LUC grid.

[Species]
Maximum number of emitted species (see below).
Aggregation matrix file (relations of the emitted species
to the real chemical species).
Directory in which, for each inventory species XXX, a file
XXX .dat contains the speciation to real chemical species

as function of the emission sector (columns).
Deposition factor NH3 Part of emitted NH; which is deposited right away.

The program emissions reads EMEP emissions inventory, multiplies them by temporal
factors and interpolates them on Polair3D grids. EMEP emissions are read with AtmoData
function ReadEmep. The spatial interpolation is performed with EmepToLatLon.

LUC file This file gives the land categories in GLCF description in a domain that must contain
your simulation domain — but this LUC domain should not be too large because of computational
costs. You can generate this file using program extract-glcf (see Section 3.3.6).

Urban, forest and “other” ratios Ratios Urban_ratio, Forest_ratio and Other_ratio
enable to distribute emissions of an EMEP cell according to the type of land (urban, forests
and other categories). For instance, in an EMEP cell, emissions are distributed so that the
ratio between total urban emissions and total emissions is Urban_ratio on top of the sum of
Urban_ratio, Forest_ratio and Other_ratio.

Temporal Factors EMEP emissions are provided as annual values. They are multiplied by
temporal factors to estimate their time evolution (as function of month, week day and hour) in
all emission sectors and in all countries.

Here are examples on how these factors should be provided:

e monthly factors.dat gives the factors for each country index (CC), each activity sector
(SNAPsector) and each month.

Formate: CC SNAPsector JAN FEB MAR APR MAY JUN JUL
2 1 1.640 1.520 1.236 1.137 0.798 0.459 0.393 ..

e weekdays_factors.dat gives the factors for each country index (CC), each activity sector
(SNAPsector) and each day of the week.

84 CHAPTER 3. PREPROCESSING

Formate: CC SNAPsector MON TUE WED THU
2 1 1.0159 1.0348 1.0399 1.0299

e hourly factors.dat gives the factor for each activity sector (SNAPsector) and each hour.
The hours are local time and they must range from 1 to 24.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
i1 1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0 ...

In addition to these factors a file called time_zones.dat is necessary. It gives the various
countries in EMEP inventories and their time zone offset to GMT. Please note that the list of
countries in the inventories may vary without warnings. If it happens, the code should raise an
error and tell you which country code in time_zones.dat is unknown.

Number of emitted species N should be greater or equal to the sum of species number of
each type of emissions. There are seven types in EMEP inventory: CO, NMVOC, NOX, SOX, NH3,
PM2.5 and PMcoarse.

Chemical mechanism Total CO NMVOC NOX SOX NH3 PM2.5 PMcoarse

RACM 42 1 14 3 2 1 19 2
RACM2 65 1 37 3 2 1 19 2
CBO05 43 1 15 3 2 1 19 2

The program automatically takes into account summer and winter time. The output emis-
sions start at 00:00 UTC.

3.6.3 Biogenic Emissions for Polair3D Models: bio

Program bio computes biogenic emissions on the basis of meteorological fields and land use
cover.

In addition to the domain definition (Section 3.2.2), below is the information required in the
configuration for bio (see example bio.cfg):

[paths]
SurfaceTemperature Binary file where the surface temperature is stored.
PAR Binary file where the photosynthetically active radiation is stored.
LUC file Binary file where the land use cover is stored.
Land_data Data file giving emission factors for isoprene, terpenes and NO,, for

all land categories defined in LUC_file. In this file, each line (which
is not empty or does not start with “#”) provides data for one land
use category. For such a line, the first 55 characters are discarded:
you may put the category number and description for convenience.

Then four columns are read with the biomass density (gm™2),

and the emission factors for isoprene, terpenes and NO, (in this
order). Two examples are provided with land data_glcf.dat and
land data usgs.dat, to be used in combination with land use

cover generated by luc-glcf or luc-usgs respectively.
Directory_bio Directory where output biogenic emissions are stored.

[biogenic]

3.6. EMISSIONS

Delta_t

Rates

Terpenes

Terpenes_ratios

85

Time step (in hours) for the output biogenic emissions. For simu-
lations with Polair3D, anthropogenic emissions and biogenic emis-
sions must have the same time step (that is, usually one hour).
Should emission rates be saved? These rates are not needed by
chemistry-transport models.

Names of the species included in terpenes emissions. For
RACM [] and RACM2

[2008], put APT and LIM. For CB05 [2005], put TERP.
Distribution of terpenes emissions among species (entry
Terpenes). For RACM and RACM2, put 0.67 0.33 (for API and

LIM, respectively). For CB05, put 1.0 (for TERP).

Biogenic emissions are computed according to []. Meteorological data
is first interpolated in time so that its time step is Delta_t (section [biogenicl). Emission
rates are then computed using AtmoData function ComputeBiogenicRates and emissions using
ComputeBiogenicEmissions.

3.6.4 Biogenic Emissions for Castor Models: bio-castor

Program bio-castor is slightly different from bio, in particular regarding the data provided.
Its configuration file, e.g. Polyphemus/preprocessing/bio/bio-castor.cfg defines:

[paths]

SurfaceTemperature Binary file where the surface temperature is stored.
WindModule_10m Binary file where the wind module at 10 m is stored.
Attenuation Binary file where attenuation data are stored.
SoilMoisture Binary file where the moisture of the ground is stored.
ConvectiveVelocity Binary file where the convective velocity is stored.
Land data Land data in Chimere format.
Directory_bio Directory where output biogenic emissions are stored.

[biogenic]
Minimum wind velocity Minimum value of WindModule_10m.
Terpenes Species between which terpene emissions are distributed.
Terpenes_ratios Ratio of the terpene emissions for each of the above species.

3.6.5 Sea Salt Emissions: sea-salt

Program sea_salt computes the emissions of sea-salt aerosols. Its options and parameters are
given in sea_salt.cfg.

[paths]
Surface_wind module_file Binary where the wind module at surface is stored.
Directory_sea salt Directory where sea-salt emissions are stored.
[sea_salt]

Parameterization Parameterization used for sea salt emissions: Monahan (

[]) or Smith ([D).
Threshold_radius Radius above which the parameterization is used (in pm).
Delta_t Time step for sea-salt emissions computation.

86 CHAPTER 3. PREPROCESSING

[LuC]
File File containing land use cover.
Nb_luc Number of land categories.
Sea_index Index of sea in land categories. It is 0 for GLCF description and

15 for USGS description.

[(PM]
Section_computed Should diameter classes bounds be computed? Otherwise they are
read in File_sections.
Diameter min Minimum diameter if diameter classes bounds are computed.
Diameter_max Maximum diameter if diameter classes bounds are computed.
Nsections Number of diameter classes.
File_sections File containing the diameter classes bounds if they are not com-

puted.

[sea-salt_composition]
NA, CL, S04 Fraction of NA, CL and SO, in sea salt.

3.7 Initial and Boundary Conditions

3.7.1 MOZART 4

MOZART-4 results for a subset of the globe and a range of dates can be downloaded from
https://www.acom.ucar.edu/wrf-chem/mozart.shtml. Output is provided every 6 hours.
For the computation of boundary conditions from MOZART-4/GEOS-5 data, the programs
bc-mozart4-DU, bc-mozart4-SS, bc-mozart4-aer, and bc-mozart4-gas are provided.

Note that speciation mozart4 gas.dat is used to provide correspondence between the
gas-phase species in MOZART-4 and the species name of Polyphemus. For the moment, the
speciation list is only valid for the CB05 kinetic mechanism.

For the initical conditions, the programs ic-mozart4-DU, ic-mozart4-SS, ic-mozarté4-aer,
and ic-mozart4-gas can be used for gas-phase and particle-phase species.

In addition to the domain definition (Section 3.2.2), below is the information required in the
configuration (mozart4.cfg).

[input files]

Directory_bc Directory where the output boundary conditions are stored.
Directory_ic Directory where the output initial conditions are stored.
File mozart Downloaded file name from the MOZART server.
Species XX File providing correspondence between the name of species in
MOZART-4 files and the species name of Polyphemus.
Molecular weights XX File providing the molecular weights of input species.
[size distribution]
Bin_number Number of bins.
Diameter_min Minimum diameter of particles.
Diameter max Maximum diameter of particles.

Please use the following recommended values for the size distribution of each species.

https://www.acom.ucar.edu/wrf-chem/mozart.shtml

3.7. INITIAL AND BOUNDARY CONDITIONS

[DU_size]

DUST1 0.05 0.5
DUST2 0.5 1.25
DUST3 1.25 2.5
DUST4 2.5 5.0

[SS_size]

SA1 0.1 0.5
SA2 0.5 1.5
SA3 1.5 5.0
SA4 5.0 10.0

[AER_size_distribution]
#[species] [Dmean (um)] [sigma]

CB1 0.0236 2.00
CB2 0.0236 2.00
0C1 0.0424 2.20
0c2 0.0424 2.20
S04 0.1390 2.03
NH4NO3 0.1390 2.03
SO0A 0.0424 2.20
NH4 0.1390 2.03

87

Please copy or link general.cfg file into the current folder and then the programs must be

launched as follows:

./bc-mozart4-DU general.cfg mozart4.cfg 20140316 20140615

./bc-mozart4-SS general.cfg mozart4d.cfg 20140316 20140615

./bc-mozart4-aer general.cfg mozart4.cfg 20140316 20140615

./bc-mozart4-gas general.cfg mozartéd.cfg 20140316 20140615

./ic-mozart4-DU general.cfg mozart4.cfg 20140316
./ic-mozart4-SS general.cfg mozart4.cfg 20140316
./ic-mozart4-aer general.cfg mozart4.cfg 20140316

./ic-mozart4-gas general.cfg mozart4.cfg 20140316

A python script provided with the programs bc-run.py can replace the series of the command

lines.

3.7.2 MOZART 2
Initial Conditions: ic

Climatological concentrations from Mozart 2 |

concentrations for photochemistry simulation with Polair3D.

)

] are used to generate initial

88 CHAPTER 3. PREPROCESSING

Program ic has been tested with Mozart 2 output files downloaded on NCAR data portal
at http://cdp.ucar.edu.

To download any data from the NCAR Community Data Portal you need to register. This is
quite easy and fast but there is a second step. You also have to ask for an access to Mozart data
specifically. This takes longer as the application has to be reviewed by someone but it should
go without problems if you say that you need Mozart data to generate initial and boundary
conditions for a CTM.

The data can be found in “ACD: Atmospheric Chemistry Models, Data Set and Visualization
Tools”. If you registered, in this section of the site, you should be able to access “MOZART
(Model for OZone And Related chemical Tracers)”. This opens a page with various informations
about Mozart and in particular, in “Nested Collections” a link named “MOZART-2 MACCM3
Standard Simulation (v2.1)”. Click on this link.

Currently, the direct link is http://cdp.ucar.edu/browse/browse.htm?uri=http://
dataportal.ucar.edu/metadata/acd/mozart/mozart2/mozart_v2_1_maccm3.thredds.xml,
but if this changes a search for “MOZART MACCM3” should lead you to the right page.

There are 38 files available in NCAR Community Data Portal (from hc0040.nc to hc0077.nc).
One file gathers data for ten consecutive days. File hc0040.nc start at 26 December. Data in
those files have been generated for a typical year, which means they can be use to generate
initial conditions for any year.

In addition to the domain definition (Section 3.2.2), below is the information required in the
configuration for ic (see example ic.cfg):

Date_ic

Nt

Delta -t

Nx

Ny

Nz
Database_ic

Chemical_mechanism
Species

Molecular_weights
Directory_ic

[ic_input_domain]
Date for which initial conditions are generated.
Number of time steps in Mozart 2 files (integer).
Time step of Mozart 2 files (in hours).
Number of grid points along latitude in Mozart 2 files (integer).
Number of grid points along longitude in Mozart 2 files (integer).
Number of vertical levels in Mozart 2 files (integer).
Directory where the Mozart 2 files are available. Mozart 2 file-
names are in form h00xx.nc where xx is computed by the program
according to the date Date_ic.

[ic_files]
Chemical mechanism used in your simulation.
File providing correspondence between the name of species in
Mozart 2 files and the name of species in simulation. In this
file, the first column contains Mozart 2 species. After each
Mozart 2 species name, the corresponding output species (e.g.,
RACM species) is put, if any. If Mozart 2 species gathers two
output species, put the names of all output species followed
by their proportion in Mozart 2 bulk species. For instance,
the line C4H10 HC5 0.4 HC8 0.6 splits Mozart 2 species C4H10
into HC5 (40%) and HC8 (60%). Three examples are provided:
preprocessing/bc/species_racm.dat, species_racm2.dat and
species_cb05.dat. Two other examples are also provided for
RACM: species_racm vl.dat and species_racm v2.dat
File providing the molecular weights of output species.
Directory where the output initial conditions must be stored.

http://cdp.ucar.edu
http://cdp.ucar.edu/browse/browse.htm?uri=http://dataportal.ucar.edu/metadata/acd/mozart/mozart2/mozart_v2_1_maccm3.thredds.xml
http://cdp.ucar.edu/browse/browse.htm?uri=http://dataportal.ucar.edu/metadata/acd/mozart/mozart2/mozart_v2_1_maccm3.thredds.xml

3.7. INITIAL AND BOUNDARY CONDITIONS 89

The name of the Mozart 2 files must be in the form hOOxx.nc where xx is computed as
shown in Equation 3.1.

10 (3.1)
with Ny the number of days since the beginning of the year (0 for first January) and int(x)
represents the integral part of x.

The program Polyphemus/preprocessing/ic automatically select the file to use with the
date given in ic.cfg.

Output results are in pg m™3.

In case your Mozart 2 files do not satisfy this format (this may happen if Mozart files are
updated on the NCAR data portal), you may modify the code or contact Polyphemus team at
polyphemus-help@lists.gforge.inria.fr.

N,
mc—40+mt[d+6]

Boundary Conditions for Polair3D

Program bc Boundary condition for gaseous species are generated using Mozart 2 files. See
Section 3.7.2 on how to get those files.

In addition to the domain definition (Section 3.2.2), below is the information required in the
configuration for bc (see example bc.cfg):

Nt
Delta -t
Nx
Ny
Nz

Directory_bc
Species

Molecular weights

[bc_input_domain]
Number of time steps in Mozart 2 files.
Time step of Mozart 2 files (in hours).
Number of grid points along longitude in Mozart 2 files (integer).
Number of grid points along latitude in Mozart 2 files (integer).
Number of vertical levels in Mozart 2 files (integer).

[bc_files]

Directory where the output boundary conditions must be stored.
File providing correspondence between the name of species in
Mozart 2 files and the name of species in simulation. In this
file, the first column contains Mozart 2 species. After each
Mozart 2 species name, the corresponding output species (e.g.,
RACM species) is put, if any. If Mozart 2 species gathers two
output species, put the names of all output species followed
by their proportion in Mozart 2 bulk species. For instance,
the line C4H10 HC5 0.4 HC8 0.6 splits Mozart 2 species C4H10
into HC5 (40%) and HC8 (60%). Three examples are provided:
preprocessing/bc/species_racm.dat, species_racm2.dat and
species_cb05.dat. Two other examples are also provided for
RACM: species_racm_vl.dat and species_racm_v2.dat

File providing the molecular weights of output species.

Program bc processes an entire Mozart 2 output file. If this file contains concentrations
for 10 days, the program generates boundary conditions for 10 days with a time-step of 24 hours.

The program must be launched with:

./bc ../general.cfg bc.cfg /net/libre/adjoint/mallet/mozart/h0067.nc

polyphemus-help@lists.gforge.inria.fr

90 CHAPTER 3. PREPROCESSING

The last argument is the path to the Mozart 2 file. You have to select the file to use according
to date as shown in Equation 3.1.

The results are in ugm™—3. They are stored as &f_&c.bin where &f is replaced by the name
of the species and &c by the direction associated with the boundary condition (z, y or z). For
example, the concentrations in 03_x.bin are interpolated at both ends of the domain along =,
for all grid points along y and z.

Program bc-dates Program bc-dates is very similar to bc. The main difference is that,
instead of a Mozart file, two dates are given in command line. The program computes boundary
conditions for all Mozart files between the two dates, successfully managing year changes.

The configuration file for program bc-dates (see example bc-dates.cfg) is essentially the
same as the one for bc, with one addition:

[bc_files]
Directory_mozart Directory where the Mozart 2 files are available. Mozart 2 file-
names are in form h00xx.nc where xx is computed by the program
according to the date (see Equation 3.1).

The program must be launched with:

./bc-dates ../general.cfg bc-dates.cfg 2004-07-30 2004-08-12

3.7.3 Boundary Conditions for Castor: bc-inca

Boundary condition for Castor models are generated using INCA files.
In addition to the domain definition (Section 3.2.2), below is the information required in the
configuration for bc-inca (see example bc-inca.cfg):

[bc_input_domain]
x_min Abscissa of the center of the lower-left cell of INCA grid, in degrees
(longitude).
Delta x Step length along x in INCA files, in degrees (longitude).
Nx Number of grid points along longitude in INCA files (integer).
ymin Ordinate of the center of the lower-left cell of INCA grid, in degrees
(latitude).
Delta.y Step length along y in INCA files, in degrees (latitude).
Ny Number of grid points along latitude in INCA files (integer).
Nz Number of vertical levels in INCA files (integer).
Ns Number of species in the INCA file.
Species File giving the species in the INCA file.
[bc_files]
Nt Number of time steps necessary for the output (in hours).
Directory_bc Directory where the output boundary conditions must be stored.

Program bc-inca reads the INCA file (which is a text file) and saves its results for the
number of time step given in the configuration file (Nt).
The program must be launched with:

./bc-inca ../general.cfg bc-inca.cfg /u/cergrene/a/ahmed-dm/A/raw_data/INCA/INCA.O7

3.7. INITIAL AND BOUNDARY CONDITIONS 91

The last argument is the path to the INCA file. The number at the end of the file name
represents the month.

The results are stored as &f _&c.bin where &f is replaced by the name of the species and &c
by the direction associated with the boundary condition (z, y or z).

Note that initial conditions for Castor are interpolated from the boundary conditions and
do not need to be computed separately.
3.7.4 Boundary Conditions for Aerosol Species: bc-gocart
Boundary conditions for aerosol species are obtained using Gocart model" thanks to the program
bc-gocart.
Gocart format and conventions

Gocart model usually provides files with the following naming convention:

file name signification

yyyymm.XX.vs.g 6-hourly concentrations in gm™3.
yyyymm.XX.vs.g.day daily averaged concentrations in gm™3.
yyyymm.XX.vs.g.avg monthly averaged concentrations in gm™3.

where yyyymm is the year and month (e.g., 200103), XX is the Gocart species, which can
be either SU (sulfur), CC (carbonaceous), DU (dust), SS (sea-salt), and wvs is the version (e.g.,
STD.tv12).

Gocart species may have further speciations:

e SU (sulfur): Total 4, 1-DMS, 2-S0O2, 3-SO4, 4-MSA.

e CC (BC+0OC): Total 4, 1-hydrophobic BC, 2-hydrophobic OC, 3-hydrophilic BC, 4-
hydrophilic OC.
e DU (dust): Total 5, -Re=0.1-1, 2-Re=1-1.8, 3-Re=1.8-3, 4-Re=3-6, 5-Re=6-10 um. The
first group (0.1-1 um) contains the following subgroups:
— 0.10-0.18 pm (fraction = 0.01053)
— 0.18-0.30 pm (fraction = 0.08421)
— 0.30-0.60 pum (fraction = 0.25263)
— 0.60-1.00 um (fraction = 0.65263)

e SS (sea-salt): Total 4, 1-Re=0.1-0.5, 2-Re=0.5-1.5, 3-Re=1.5-5, 4-Re=5-10 pm.

The data format of Gocart files is “direct access binary, 32 bits, big endian”. As an example,
here is how they should be read in Fortran 77 language:

dimension Q(imx,jmx,lmx)
do k=1,nstep
do n=1,nmx
read(unit) ntl,nt2,nn,Q
end do
enddo

Mhttp://code916.gsfc.nasa.gov/People/Chin/gocartinfo.html

http://code916.gsfc.nasa.gov/People/Chin/gocartinfo.html

92 CHAPTER 3. PREPROCESSING
where
e imx = total number of longitudinal grid (144),
e jmx = total number of latitudinal grid (91),
e lmx = total number of vertical layers (version dependent),
e nmx = total number of species (4 or 5, see species list above),
e ntl = yyyymmdd after 2000 (year-month-day, e.g., 20010201), or yymmdd before 2000
(e.g., 970101)
e nt2 = hhmmss (hour-minute-second, e.g., 120000)
e nn = tracer number (see species list above)
e () = 3-dimensional concentration of tracer nn
e nstep = total time step (e.g., in 200101, nstep=4*31 for 4-times/day, nstep=31 for daily
average files, and nstep=1 for monthly average files).
Important

If you plan to read Gocart data on your own, do not forget to translate files from big
endian to little endian if necessary.

The conventions and format of Gocart files may change in the future.

Fields resolution

The horizontal resolution of Gocart fields is 2 degree latitude x 2.5 degree longitude, except
at the poles where latitudinal resolution is 1 degree. In other words the longitude interval is
[—180 : 2.5 : 177.5] (144 cells) and the latitude one is [-89.5 — 88 : 2 : 8889.5] (91 cells).

The vertical resolution is given as a given number of vertical sigma levels. The number of
vertical levels depends on the year:

1980-1995: 20 sigma layers centered at 0.993936, 0.971300, 0.929925, 0.874137, 0.807833,
0.734480, 0.657114, 0.578390, 0.500500, 0.424750, 0.352000, 0.283750, 0.222750, 0.172150,
0.132200, 0.100050, 0.0730000, 0.0449750, 0.029000, 0.00950000

1996-1997: 26 vertical sigma layers centered at 0.993935, 0.971300, 0.929925, 0.875060,
0.812500, 0.745000, 0.674500, 0.604500, 0.536500, 0.471500, 0.410000, 0.352500, 0.301500,
0.257977, 0.220273, 0.187044, 0.157881, 0.132807, 0.111722, 0.0940350, 0.0792325,
0.0668725, 0.0565740, 0.0447940, 0.0288250, 0.00997900

2000-2002: 30 vertical sigma layers centered at 0.998547, 0.994147, 0.986350, 0.974300,
0.956950, 0.933150, 0.901750, 0.861500, 0.811000, 0.750600, 0.682900, 0.610850, 0.537050,
0.463900, 0.393650, 0.328275, 0.269500, 0.218295, 0.174820, 0.138840, 0.109790, 0.0866900,
0.0684150, 0.0539800, 0.0425750, 0.0335700, 0.0239900, 0.0136775, 0.00501750, 0.00053000

3.7. INITIAL AND BOUNDARY CONDITIONS 93

Gocart files processing

Gocart files are handled by bc-gocart program which takes 5 arguments:
./bc-gocart ../general.cfg bc-gocart-CC.cfg 200101.CC.STD.tv15.g.day 200101 7
where

e ../general.cfg is the general configuration file,

e bc-gocart-CC.cfg is the configuration file for CC Gocart species,

200101.CC.STD.tv15.g.day is the Gocart file,

200101 is the date of Gocart file, this file corresponds to daily carbonaceous values during
month of January 2001,

e 7 is the number of days for which boundary conditions are computed.

The configuration file bc-gocart-CC. cfg provides all necessary informations to read Gocart
fields and to translate them into polair3d species.

[paths]
Directory_bc Directory where output will be written.
[bc_input_domain]
X_min Minimum longitude in Gocart resolution.
y-min Minimum latitude in Gocart resolution.
Delta_x Gocart longitude resolution.
Delta.y Gocart latitude resolution.
Nx Number of grid cells in the longitude Gocart axe.
Ny Number of grid cells in the latitude Gocart axe.
Nz Number of Gocart vertical layers.
Sigma_levels File where are written the center of Gocart sigma levels.
Scale_height Scale height in meter.
Surface_pressure Surface pressure in atm.
Top_pressure Pressure at top of Gocart level (in atm).

There are two more sections in configuration file.

The first one is [input_species]. Each non blank line of this section corresponds to one
speciation of Gocart species, e.g., CC is sub-divided in CC-1, CC-2, CC-3, CC-4. The range
after the delimiter “:” is the aerosol size range (in pm) to which this sub-species apply. Most
of the time this is the whole aerosol size range of polair3d model (e.g., 0.1 — 10.0), but in the
case of dust (DU) each sub-species may correspond to a precise part of the polair3d aerosol
size range, see configuration file bc-gocart-DU.cfg for an illustration.

The second section is [output_species]. Each non blank line of this section corresponds
to one aerosol species of polair3d model. The columns after “:” delimiter correspond to the
Gocart sub-species. Therefore the number of lines in previous section must equal the number of
columns after “” delimiter. The numbers in these columns are the fraction (between 0.0 — 1.0)
of given Gocart sub-species that will contribute to given model species. As an example in
bc-gocart-CC.cfg the first line

PBC: 1. 0. 1. 0.

94 CHAPTER 3. PREPROCESSING

means that sub-species CC-1 and CC-3 will fall into PBC Polair3D species, and nowhere else.
In the same way the following line

PPOA: 0. 0.4 0. 0.4

means that PPOA species is composed of 40% of CC-2 and 40% of CC-4.

Important The Gocart files are proceeded month by month.

e The beginning date of computation is the one provided in . ./general.cfg if the beginning
month is equal to the Gocart month, the beginning of Gocart month otherwise.

e An end date is deduced from the number of days given in argument. If this end date is
after the end of Gocart month, the end date is set to the end of Gocart month.

e If some boundary files already exist, the program bc-gocart will not overwrite them but
append its result to each.

For example if you want to compute boundary conditions between 15th of April to 15th of June
2001, you would launch bc-gocart three times:

./bc-gocart ../general.cfg bc-gocart-CC.cfg 200104.CC.STD.tv15.g.day 200104 15
./bc-gocart ../general.cfg bc-gocart-CC.cfg 200105.CC.STD.tv15.g.day 200105 31
./bc-gocart ../general.cfg bc-gocart-CC.cfg 200106.CC.STD.tv15.g.day 200106 15

The python script bc-gocart.py provides a much easier way to compute boundary condi-
tions. In particular, you do need to worry about how many times to launch bc-gocart. In the
last example, one should simply launch:

./bc-gocart.py ../general.cfg 2001-04-15 61

where 2001-04-15 is the beginning date of the simulation (it must be the same as in
../general.cfg) and 61 is the number of days to

process. Pay attention that some paths must be supplied inside this script (paths of Gocart
configuration and data files) for it to work.

You are strongly advised to use script bc-gocart.py, as the computation of Gocart months
to use and the number of days to use for each month is performed automatically.

Remark

Gocart does not provide any boundary conditions for nitrate and ammonia, you have to com-
pute them on your own. Nevertheless a quick way to compute boundary conditions for ammonia
is to apply electroneutrality to already computed aerosol boundary conditions from Gocart (or
whatever else in fact). This can be done by bc-nh4 program which takes two arguments:

./bc-nh4 ../general.cfg bc-nhd.cfg

The electroneutrality equation is set in configuration file bc-nh4.cfg.
You can also compute it with script bc-gocart.py using the option --nh4:

./bc-gocart.py --nh4 ../general.cfg 2001-04-15 61

3.8. PREPROCESSING FOR GAUSSIAN MODELS 95

3.8 Preprocessing for Gaussian Models

3.8.1 Program discretization

The aim of this program is to discretize a line emission in the case of a continuous source
(plume source) or an instantaneous one (puff source). It reads a line source given by two points
or more, and gives in return the discretized source. The output data is a list of point sources
whose coordinates have been calculated given the line coordinates and the number of points
to discretize the line, or the source velocity in the case of a moving source (for puff sources only).

96 CHAPTER 3. PREPROCESSING

The program discretization is launched with one configuration file. The reference config-
uration file is discretization.cfg. It contains the following information:

[trajectory]
Trajectory_file Path to the data file that contains the line coordinates.
Np Number of points per segment used to discretize the trajectory.

Used only when the source is not moving.

Delta t Time step to calculate the discretized trajectory in the case of a

moving source.

[source]

Source_type Source type: puff or continuous. If the type is puff, section
[puff-source] is read. Section [plume-source] is used when

the type is continuous.

Species List of names of the species emitted by the source.

Velocity Velocity of the gas or aerosol emitted by the source (in ms™!).

Temperature Temperature of the gas or aerosol emitted by the source (Celsius
degrees).

Diameter Diameter of the source in m.

Date_beg Beginning date of the emission.

[plume-source]
Date_end Ending date of the emission.

[puff-source]

Quantity Total mass per unit of length (in mass/m) released on the line
source (one per species).
Source_velocity Source velocity (in kmh~1) (0. for non mobile sources).
[output]
With_comment Are comments written?
Source_file Path to the data file where the list of sources will be written.

The associated data file (reference: line-emission.dat) contains the coordinates of line
sources to be discretized. Each line corresponds to one segment, defined by its extremity points,
its width along with the emission rate for each species (in mass/s/m?). The data file contains
eight columns + the number of emitted species. It correspond to the data for each of the two
extremity points (nodes) of a segment: for each node, a unique identifying number (integer) is
given, as well as three cartesian coordinates (meters). Thus, the columns are labeled Id1, X1,
Y1, Z1, (first node) and 1d2, X2, Y2, Z2 (second node). If several segments share the same
node, the same index has to be given to the node every time it appears in the file, so that it
can be easily identified and taken into account only once by the program.

This is an example of data file, defining a straight line emission:

#Idl X1(m) Y1i(m) Z1(m) Id2 X2(m) Y2(m) Z2(m) width(m) rate 1 rate 2 ...
1 100. 90. 1. 2 100. 110. 1. 10. 56.5 56.5 ...

Alternatively, the line source file can define one continuous line made of segments (broken
line). In this case, each line contains the coordinates of the broken line nodes (X, Y, Z,
width in meters) associated with emission rate in mass/s/m? (rate 1, rate 2 ...), and the line

3.8. PREPROCESSING FOR GAUSSIAN MODELS 97

extremities are given by the first and last nodes in the file. The file must contain at least the
coordinates of two points and the last line does not contain emission rates because it does not
represent the first extremity of a segment. There is no identifying number here, since each
node is assumed to appear only once in the file. Please note that only one way of describing
line sources must be used within the data file : either the list of segments (eight columns for all
lines in the file), or the broken line (4 columns + number of emitted species for all lines in the file).

This is an example of data file, defining a straight line emission between two points:

#X (m) Y (m) Z(m) width(m) rate 1 rate 2 ...
0. 0. 30. 10. 56.5 56.5 ...
20. 0. 30. 10.

The output data file contains a list of point sources. It is presented as a list of sections
named [source], each section containing the coordinates and other data for one point source.
All points coordinates have been calculated by the program. The emission rate is the same
for all points except at both extremities of each line source. Indeed, to correct side effects the
emission rate is divided by two at extremities but the total emission rate on each line source
remain unchanged.

The program discretization_aer is the same, except that the output is a point emission
file formatted for aerosol species to be used with GaussianPlume_aer or GaussianPuff_aer. In
discretization.cfg, the name Species is replaced by Species_name, there can be only one
species and one bin per source, and the rate is in mass/s instead of mass/s/m.

3.8.2 Programs gaussian-deposition and gaussian-deposition_aer

The aim of these programs is to calculate the scavenging coefficient and the deposition velocity of
the species. The program gaussian-deposition is used when all species are gaseous species, and
gaussian-deposition_aer is used when some or all species are aerosol species. The input data
are meteorological data and species data, and the output file is a file containing meteorological
data and the scavenging coefficients and deposition velocities of all species. This file can be used
as input meteorological file for the programs plume and puff for gaseous species, or plume_aer
and puff_aer in the case of aerosol species.

Program gaussian-deposition

Configuration File The program gaussian-deposition is launched with one configuration
file and two input files. The configuration file contains the path to the two input files and to
the output file. The reference configuration file is gaussian-deposition.cfg. It contains the
following information:

[datal
Species Path to the data file that contains the species data.
Meteo Path to the data file that contains the meteorological data.
[scavenging]

Type Parameterization to be used to calculate the scavenging coeffi-
cients.

File Path to the file that contains the scavenging coefficients for all
species. Read only if Type is set to file.

98 CHAPTER 3. PREPROCESSING
[deposition]
Type Parameterization to be used to calculate the deposition velocities.
File Path to the file that contains the scavenging coefficients for all
species. Read only if Type is set to file.
[output]

With_comment Are comments written in the output file? (put yes or no).
Output_file Path to the file where the output data are written.

The parameterization type for the scavenging coefficient can be chosen between:

none: the scavenging coefficient is set to 0. for all species,

constant: the scavenging coefficient is constant for one given species and entered in the
species file,

file: the scavenging coefficients are read in a file, for each species and meteorological
situation,

belot: the scavenging coefficient is calculated with a Belot parameterization. In that
case, the input data are a rainfall rate given in the meteorological data file, and coefficients
a and b given for each species in the species file.

Concerning the deposition velocity, the type can be chosen between:

none: the deposition velocity is set to 0. for all species,

file: the deposition velocities are read in a file, for each species and meteorological
situation,

constant: the deposition velocity is constant for one given species and is given in the
species file.

Input Files There are two input data files for this program: the meteorological data file
(reference: meteo.dat) and the species file (reference: species.dat).

1.

Meteorological data file: it contains as many sections as there are meteorological situations.
For each situation, meteorological data (temperature, wind ...) are given as described
in section 5.1.5. They will be written unchanged in the output file which will be the me-
teorological data file of the main program. Other meteorological data might be needed,
depending on the chosen parameterization to compute scavenging coefficients and deposi-
tion velocities. Currently, the only parameterization that needs other information is the
Belot parameterization. If the type belot is chosen for the calculation of the scavenging
coefficient, a rainfall rate must be provided (in mmh~!). If the chosen type is constant
or none, the rainfall rate or other information can be provided but will be ignored by the
program. So, the meteorological data file finally looks like this:

[situation]

3.8. PREPROCESSING FOR GAUSSIAN MODELS 99

Temperature (Celsius degrees)
Temperature = 10.

Wind angle (degrees)
Wind_angle = 30.

Wind speed (m/s)
Wind = 3.0

#Boundary height (m)
Boundary_height = 1000.

Stability class
Stability =D

Rainfall rate (mm/hr)
Rainfall_rate = 1.

In this example, there is only one meteorological situation described. Others can be
added simply by adding similar sections [situation] at the end of the file.

2. Species data file: it contains several sections, but not all are needed for the preprocessing.
The needed sections are:

[species] Contains the list of all species.

[scavenging] Contains the list of the species for which scavenging occurs. The
scavenging coeflicient of the others is set to 0.

[deposition] Contains the list of the species for which deposition occurs. The
deposition velocity of the others is set to 0.

[scavenging_constant] This section is needed when the type of parameterization
chosen for the scavenging is constant. It contains the name of a species followed
by the value of its scavenging coefficient (in s~!). Only one species per line must be
provided. All species listed in the section [scavenging] must be present (the order
is not important), the others will be ignored.

[scavenging belot] This section is needed when the type of parameterization cho-
sen for the scavenging is belot. It contains the name of a species followed by two
values corresponding to the coefficients a and b respectively in the Belot parameteri-
zation. Only one species per line must be provided. All species listed in the section
[scavenging] must be present, the others will be ignored.

[deposition_constant] This section is needed when the type of parameterization
chosen for the deposition is constant. It contains the name of a species followed
by the value of its deposition velocity (in ms~!). Only one species per line must be
provided. All species listed in the section [deposition] must be present, the others
will be ignored.

A species file might look like this:

[species]

100

Caesium Iodine
[scavenging]

Iodine Caesium
[deposition]

Caesium Iodine

[scavenging constant]
Caesium: 1.e-4

Todine: 1.e-4
[scavenging_belot]
Caesium: 2.8e-05 0.51
Iodine: 7e-05 0.69
[deposition_constant]

Caesium: 0.05e-2
Iodine: 0.5e-2

CHAPTER 3. PREPROCESSING

In addition, if the chosen type is file for scavenging or deposition, the path to a file con-

taining all values for each species and meteorological situation is given (entry File). The file
containing the scavenging coefficients, named for example scavenging.dat, contains as mainy
sections [situation] as the meteorological datafile. In each section, the species names are fol-
lowed by the value of their scavenging coefficient for the given situation. The file for deposition
velocities (deposition.dat) is in the same form. It looks like:

[situation]

Caesium: 0.0
Iodine: 0.0

[situation]

Caesium: 0.00006
Iodine: 0.0002

3.8. PREPROCESSING FOR GAUSSIAN MODELS 101

Output File The output data file contains as many sections as there are meteorological situ-
ations. Each section [situation] contains the temperature, wind angle, wind speed, boundary
height and stability class that are provided. In addition, it contains the list of all species followed
by their scavenging coefficient, and the list of all species followed by their deposition velocity.
It looks like this:

[situation]

Temperature (Celsius degrees)
Temperature = 10

Wind angle (degrees)
Wind_angle = 30.

Wind speed (m/s)
Wind = 3.

Boundary height (m)
Boundary_height = 1000

Stability class
Stability = D

Scavenging coefficient of the species (s™-1)
Scavenging_coefficient =
Caesium 6.36257e-05 ITodine 0.000212514

Deposition velocity of the species (m/s)
Deposition_velocity =
Caesium 0.0005 TIodine 0.005

Program gaussian-deposition_aer

The program gaussian-deposition_aer works the same way as the program
gaussian-deposition, except that there are some more information specific to the aerosol
species. The input and output files are the same as described in the section about
gaussian-deposition, so in this section we will only describe the data that are added to
the files described previously. One input file is needed in addition to the meteorological data
and species data files. It is the diameter file (reference: diameter.dat) which contains the
diameters of the aerosol particles.

Configuration File In the configuration file, the following information are added:

[datal
Diameter Path to the data file that contains the particle diameters.
[scavenging]
Type_aer Parameterization to be used to calculate the scavenging coefficients

for aerosol species.

102

File_aer

Value

Type_aer
File_aer

Velocity_part

CHAPTER 3. PREPROCESSING

Path to the file that contains the scavenging coefficients for aerosol
species. Read only if Type_aer is set to file.

Values to be used for a Slinn parameterization (choose between
best_estimate and conservative).

[deposition]
Parameterization to be used to calculate the deposition velocities
for aerosol species.
Path to the file that contains the deposition velocities for aerosol
species. Read only if Type_aer is set to file.
If the deposition velocities are user-defined (type constant or type
file), is it the total deposition velocity, or only the diffusive part
(the gravitational settling velocity is then added)? Put total or
diffusive.

The parameterization type for the scavenging coefficient of aerosol species can be chosen

between:

e none: the scavenging coefficient is set to 0. for all aerosol species,

e constant: the scavenging coefficient is constant for one given diameter and entered in the

species file,

e file: the scavenging coeflicients are read in a file, for each species, diameter and meteo-

rological situation,

e slinn: the scavenging coefficient is calculated with a Slinn parameterization. In that case,
the only input data that are used are the rainfall rate and the particle diameters.

Concerning the deposition velocity, the type can be chosen between:

e none: the deposition velocity is set to 0. for all aerosol species,

e constant: the deposition velocity is constant for one given diameter and entered in the

species file,

e file: the deposition velocities are read in a file, for each species, diameter and meteoro-

logical situation.

In case the entry Velocity_part is set to diffusive, the gravitational settling velocity is
calculated for each particle, given the density and the diameter (provided in the species file) and
the pressure and temperature (provided in the meteorological data file). It is then added to the
constant values provided by the user.

Input Files

1. Meteorological data file: it is the same as the one for gaussian-deposition. If the param-
eterization type for the deposition velocity calculation is constant and the Velocity_part
is diffusive, the pressure must be provided (in Pa).

2. Diameter file: it contains the list of particle diameters (in pm). The first number is the
diameter of index 0, the second of index 1, and so on. This is an example of diameter file:

3.8. PREPROCESSING FOR GAUSSIAN MODELS 103

#Diameter (micrometer)
[diameter]

0.1

1.

The diameter of index 0 corresponds to the value 0.1 um, the diameter of index 1 to the
value 1. pum and so on. When referring to a given diameter in the other data files, one
has to give the corresponding index. Note that there is only one diameter file for all
aerosol species. Therefore all particulate species are assumed to have the same diameter
distribution. The diameter file can also be the main configuration file. In that case, the
section [diameter] is simply added to the main configuration file.

3. Species file: it is the same as described before, but the sections described for
gaussian-deposition concern only gaseous species. All data concerning aerosol species
are added in the following sections:

[aerosol_species] Contains the list of all aerosol species.

[scavenging constant_aer] This section is needed when the type of parameteri-
zation chosen for the scavenging for aerosol species is constant. In that case, the
scavenging coefficient is assumed to be constant for one particle diameter. So the
section contains the index of one diameter followed by the corresponding value of the
scavenging coefficient (in s~!). Only one diameter per line must be provided.

e [deposition_constant_aer]This section is needed when the type of parameteriza-
tion chosen for the deposition of aerosol species is constant. It contains the index
of a diameter followed by the value of its deposition velocity (in ms™!). Only one
diameter per line must be provided.

e [density aer] It contains the density of the aerosol species. That is, the name of
each aerosol species followed by the corresponding density (in kgm™3). Only one
species per line must be provided. This section is needed in order to calculate the
gravitational settling velocity of a particle. The calculated deposition velocity of
one species of a given diameter is therefore a combination of the diffusive part given
in the section [deposition_constant_aer] and the gravitational settling velocity
calculated by the program.

Note that while some gaseous species might not be concerned by scavenging or deposition,
the loss processes are assumed to occur for all aerosol species. Therefore, there is no need
of a section containing the species for which scavenging or deposition occur in the case
of aerosol species, as it is the case for gaseous species. Here is an example of species file
containing the sections dedicated to aerosol species:

[aerosol_species]
aerl

aer?2
aer3

[scavenging_constant_aer]

104 CHAPTER 3. PREPROCESSING

Scavenging coefficient for aerosol species (Unit: seconds”(-1))
Depends on the diameter (first value: diameter index in file diameter.dat).
Only one diameter per line.

0: 1.e-4

1: 2.e-4

[deposition_constant_aer]

Dry deposition velocity (diffusive part) of the species (Unit: m/s)
Depends on the diameter

Only one diameter per line.

0: 05e-2
1: -

0.
0.5e-2
[density_aer]

Particle density (aerosol species) (kg/m~3)
Only one species per line.

aerl: 1.88
aer2: 1.
aer3: 4.93

In case the Type_aer is set to file, an additional file is needed for deposition velocities or
scavenging coefficients. It is in the same form as for the gaseous species, except that a value is
required for each species and diameter. It may look like this:

[situation]
aerl_0: 0.03
aerl_1: 0.012
aerl_2: 0.01
aer2_0: 0.022
aer2_1: 0.011
aer2_2: 0.01
[situation]
aerl_0: 0.098
aerl_1: 0.071
aerl_2: 0.058
aer2_0: 0.091
aer2_1: 0.07
aer2_2: 0.058

3.8. PREPROCESSING FOR GAUSSIAN MODELS 105

Output File The output file is the same file as the one for gaussian-deposition, except
that the scavenging coefficients and deposition velocities of aerosol species are also written.
One coefficient corresponds to a given species of a given diameter. It is written as “species-
name” " diameter-index” followed by the value of the corresponding scavenging coefficient (or
deposition velocity). The following example corresponds to a case with two gaseous species
named “gasl” and “gas2” and three aerosol species named “aerl”, “aer2” and “aer3d”. The
diameter file is the same as displayed before, that is, contains two diameters. The output file

looks like this:

[situation]

Temperature (Celsius degrees)
Temperature = 10

Pressure (Pa)
Pressure = 101325

Wind angle (degrees)
Wind_angle = 30

Wind speed (m/s)
Wind = 3

Boundary height (m)
Boundary_height = 1000

Stability class
Stability = D

Scavenging coefficient of the gaseous species (s7-1)
Scavenging_ coefficient =
gasl 0.0001 gas2 0.0001

Deposition velocity of the gaseous species (m/s)
Deposition_velocity =
gasl 0.0005 gas2 0.005

Scavenging coefficient of the aerosol species (s7-1)
Scavenging_coefficient_aer =
aerl_0 5.95238e-05 aerl_1 5.95238e-05 aer2_0 5.95238e-05
aer2_1 5.95238e-05 aer3_0 5.95238e-05 aer3_1 5.95238e-05

Deposition velocity of the aerosol species (m/s)
Deposition_velocity_aer =
aerl_0 2.11708 aerl_1 6.69479 aer2_0 1.54404
aer2_1 4.88268 aer3_0 3.42833 aer3_1 10.8413

The value following “aerl_0” corresponds to the calculated coefficient for the species “aerl”
and the diameter of index 0, that is, in the case of our diameter file, the diameter equal to

106 CHAPTER 3. PREPROCESSING

0.1 pm. The value following “aerl_1” corresponds to the coefficient for the species “aerl” and
the diameter of index 1, that is, equal to 1 pm, and so on.

3.9 Preprocessing for SCRAM aerosol module

This section briefly introduces those new codes which has been added into the Polyphemus
platform in order to compute aerosol mixing state with the new SCRAM | ,]
module. Two modules has been added in the preprocessing part to help generate the necessary
input data for an mixing-state resolved simulation.

3.9.1 Composition conversion

Location: Polyphemus-SCRAM/preprocessing/composition/

The purpose of this module is to convert binary files without composition information into
binary files with composition information.

For example, ”3dto4d_internal” and ”3dto4d_external” could add a additional dimension
which contains the composition informations in to 3 dimension data. ”"4dto5d_internal” and
74dto5d_external” could add a additional dimension which contains the composition informa-
tions in to 4 dimension data.

The composition configuration file ”species_group” define the relationship between aerosol
species and their chemical group index.

The ”3dto4d_internal” and "4dtob5d_internal” program assuming all particles are inter-
nally mixed, so they will compute the composition index based on this assumption. All particles
will be assigned to a signal composition bin after the conversion.

The ”3dto4d _external” and "4dtobd_external” program assuming all particles are exter-
nally mixed, so they will compute the composition index based on this assumption. Particles
will be assigned to several composition bins after the conversion.

At least one configuration file (e.g., Polair3D-IdF.cfg) and one date is needed to run these
program.

Use scons to compile and run it with a configuration file and a starting date

3.9.2 Coagulation coefficient

Location: Polyphemus/preprocessing/coagulation-coef/

This module computes the coagulation coefficient database for the mixing-state resolved
computation.

To compile, pleas read "README” file, and run ”scons swig mpi=no netcdf=yes” for a
signal thread computation or ”scons swig mpi=yes netcdf=yes” for parallel computation.
Netcdf must be selected in order to save the computed database for following computation.

The configuration file ”configauto.lua” defines the particle size and composition
parametrization, and number of random particles used for Monte Carlo computation.

Python script "init.py” can be used to start the computation (i.e., python init.py). User
could define the output file and the configuration file within the ”init.py” script.

Chapter 4

Drivers

4.1 BaseDriver

BaseDriver is configured with a file which contains the displaying options for the simulation.

[display]
Show_iterations If activated, each iteration is displayed on screen.
Show_date If activated, the starting date of each iteration is displayed on

screen in format YYYY-MM-DD HH:II (notations from Section D.7).

4.2 PlumeDriver

It is the driver dedicated to the Gaussian plume model. The associated configuration file is
the same as the one for the BaseDriver, and it is usually part of the model configuration file
described in Section 5.1. The associated input data file describes the meteorological data (ref-
erence: gaussian-meteo.dat) for gaseous species and gaussian-meteo_aer.dat for aerosol
and/or gaseous species. The meteorological data file contains the meteorological data that are
needed. It can be the output file of the preprocessing program gaussian-deposition.

The meteorological data file describes one or several meteorological situations. For each situ-
ation, the driver calls the model to calculate the concentrations, that is, the stationary solution
for the given meteorological situation. It is associated with two models: the GaussianPlume
model for gaseous species only (described in Section 5.1) and the GaussianPlume_aer model
which is the same model for aerosol and/or gaseous species (see Section 5.2).

4.3 PuffDriver

It is the driver dedicated to the Gaussian puff model. The associated configuration file is the
same as the one for the BaseDriver, and it is usually part of the model configuration file described
in Section 5.3. The associated input data file describes the meteorological data. It is the same
file as for the plume model.

For each meteorological situation, the driver calculates the concentrations that depend on
time. That is, for a given situation, it makes a loop on time and calls the model at each time
step to calculate the current concentrations. It is associated with two models: the GaussianPuff
model for gaseous species only (described in Section 5.3) and the GaussianPuff_aer model which
is the same model for aerosol and/or gaseous species (see Section 5.4).

107

108 CHAPTER 4. DRIVERS

4.4 StreetDriver

It is the driver dedicated to the MUNICH street network model. The associated configuration
file is based on the one for the BaseDriver, and it is usually part of the model configuration file
described in Section 5.17. The associated input data file describes all input data for MUNICH
including the meteorological data, traffic emission data and background concentration data.

4.5 PlumeMonteCarloDriver

The “plume Monte Carlo” driver is similar to the PlumeDriver, except that it performs
several simulations, with perturbed input data and with different parameterizations, for ev-
ery meteorological situation. The simulation outputs are saved with the unit saver of type
domain_ensemble_forecast (see Section 4.10.2). The configuration file for this driver is the
same as for PlumeDriver plus this additional content:

[uncertainty]
File_perturbation Path to the perturbations configuration (see below).
Number_samples Number of “Monte Carlo” simulations for every meteorological situa-
tion.
Random_seed Seed assignment for NewRan library, either a given seed number (in
10, 1]), or the path to the directory that contains NewRan seed files, or
current_time for a seed that depends on the current CPU time.

The perturbations and changes in the parameterizations are described by a perturbation
configuration file (entry File perturbation of the main configuration file). This file contains:

[boolean_option]
Model Boolean options The probability with which the option should be set to true.

[string option]

with their probabilities (possibly in brackets).
For example: A (0.3) B (0.7)

[numerical_value]
Model numerical values A PDF description (see below).

[source_datal
Source data A PDF description (see below).

Model string options A list of possible values (say A and B) for the string option together

The accepted PDF's (probability density functions) descriptions are:

1. Uniform a b which is for a uniform distribution with support [m — a, m + b] where m is
the model unperturbed value;

2. Uniform relative a b which is for a uniform distribution with support [m x a,m X b]
where m is the model unperturbed value;

3. Normal s which is for a normal distribution with the model unperturbed value as mean
and with s/2 as standard deviation;

4.7. PERTURBATIONDRIVER 109

4. Log-normal s which is for a log-normal distribution with the model unperturbed value as
median and with s/2 as standard deviation of the logarithm of the variable.

With the Polyphemus GaussianPlume and GaussianPlume_aer models, the available options
and data that may be listed in the perturbation file are:

1. [boolean_ option]: gillani, hpdm, rural, day, scavenging, dry._deposition,
plume_rise, breakup;

2. [string option]: option parameterization_std with possible values Briggs, Doury and
similarity_theory; option deposition_model with possible values Chamberlain and
Overcamp;

3. [numerical value]: temperature, wind_angle, wind, inversion_height,
friction_velocity, convective_velocity, boundary_height, 1Imo, coriolis;

4. [source_data]: rate, velocity, temperature, z, y, X, diameter.

Note that the driver makes the model read all input data the model may require. Indeed, any
parameterization or option of the model may be selected a priori (even if it does not eventually
appear in the perturbations configuration), so the model must read all possible input data in
order to run with any possible parameterization or option.

4.6 MonteCarloDriver

The Monte Carlo driver performs several simulations with perturbed input data. The input
data are perturbed by the PerturbationManager (see Section 4.12). The simulation outputs
are saved with the unit saver of type domain_ensemble forecast (see Section 4.10.2). The
configuration file for this driver should contain:

[MonteCarlo]
Number_ensemble The number of samples.

[perturbation management]
Configuration_ file Name of the file that contains perturbations configuration (see
Section 4.12 about PerturbationManager).

4.7 PerturbationDriver

This driver can replace BaseDriver (see Section 4.1) and allows to perturb some input fields like
the temperature or the deposition velocities. The perturbations are described by a perturbation
configuration file (entry Perturbation file in the section [data] of the main configuration
file). This file should contain:

[generall]
Field list The fields relating to species which will be perturbed.

Then, the perturbations must be defined:

[AdditionalField]

110 CHAPTER 4. DRIVERS

Field_name Name of the field (usually independent of the species) which will be per-
turbed, followed of perturbation type (add or multiply) and the perturba-
tion value.

[Field]
Species Species name followed of perturbation type (add or multiply) and the per-

turbation value.

The name of the section [Field] must appear in Field list. For example:

[general]
Field_list: DepositionVelocity SurfaceEmission

[AdditionalField]
Temperature add 2.0

[DepositionVelocity]
03 multiply 1.2
NO2 multiply 1.2

[SurfaceEmission]
NO multiply 1.5
ETH multiply 1.5

4.8 Data Assimilation Drivers

4.8.1 AssimilationDriver

It is the base driver from which all data assimilation drivers are derived. Data assimilation is
the concept and methods that estimate model state from diverse available sources, e.g., model
simulations, observations and statistics information, aiming at and validated by a better pre-
diction. Data assimilation methods can roughly be catalogued into variational and sequential
ones. For the former the variational principle applies. The objective can be defined by the dis-
crepancy between model simulation and a block of observations, usually combined with a priori
background knowledge. This can be theorized and solved efficiently by optimal control theory
(FourDimVarDriver). The sequential methods make use of observations instantaneously. This is
a filtering process, and filter theory (linear or nonlinear) applies (OptimalInterpolationDriver,
EnKFDriver and RRSQRTDriver).

A typical data assimilation system consists of three components: model (physics), data
(observation), and assimilation algorithm. The data assimilation drivers organize model and
data to perform assimilations.

The associated configuration file is an extension of that of the model configuration file exem-
plified in Section 5.8. For data part, it has an additional section [observation management]:

| [observation management]

4.8. DATA ASSIMILATION DRIVERS 111

Configuration file Path to the file containing the configuration of the ob-
servation management. In the distribution (directory
processing/assimilation/), choose between observation.cfg
(to use observations) and observation-sim.cfg (to use simulated
observations).

The value of Configuration file can be set to observation.cfg if you use
GroundObservationManager (see Section 4.11.1) and to observation-sim.cfg if you use
SimObservationManager (see Section 4.11.2).

The data assimilation experiments are controlled by the following options.

[domain]
Nt Number of time steps for the whole simulation (assimi-
lation and prediction).

[data_assimilation]

With_positivity_requirement Is positivity of the assimilated species concentrations re-
quired?
Nt_assimilation Number of time steps for the assimilation period.

Nt is supposed to be greater than or equal to Nt_assimilation. From time step #0 to time
step #Nt_assimilation-1 , assimilation is performed; and from step #Nt_assimilation to
step #Nt-1, prediction is performed.

In many cases such as data assimilation and ensemble prediction, perturbed model simu-
lations are needed. Perturbations are managed by PerturbationManager (see Section 4.12)
reading an additional section,

[perturbation management]
Configuration file Name of the file that contains perturbation configurations.

4.8.2 OptimallnterpolationDriver

It is the driver dedicated to data assimilation applications using optimal interpolation algorithm.
The optimal interpolation algorithm estimates model state status by minimizing the error vari-
ance of the estimation (called analysis in data assimilation terminology). It searches for a linear
combination between background state (model simulations) and the background departures. The
background departures are defined as the discrepancies between observations and background
state. It involves with observation managements (described in Section 4.11) and storage man-
agements of forecast and analysis results (see for instance Section 4.10.4). The background error
covariance matrix can be either diagonal or generated by Balgovind correlation functions (see
Section 5.8).

4.8.3 EnKFDriver

It is the driver dedicated to data assimilation applications using ensemble Kalman filter algo-
rithm. It consists of two steps: forecast and analysis. It differs from optimal interpolation in
that the background error covariance is flow-dependent and approximated by an ensemble of
perturbed model forecast. The algorithm parameters are set in section [EnKF].

[EnKF]

112 CHAPTER 4. DRIVERS

Number_ensemble The number of samples in the ensemble.

With_observation_perturbation If observations are perturbed for consistent statistics for
analyzed ensemble.

With ensemble prediction If ensemble prediction is supported.

The generation of the ensemble is detailed in PerturbationManager configurations (see Sec-
tion 4.12).

4.8.4 RRSQRTDriver

It is the driver dedicated to data assimilation applications using reduced rank square root
Kalman filter algorithm (RRSQRT). It consists of two steps: forecast and analysis. The back-
ground error covariance is flow-dependent and approximated by an explicit low rank represen-
tation. The algorithm parameters are set in section [RRSQRT].

4.8. DATA ASSIMILATION DRIVERS 113

[RRSQRT]

Number_analysis_mode The expected rank number (column number) of the
square root (mode matrix) of forecast error covariance

matrix.

Number _model_mode The number of the columns of the square root of model
error covariance matrix to be added to the mode matrix.
Number_observation_mode The number of the columns of the square root of observa-
tion error covariance matrix to be added to the analyzed

mode matrix.

Propagation_option The option for the forecast of the columns of mode ma-

trix. Only finite difference is supported.

Finite_difference_perturbation Perturbation coefficient for mode forecast using finite dif-

ference method; set to 1.

Model perturbations are employed to generate the columns of the square root of model error
covariance matrix (see PerturbationManager configurations in Section 4.12).

4.8.5 FourDimVarDriver

It is the driver dedicated to data assimilation applications using four-dimensional varia-
tional assimilation algorithm (4D-Var). The assimilation period is from time step 0 to
Nt_assimilation-1. The optimal model state at initial time step is obtained by minimizing
an objective function which is the background departure plus discrepancy between model sim-
ulations and observations during the assimilation period. The model is supposed to be perfect,
thus no model error terms are considered. The gradient of the objective function is calculated
efficiently using adjoint model of the underlying model. The algorithm parameters are set in
section [4DVar].

[4DVar]

Display_precision Display precision for optimization results.

Jb_file Name of the file that saves background departure during op-
timization.

Jo_file Name of the file that saves observation discrepancy during
optimization.

Gradient norm file Name of the file that saves gradient norms during optimiza-
tion.

With trajectory management If the trajectory of model integration is saved to disk for ad-
joint integration.

Trajectory_delta_t Trajectory time step in seconds.

Trajectory_file Name of the file that saves model trajectory.

With_background_item If the background term is taken into account in the cost func-
tion.

read from disk?

error covariance matrix.

matrix.

Read_inverse_background matrix Should the inverse of background error covariance matrix be
File background inverse matrix Name of the file that stores the inverse of the background

File_background matrix Name of the file that stores the background error covariance

114 CHAPTER 4. DRIVERS

The parameters for numerical optimization algorithm are set in section [optimizer]

[optimizer]
Type Type of optimization solver; only BFGS is supported.
Maximal_iteration The number of the maximal iteration for numerical optimiza-
tion.
Display_iterations If the optimization results during iteration are displayed.

4.9 Drivers for the Verification of Adjoint Coding

The three drivers AdjointDriver, GradientDriver, Gradient4DVarDriver are dedicated to
the verifications of adjoint model. The gradient of a given objective function calculated by
adjoint model is compared with the gradient calculated by finite difference. The following ratio
is checked

_J(x+ah)—J(z)
a(VyJ, h)

where J is the objective function, = is the control variable, h is the perturbation direction, « is
the perturbation coefficient, and V,J is the gradient calculated by adjoint model, < > denotes
inner product. With @ — 0, the ratio p is supposed to approach to 1 with high precision, then
becomes unstable due to round-off errors. In practice, a = D~,i € [m,m + 1,...,n|, where D
is the decreasing factor (typical values are 2 and 10), m is the integer for largest perturbation
(typical value is 0), and n is the integer for smallest perturbation.

4.9.1 AdjointDriver

The objective function is chosen to be the model output of a given grid point in model domain
with respect to initial model status. The corresponding gradient can therefore be interpreted
as the sensitivity. This driver aims at the verification of adjoint code obtained by automatic
differentiation of underlying model code using Odyssée (version 1.7). The following options in
section [adjoint] provide flexible control of the verification.

[adjoint]

Point_species_name Species name of the selected point in model domain
for sensitivity calculation.

Point_nx x-index of the selected point for sensitivity calcula-
tion.

Point ny y-index of the selected point for sensitivity calcula-
tion.

Point_nz z-index of the selected point for sensitivity calcula-
tion.

Norm_perturbation_vector Norm of the initial perturbation vector.

With_random perturbation With random directions for the perturbation?

Decreasing root Decreasing factor of the sequence of perturbation

vectors (D).

Start_index Index for the calculation of the first decreasing ratio

(m).

End_index Index for the calculation of the last decreasing ratio

(n)-

With left_finite difference_checking Checking left-side finite difference results?

4.10. OUTPUT SAVERS 115

Display_sensitivity Display sensitivity results for the decreasing pertur-
bation sequences?

Option With_trajectory management, Trajectory_delta t, Trajectory file are similar to
those for 4DVar in Section 4.8.5.

4.9.2 GradientDriver

The objective function is chosen to be the norm of the difference between model
simulations and synthetic observations. This driver aims at the verification of the
backward integration algorithm of adjoint model for gradient calculations. Options
Norm_perturbation_vector, With_random perturbation, Decreasing root, Start_index,
End_index, and With_left finite difference_checking in section [adjoint] have the same
meanings as those in Section 4.9.1. Option Display_cost indicates whether the values of the
objective function are displayed when perturbation decreases accordingly.

4.9.3 Gradient4DVarDriver

The objective function is chosen to be the observation discrepancy in the 4DVar objective
function. This driver aims at the verification of the adjoint code of observation operator. All
the options for this driver are same as those in Section 4.9.2

4.10 Owutput Savers

4.10.1 BaseOutputSaver

The saver BaseOutputSaver is configured with a file that contains one or several sections
[save]. Each section is associated with one element of a list of output-saver units managed by
BaseOutputSaver.

According to the value of Type in every section, different saver units are called. Note however
that a group attribute can be set in BaseOutputSaver (the default being all, and the other
choices being forecast and analysis) and that only savers with the same group are called.

Some parameters must be provided for any kind of savers:

[save]

Species Chemical species to be saved. If it is set to all, concentrations for
all species are saved.

Date_beg The date from which the concentrations are saved. If concen-

trations are averaged, the first step at which concentrations are
actually saved if not Date_beg, but Date_beg plus the number of
steps over which concentrations are averaged. If the value - 1 is
supplied, Date_beg is set at the start of the simulation.

Date_end The last date at which concentrations may be saved. If the value
- 1 is supplied, Date_end is set at the end of the simulation.

Interval_length The number of steps between saves.

Type The type of saver, see Table 4.16 for details.

Output_file The full path of output files, in which &f will be replaced by the

name of the chemical species. Note that the directory in which the
files are written must exist before the simulation is started.

116

CHAPTER 4. DRIVERS

Note that Species, Date_beg, Date_end, Interval_length must appear before Type. After
Type, put additional options relevant for the chosen output saver.
Here is a list of all types of saver units available at the moment:

Table 4.16: Types of saver

domain

domain_aer
domain_assimilation
domain prediction

domain_ensemble_forecast
domain_ensemble_analysis

nesting
nesting_aer
subdomain
subdomain_aer
indices_list
indices_list_aer

coordinates_list
coordinates_list_aer

wet_deposition
dry_deposition
wet_deposition_aer
dry_deposition_aer
backup

backup_aer

To save entire vertical layers.

The same as domain but for aerosol species.

The same as domain but for data assimilation applications.

The same as domain_assimilation but for model predictions
based on model state at the end of the assimilation period.

The same as domain but for ensemble forecast applications.

The same as domain but for ensemble analysis applications.

To perform nested simulations.

The same as nesting but for aerosol species.

To save concentrations only for an horizontal subdomain.

The same as subdomain but for aerosol species.

To save at a list of points given by their indices.

To save at a list of points given by their indices but for aerosol
species.

To save at a list of points given by their coordinates.

To save at a list of points given by their coordinates but for aerosol
species.

To save entire wet deposition fluxes.

To save entire dry deposition fluxes.

The same as wet_deposition but for aerosol species.

The same as dry_deposition but for aerosol species.

The backup gas species in order to restart.

The same as backup but for aerosol species.

4.10.2 SaverUnitDomain and SaverUnitDomain_aer

The output saver SaverUnitDomain defines an output-saver unit when Type is set to either
“domain”, or “domain_ensemble_forecast” and “domain_ensemble_analysis” in case of ensemble
applications. This output saver requires additional parameters presented in the table below.

[savel

A list of integers that determines the vertical layers to be saved.
Note that 0 is the first layer. Remember that the heights you
specified in the file levels.dat are those of the level interfaces,
while concentration are saved in the middle of each levels.
Should concentrations be averaged over Interval_length? If not,
instantaneous concentrations are saved.

Should initial concentrations be saved? This option is only avail-
able if concentrations are not averaged.

Levels

Averaged

Initial_concentration

For aerosol species, the saver should be SaverUnitDomain_aer and the Type “domain_aer”.
The section [save] is very similar to the one for gaseous species, except that you have to specify
for which diameters the concentrations are saved. Hence, the list of species to be saved looks
like this:

4.10. OUTPUT SAVERS 117

Species: aerl_{0} aer 1_{2} aer2_{0-1}

In that case, the species named “aerl” is to be saved for the diameter of indices 0 and 2,
and “aer2” for the diameters of indices 0 and 1.

In Output_file, &f will be replaced by the species name and &n by the bin index. You can
use any symbol which is not a delimiter (or even nothing) to separate the species name from
the bin index, even though &f &n.bin is the advised form.

If Species is set to “all” the concentrations will be saved for all aerosol species and for all
diameters.

4.10.3 SaverUnitSubdomain and SaverUnitSubdomain_aer

These saver units allow the user to save concentrations only over an horizontal subdomain (for
example, if they perform a simulation over the whole of Europe but only want the concentrations
over one country or region). Their Type is “subdomain” and “subdomain_aer” respectively. The
user must provide between which indices for x and y they want to save concentrations. The
specific parameters for these saver units are:

[savel

Levels A list of integers that determines the vertical layers to be saved.
Note that 0 is the first layer. Remember that the heights you
specified in the file levels.dat are those of the level interfaces,
while concentration are saved in the middle of each levels.

Averaged Should concentrations be averaged over Interval_length? If not,

instantaneous concentrations are saved.

Initial concentration Should initial concentrations be saved? This option is only avail-
able if concentrations are not averaged.

imin Minimum longitude index of the subdomain.

i_max Maximum longitude index of the subdomain.

jmin Minimum latitude index of the subdomain.

j-max Maximum latitude index of the subdomain.

4.10.4 SaverUnitDomain_assimilation

The output saver SaverUnitDomain assimilation defines an output-saver unit similar to
SaverUnitDomain, except that it requires additional parameters presented in the table below.

[savel

Date_file The full path name of the file that stores the date sequences of the

assimilation results.

The group attribute of the output saver SaverUnitDomain assimilation is set to “analy-
sis”, whereas the group attributes of other saver units are set to “forecast” by default. Its Type
is “domain_assimilation”.

4.10.5 SaverUnitDomain prediction

The output saver SaverUnitDomain prediction defines an output-saver unit similar to
SaverUnitDomain. The group attribute of the output saver SaverUnitDomain prediction
is set to “prediction”. Its Type is “domain_prediction”. It works in a similar way to

118 CHAPTER 4. DRIVERS

SaverUnitDomain_assimilation, except that it is designed for the storage of model predic-
tions starting from analyzed model state at the end of the assimilation period.

4.10.6 SaverUnitNesting and SaverUnitNesting aer

The saver units SaverUnitNesting and SaverUnitNesting aer are used to perform nested
simulations. That means that the results of a first simulation on a large domain are interpolated
and saved at the boundary of a subdomain and are then used as boundary conditions for a
second simulation on the subdomain.

The two simulations are quite “normal” except that:

e For the first one: additional concentrations have to be saved using SaverUnitNesting
and/or SaverUnitNesting aer.

e For the second one: boundary conditions from the first simulation have to be provided
the usual way in polair3d-data.cfg.

Refer to the files in processing/nesting for concrete examples. Files ending with “-nesting”
are for the first simulation and files ending with “-nested” are for the second one.

If the saver unit is of Type “nesting” or “nesting_aer”, the additional parameters needed in
the section [save] are presented in the table below.

[savel
xmin Origin of the subdomain along x.
Delta x Step along x for the subdomain.
Nx Number of points along x for the subdomain.
y_min Origin of the subdomain along y.
Delta.y Step along y for the subdomain.
Ny Number of points along y for the subdomain.
levels File giving the interfaces of the layers for the subdomain.
Nz Number of layers in the subdomain.

In Output_file &f and &n are replaced as for SaverUnitDomain or SaverUnitDomain aer
and &c is replaced by the direction along which the boundary conditions were interpolated (that
means that &c is replaced by x, y or z).

4.10.7 SaverUnitPoint and SaverUnitPoint_aer

The saver units SaverUnitPoint and SaverUnitPoint_aer are used to save concentrations at a
list of given points. There are two possible types: indices_list saves concentrations at given
indices in the simulation grid (provided in the main configuration file in section [domain]) and
coordinates_list saves concentrations at given (Cartesian) coordinates. In case the saver is of
type coordinates_list the simulation grid is not read because it is not used, as concentrations
are computed directly at each point of interest.

The list of points where concentrations are to be saved has to be specified in the section
[save] of the saver configuration file. It has to be written just after the line containing the field
Output_file. The list begins with the field Indices in case the saver type is indices_list
and Coordinates if the type is coordinates_1list. In both cases, the list must end with a line
containing the field Point_file, which is used to specify a file name where the list of all points
where concentrations are saved is to be written during the simulation. This looks like:

Type: indices_list

4.10. OUTPUT SAVERS 119

Levels: 0 2

Output_file: <Results>/&f.bin

Indices:
0 0

5 15
20 25
30 30

Point_file: <Results>/point.txt

One line corresponds to one point. There can be either two or three indices. In case there
are two indices on the line, the first one corresponds to index along y, the second one to the
index along x, and concentrations are saved at this point for each vertical level specified in the
field Levels. In the previous example, the file <Results>/point.txt will be created during the
simulation and look like:

#z y X

0 O 0

2 0 0

0 5 15
2 b5 15
0 20 25
2 20 25
0 30 30
2 30 30

In case there are three indices on a line, concentrations are saved only at the specified
point, no matter what the field Levels contains. The first value on the line corresponds to
index along z, the second to index along y and the third to index along x. Note that lines
containing two or three values can be entered in any order. The output binary file containing
concentrations will simply follow the order given in the file <Results>/point.txt for each time
step. It means that the resulting binary file will be of size Ny X Npyint where Ny is the num-
ber of time steps to be saved, and Npens is the number of points where concentrations are saved.

To save coordinates instead of indices, one simply has to change the type to
coordinates_list, to add the field Levels_coordinates to specified values of z where con-
centrations are to be saved, and to write the field Coordinates instead of Indices. The field
Levels is still read but not used. Here is an example:

Levels: O
Levels_coordinates: 1.5

Output_file: <Results>/&f.bin
Coordinates:

470.0 535.0

120 CHAPTER 4. DRIVERS

470.7 535.0

470.5 535.1

1.5 470.8 535.4
2.5 470.8 535.4
4.5 470.8 535.4
7.5 470.8 535.4
10.5 470.8 535.4
13.5 470.8 535.4
17.5 470.8 535.4

Point_file: <Results>/point.txt

Note that coordinates are entered in meters, first z, then y, then x, or just y then x. In
the previous example, every point for which only two coordinates are entered is saved at 1.5
meters above ground. For one point, one wished to save concentrations at different heights
above ground, so heights have been explicitly written.

When dealing with aerosol species, one just has to put indices_ list_aer or
coordinates_list_aer instead of indices_list or coordinates_list respectively.

4.10.8 SaverUnitWetDeposition and SaverUnitDryDeposition

The output savers SaverUnitWetDeposition and SaverUnitDryDeposition define output-saver
units when Type is set to “wet_deposition” or “dry_deposition” and both require additional
parameters presented in the table below.

[savel
Averaged Should concentrations be averaged over Interval_length? If not,
instantaneous concentrations are saved.
Initial _concentration Should initial concentrations be saved? This option is only avail-

able if concentrations are not averaged.

If Species is set to “all” the deposition fluxes will be saved for all scavenged or dry deposited
species.

4.10.9 SaverUnitWetDeposition_aer and SaverUnitDryDeposition_aer

The output savers SaverUnitWetDeposition_aer and SaverUnitDryDeposition_aer define
output-saver units when Type is set to “wet_deposition_aer” or “dry_deposition_aer”. The sec-
tion [save] is very similar to the one for gaseous species, except that you have to specify for
which diameters the deposition fluxes are saved. Hence, the list of species to be saved looks like
this:

Species: aerl_{0} aer 1_{2} aer2_{0-1}

In that case, the species named “aerl” is to be saved for the diameter of indices 0 and 2,
and “aer2” for the diameters of indices 0 and 1.

In Output_file, &f will be replaced by the species name and &n by the bin index. You can
use any symbol which is not a delimiter (or even nothing) to separate the species name from
the bin index, even though &f _&n.bin is the advised form.

If Species is set to “all” the deposition fluxes will be saved for all aerosol species and for
all scavenged or dry deposited diameters.

4.10. OUTPUT SAVERS 121

4.10.10 SaverUnitBackup and SaverUnitBackup _aer

The output savers SaverUnitBackup and SaverUnitBackup_aer are respectively similar to
SaverUnitDomain and SaverUnitDomain aer output-savers: they save gas and aerosol con-
centrations over the entire domain. The difference is that latter output-savers are intended for
post-treatment whereas formers for eventually be able to restart a simulation as if it had not
stopped.

Therefore, all gas and aerosol concentrations are saved and not averaged, only one simulation
time step is saved and each backup overwrites the latter one. A “date” file stores the current
date and iteration of backup files.

All backup files are buffered in files with extension “.buf”. These buffers are only intended
for the case the simulation breaks during the backup saving. In this case the “date” file will
contain the message “!! BACKUP SAVING NOT FINISHED !!” which means that buffer files
have to be used instead of backup ones. These buffer files are only needed at run time and are
removed at the end of simulation.

The output savers SaverUnitBackup and SaverUnitBackup_aer are configured with a
[save] section:

[savel

Type: backup

Interval_length: 10
Output_file: backup/&f.bin
Date_file: backup/date_backup

[save]

Type: backup_aer

Interval_length: 10

Output_file: backup/&f_&n.bin
Date_file: backup/date_backup_aer

The backup output-savers are selected by setting type to backup or backup_aer. The number
of time steps between two backups is set in Interval_length. In order to be able to correctly
restart a simulation this number has to be large enough compared to that of other output-savers.
Furthermore the backup time must overlap the save time of other output-savers. For example
if a simulation makes averaged savings every six time steps, the backup Interval length has
to be a multiple of six and at least six.

How to restart? Open the “date” file, pick up the backup date and replace the beginning
date of polair3d.cfg main configuration file with it. Then go into polair3d-data.cfg and
change the initial condition and initial condition_aer sections so that they points to the
backup files. Modify the [save] sections in order to keep previous output files.

Remark A restart must give exactly the same results as if the simulation had not stopped.
Nevertheless vector concentrations are stored in memory in double precision whereas backups are
written on disk in simple precision so that on restart you cannot avoid roundoff errors between
simple and double precision.

122 CHAPTER 4. DRIVERS

4.11 Observation Managers

The observation managers deal with available observational data at different locations and dates.
These managers are designed to prepare for applications related to observation treatments,
especially for data assimilation. The observation operator are implemented for the mapping
from observation space into model space. For a given date, these managers retrieve observation
data values and the corresponding statistical information, e.g. observational error covariances.

4.11.1 GroundObservationManager

The GroundObservationManager is dedicated to ground observation managements.

[general]
Species Name of observed species. The current version deals with only
one observed species.
Error_variance Error variance for the observed species.
With_spatial_interpolation Should observations be interpolated at adjacent model grid
points?
With_perturbation Should the observation be perturbed?
Perturbation_scale If With_perturbation is set to “yes”, gives the amplitude of the
perturbation.
[stations]
Nstations Total number of stations.
Stations_file File containing station information (code, name, latitude, longi-

tude and altitude). &s in path names is replaced by species name

specified in [general] section.
Input_directory Directory where the observations are stored.

4.11.2 SimObservationManager

The SimObservationManager is dedicated to synthetic observation managements. Library
NewRan is needed for random number generations. Note that NewRan is not included in the
distribution, and it is the user’s duty to install NewRan. The associated configuration file is an
extension of that of GroundObservationManager. The additional sections are mainly for data
specifications of the binary data files.

[simulation_manager]

Simulation option Specifies how observations are provided. The current version deals

only with observations at ground stations.

Input_file Files containing the observation data. They usually are generated
by certain reference run of Polair3D. &s in path names is replaced

by species name.

Date min Starting date for the simulation results in data files.

Delta_t Time step in seconds for the simulation results in data files.
Levels Levels for the simulated data in files.

Initial concentration Flag that indicates whether initial concentrations are included in

data file.

4.12. PERTURBATION MANAGER 123

4.12 Perturbation Manager

The PerturbationManager is dedicated to perturbation managements. It reads the perturbation
configurations, and performs perturbations. The concerning fields are then updated according to
perturbation results for new model simulations in diverse applications such as data assimilation
and ensemble predictions. Library NewRan is needed for random number generations.

The perturbation fields are defined in configuration file of which the name can be read from
section [perturbation management] in the driver configuration file.

[general]
Fields Perturbation field list that depends on species, e.g. DepositionVe-
locity, PhotolysisRate, SurfaceEmission, and BoundaryCondition.
Rand_seed Seed assignment for NewRan library, either a given seed number

(in]0, 1]), or the path to the directory that contains NewRan seed
files, or current_time for a seed that depends on the current CPU

time.

Field maximum spread Every random number for field perturbations cannot exceed the
mean plus or minus ‘Field maximum _spread’ times the standard
deviation.

Observation maximum_spread Every random number for observation perturbations cannot exceed
the mean plus or minus ‘Observation_maximum_spread’ times the
standard deviation.

For fields listed in section [AdditionalField] e.g. Attenuation and
VerticalDiffusionCoefficient, the perturbations do not depend on species. For each
additional field, or each species of species-dependent fields, the perturbation is performed
according to lognormal (LN) law with given standard deviation. For normal law (N), the
relative standard deviation is given, e.g 0.01 for Temperature, except for the field WindAngle
(in degrees). The probability distribution types are listed in the PDF column, and the standard
deviations are listed in the Parameter column. Sometimes there are two additional columns
for species-dependent fields indicating correlated species, and correlation coefficient. The
correlation coefficients can only be set to 1.

124 CHAPTER 4. DRIVERS

Chapter 5

Models

There are four major types of models: Gaussian models (see Section 5.1, 5.2, 5.3 and 5.4),

Polair3D models (see Section 5.5, 5.6, and 5.7), Castor models (see Section 5.9) and Lagrangian
models (see Section 5.13). All variants of a model have the same principles but can deal with
various applications and phenomena.

Polair3D models were the first implemented in Polyphemus. They allow, as well as Castor
models, to compute the advection and diffusion of pollutants at a large scale and can integrate
various additional phenomena (such as photochemical chemistry or deposition). Gaussian mod-
els have been added to perform simulation at a local scale of the effect of a continuous (plume)
or instantaneous (puff) source of pollutant.

Lagrangian stochastic models were the last implemented in Polyphemus. They allow to
compute the passive dispersion of pollutants. Scavenging or deposition cannot be taken into
account yet.

As for now, Castor models only deal with gaseous species, while the other models deal with
gaseous or aerosol species.

5.1 GaussianPlume

Model GaussianPlume is the Gaussian plume model for gaseous species only. The as-
sociated program to be run is plume and it is configured with one configuration file
(plume.cfg) and four data files (plume-source.dat, plume-level.dat, gaussian-meteo.dat
and gaussian-species.dat). The configuration file provides the paths to the four other files.
Basically, given a series of continuous point sources, it calculates the concentration of each species
along a specified grid. There are several output files, one for each species, that are binary files.
The way results are saved is described in an additional configuration file which corresponds to
the file described in Section 4.10 (reference: plume-saver.cfg).

In these configuration files, there are entries that are not relevant for the Gaussian model but
that must be provided anyway. In descriptions of configuration files (below), they are described
as irrelevant.

5.1.1 Configuration File: plume.cfg

[domain]
Date_min Irrelevant. Provide a date.
Delta.t Irrelevant. Provide any number.
Nt Irrelevant. Provide an integer.

125

126

xmin

Delta x

Nx

y_min

Delta.y

Ny

Nz
Vertical_levels
Land_category

Time
Species

With_plume_rise

With_plume_rise_breakup

With_radioactive_decay
With_biological_decay

With_scavenging

With_dry_deposition
WithHightWidthPrecision

With NO2_chemistry

With_OH_chemistry

Sigma_parameterization

Above_BL

With_HPDM

CHAPTER 5. MODELS

Abscissa in meter of the center of the lower-left cell.

Step length along x (in m).

Number of cells along x (integer).

Ordinate in meter of the center of the lower-left cell.

Step length along y (in m).

Number of cells along y (integer).

Number of vertical levels (integer).

Path to the file that defines vertical levels heights.

Land category (choose between rural and urban). Relevant only
when standard deviations are computed with Briggs parameteri-
zation.

Choose whether it is nighttime (night) or daytime (day).

Path to the file that defines involved species.

[gaussian]
Is plume rise taken into account?
Is unstable and neutral breakup taken into account when comput-
ing plume rise?
Is radioactive decay taken into account?
Is biological decay taken into account?
Is scavenging taken into account?
Is dry deposition taken into account?
If yes, increases the precision of the computation of the line source
width along with the computational time.
If yes, a simple NO2 chemistry will be computed. Species NO, O3
and NO2 are required to use this option and the mass unit of all
input value should be pg to be coherent with kinetics constants.
If yes, a simple chemistry mechanism for OH will be computed.
Species BUTA, NO2 HCHO and O3 are required to use this option
and the mass unit of all input value should be pug to be coherent
with kinetics constants.
Parameterization used to compute standard deviations (Briggs
for Briggs parameterization, Doury for Doury parameterization,
and similarity_theory for a parameterization based on similarity
theory).
Is a special formula used for the standard deviation above the
boundary layer? Currently, only “Gillani” can be entered to pro-
vide a special formula. Otherwise, provide “none”.
Only relevant when similarity theory parameterization is used. It
uses alternative formulae from the HPDM model to compute the
standard deviations. It is recommended in the case of elevated
sources (about 200 meters).

Plume rise_parameterizatiorParameterization used to compute the plume rise: HPDM, Holland

File_meteo
File_source
File_correction

Compute_domain

or Concawe.

Path to the file containing the meteorological data.

Path to the file that describes the sources.

File containing the correction coefficients (used with line sources
and gaseous species only).

If yes, the model will compute concentrations on the domain

5.1. GAUSSIANPLUME 127

Compute_list If yes, the model will compute concentrations on the list of point
in the file “point.dat”.
Npmax Maximum number of point sources per line sources. Used for the

discretization of line sources when the wind direction is parallel to
the source direction.
Discretization_step Discretization step in meter. Used for the discretization of line
sources when the wind direction is parallel to the source direction.
Coordinates_computed_point®ath to the file containing coordinates of points that has to be
computed (used only with Compute_list).
-If several savers are used the file must contains coordinates of all
points from all savers.
-Do not use the file ”point.txt” that is generated with the saver,
unless all coordinates are integer.

[deposition]
Deposition_model Model used to take dry deposition into account (Chamberlain for
Chamberlain model, Overcamp for Overcamp model).
Nchamberlain Number of points to calculate the Chamberlain integral (integer).

Relevant only when dry deposition with Chamberlain model is

taken into account.

[output]
Configuration file Path to the configuration for the output saver.

Note: The Chamberlain integral for the calculation of dry deposition is discretized and approx-
imated as a sum. The integer that is provided corresponds to the number of terms of the sum
in the plume model. In the puff model, it is incremented at each time step, so as to have a
number of points consistent with the range of the integral (that is, not to have too many points
to discretize an integral whose range is very small).

5.1.2 Source Description: plume-source.dat

The point emission file used by the Gaussian plume model are described in Section 5.15. There
are as many sections as sources, and they can be only of type “continuous” or “continuous-line”.
One source can emit several species. The beginning and ending date are read, but not used,
since this is a stationary model. The source file can contain a list of point sources provided
by the user or a discretized line source. In that case, it corresponds to the output file of the
discretization preprocessing program discretization.

5.1.3 Vertical Levels: plume-level.dat

Vertical levels are defined in a single data file. They are defined by their interfaces. This
means that the file contains Nz+1 heights, where Nz is the number of levels specified in the main
configuration file. The concentrations are computed at layers mid-points.

5.1.4 Species: gaussian-species.dat

Species are listed in the section [species] of a data file (the same as the species data file used
in the preprocessing program gaussian-deposition, see Section 3.8.2). When radioactive or
biological decay is taken into account, a section containing the half-life times of the species has

128 CHAPTER 5. MODELS

to be provided. The section [half_life] contains the list of all species followed by their half-life
time in days for radioactive decay (put 0. in the case of non-radioactive species). Provide only
one species per line. The section [half_life_time] contains two values following each species
name, the first corresponding to its biological half-life time (in s) during daytime and the second
to the value during nighttime (put 0. in the case of non biological species). Here is an example:

[species]

List of the species
Caesium Todine biol

[half_life]

Half-life of the species (Unit: days)

0 coresponds to non-radioactive species
Caesium: 1.1e4

Todine: 8.04

biol: O.

[half_life_time]

Half-life of the species (Unit: seconds)
First value: day, second value: night

0 corresponds to non-radioactive species.
Caesium: 0. O.

Iodine: 0. O.

biol: 1000 500

In that case we have two radioactive species, “Caesium” and “lodine”, and one biological species,
6Lbi0177
If scavenging is taken into account, sections [scavenging] and [scavenging constant]

must be added. The section [scavenging] contains the name of all species for which scavenging

occur and [scavenging constant] their constants in s7!.

5.1.5 Meteorological data file: gaussian-meteo.dat

This file contains basic meteorological information needed to run Gaussian models. In
case there are scavenging and deposition, it is the output file of preprocessing program
gaussian-deposition described in Section 3.8.2. Information that are always needed are:

e Temperature (°C)

e Wind angle (° from x axis)
e Wind speed (ms™!)

e Boundary layer height (m)

These information are provided inside a section [situation], and the meteorological
data file contains as many sections are there are situations. The boundary height is always
needed: during daytime, reflections on the inversion layer are performed. It is also used to

5.1. GAUSSIANPLUME 129

computed the standard deviations in the case of the parameterization based on similarity theory.

[situation]

Temperature (Celsius degrees)
Temperature = 15

Wind angle (degrees)
Wind_angle = -100

Wind speed (m/s)
Wind = 0.5

Boundary layer height (m)
Boundary_height = 500.0

In case the Briggs parameterization for standard deviation is used, a stability class between
A’ (very unstable) and 'F’ (very stable) has to be provided.

Stability class
Stability = A

In case the standard deviations are computed with similarity theory, more information have
to be provided:

e Friction velocity (ms™!)
e Convective velocity (ms™!)

e Monin-Obukhov length (m)

e Coriolis parameter (s~!)

If not known, the Coriolis parameter can be set to 107%s~!. Note that in the case there is
plume rise and With_plume _rise_breakup is set to “yes”, the convective velocity and friction
velocity are also needed for plume rise computation with HPDM or Concawe formulae (whatever

the standard deviation parameterization is).

[situation]

Friction velocity (m/s)
Friction_velocity = 0.37

Convective velocity (m/s)
Convective_velocity = -0.81

Monin Obukhov Length (m)
LMO = 120.0

Coriolis parameter (/s)
Coriolis = 1.4e-04

130 CHAPTER 5. MODELS

5.1.6 Correction coefficients file: correction _coefficients.dat

The correction coefficient file is used for line sources and gaseous species only. It contains coeffi-
cients for each stability classes and land categories of Briggs parameterization. These coefficients
are used to reduce the error induced by the Gaussian line source analytical formula | ,

.

5.2 GaussianPlume_aer

It is the Gaussian plume model for aerosol species. The corresponding program is plume_aer.
It can be run when there are aerosol species only, or both aerosol and gaseous species. It
takes the same input files as the Gaussian plume model, except that they contain in addition
some sections dedicated to aerosol species. It takes in addition another input file that describes
the diameters of particles (file diameter.dat already described in Section 3.8.2). The output
files are binary files, one for each gaseous species and one for each couple (aerosol species,
diameter). The way results are saved is described in an additional configuration file (reference:
plume-saver_aer.cfg) described in Section 4.10.

5.2.1 Configuration File: plume_aer.cfg
It is exactly the same file as the configuration file described in Section 5.1. The only data that
may differ are the paths to the input files.

5.2.2 Source Description: plume-source_aer.dat

It is the same file as the source file for gaseous species, except that obviously some (or all) emitted
species will be particulate species. The corresponding sections are named [aerosol_source].
However, some lines are different for aerosols:

e The species is given after the key word “Species_name” instead of “Species”.

e Only one species per source can be given.

5.2.3 Vertical Levels: plume-level.dat

It is the same file as in Section 5.1.

5.2.4 Species: gaussian-species_aer.dat

The section [species] lists the gaseous species, and the section [aerosol_species] lists the
aerosol species. In the case of radioactive or biological decay, the sections are the same as
described in Section 5.1 and contain the half-life times of both gaseous and aerosol species.

5.2.5 Diameters: diameter.dat

See Section 3.8.2.

5.2.6 Meteorological data: gaussian-meteo.dat

See Section 5.1.5.

5.3. GAUSSIANPUFF: TRANSPORT, CHEMISTRY AND AEROSOL 131

5.3 GaussianPuff: Transport, Chemistry and Aerosol

Model GaussianPuff is the Gaussian puff model for gaseous species only. The associated pro-
gram to be run is puff and it is configured with one configuration file (puff.cfg) and four data
files (puff.dat, puff-level.dat, gaussian-meteo.dat and gaussian-species.dat). The
configuration file provides the paths to the four other files. Basically, given a series of instan-
taneous puffs emitted at different times, it calculates the concentration of each species along a
specified grid. There are several output files, one for each species, that are binary files. (same
as in the Gaussian plume model, and fully described in Section 4.10).

5.3.1 Configuration File: puff.cfg

Show_date

Date_min
Delta_t

Nt

xmin

Delta x

Nx

ymin

Delta_y

Ny

Nz

Vertical_ levels
Land_category
Time

Species

With_plume rise
With_plume_rise_breakup

With_radioactive_decay
With_biological_decay
With_scavenging
With_dry_deposition
With_increasing_sigma

With_chemistry
With_puff_interaction

Sigma_parameterization

[display]
Irrelevant. Provide any Boolean.

[domain]
Provide the simulation starting date (see Section D.7).
Time step of the simulation (in seconds).
Number of time steps (integer).
Abscissa in meter of the center of the lower-left cell.
Step length along x (in m).
Number of cells along z (integer).
Ordinate in meter of the center of the lower-left cell.
Step length along y (in m).
Number of cells along y (integer).
Number of vertical levels (integer).
Path to the file that defines vertical levels heights.
Land category (choose between rural and urban).
Choose whether it is nighttime (night) or daytime (day).
Path to the file that defines involved species.

[gaussian]
Is plume rise taken into account?
Is unstable and neutral breakup taken into account when comput-
ing plume rise? (read only if With_plume rise is set to 'yes’).
Is radioactive decay taken into account?
Is biological decay taken into account?
Is scavenging taken into account?
Is dry deposition taken into account?
Option to force standard deviations to increase in time in case me-
teorological data are not stationary. This is useful when coupling
the puff model with the plume-in-grid model.
Is there chemistry within the puffs?
Is there chemical interaction between two overlapping puffs? (read
only if With_chemistry is set to 'yes’).
Parameterization used to compute standard deviations (Briggs
for Briggs parameterization, Doury for Doury parameterization,
and similarity_theory for a parameterization based on similarity
theory).

132 CHAPTER 5. MODELS
Above_BL Is a special formula used for the standard deviation above the
boundary layer? Currently, only “Gillani” can be entered to pro-
vide a special formula. Otherwise, provide “none”.
With HPDM Only relevant when similarity theory parameterization is used. It

uses alternative formulae from the HPDM model to compute the
standard deviations. It is recommended in the case of elevated
sources.

Plume rise_parameterizatiorParameterization used to compute the plume rise: HPDM, Holland

or Concawe (read only if With_plume rise is set to ’yes’).

File_meteo Path to the file containing the meteorological data.
File_puff Path to the file that contains the puff data.
Delta_t_puff Time step between two puff emissions (can be greater than, or

equal to, the simulation time step).

[deposition]

Deposition_model Model used to take dry deposition into account (Chamberlain for

Chamberlain model, Overcamp for Overcamp model)

Nchamberlain Number of points to calculate the Chamberlain integral (integer).

Relevant only when dry deposition with Chamberlain model is
taken into account.

[output]
Configuration file Path to the configuration for the output saver.
With_output_plume mass If ’yes’, the total plume mass is saved into a binary file of size

Ni X Ngpecies (only with chemistry).

File mass Path to the binary file to save the total plume mass (read only if

With_output_plume mass is set to 'yes’).

5.3.2 Puff Description: puff.dat

The point emission file used by the Gaussian puff model are described in Section 5.15. There

are

as many sections as sources, and they can be of type “puff” or “continuous”. In the later

case, the continuous source is discretized into a series of puffs with the time step given in the
main configuration file with field Delta_t_puff. If the simulation time step is At, the effective
time step between two puffs is Nt,ug x At, where Nt,,g = max (Atpug/At, 1). Hence, it can
only be equal to or greater than the simulation time step.

(in

Every puff time step, if the source is still emitting at that time, and if the source rate is R
mass unit per second), a new puff of quantity @Q = R x Nt,ug X At is emitted. One source

can emit several species.

Note that the puff file can contain a list of puffs corresponding to a discretized line source

or trajectory. In that case, it corresponds to the output file of the discretization preprocessing
program discretization.

5.3.3 Vertical Levels, Species and Meteorological data

They are exactly the same files as those described in Section 5.1. When using chemistry, some
additional information are needed:

e In the species configuration file, a section [photolysis] contains the list of species with
photolysis.

5.4. GAUSSIANPUFF_AER 133

e In the configuration file for meteorological data, the pressure (in Pa), attenuation coeffi-
cient, and specific humidity in kgkg™! are needed.

e In the configuration file for meteorological data, after the species data for scavenging and
deposition, the list of photolyis rates and background concentrations are needed. The list
of photolysis rates must be provided for all species contained in the section [photolysis]
of the species file (23 species for RACM mechanism), followed by the rate. The background
concentrations can be provided only for species for which it is not equal to zero. It is the
concentration of the species in the atmosphere, outside the puff. It is supposed to be
homogeneous. During the simulation, the background species concentrations change with
chemistry, and the species interact with the puff species.

Here is an example of the additional entries in the meteorological data file, where only the
ozone background concentration is different from zero.

Pressure (Pa)
Pressure = 101325.

Attenuation
Attenuation = 0.99

Specific humidity
Specific_humidity = 0.011

Photolysis rates of the species

Photolysis_rate =

ALD 2.74581e-06 GLYform 4.58622e-05 GLYmol 4.63453e-05

H202 5.04327e-06 HCHOmol 2.95972e-05 HCHOrad 1.90028e-05

HKET 4.91193e-07 HNO3 2.13667e-07 HNO4 3.87569e-06 HONO 0.00131391
HOP 4.96263e-06 KETONE 4.91193e-07 MACR 0.000358261

MGLY 0.00013251 MHP 4.96263e-06 NO2 0.00731999 NO3NO 0.0193996

NO3N02 0.157498 0301D 1.06414e-05 0303P 0.0004013 ORGNIT 6.41837e-07
PAA 1.41212e-06 UDC 0.000397305

Background concentrations of the species
Background_concentration =
03 40.

5.4 GaussianPuff aer

It is the Gaussian puff model for aerosol species. It can be run when there are aerosol species
only, or both aerosol and gaseous species. It takes the same input files as the Gaussian puff
model, except that they contain in addition some sections dedicated to aerosol species. It takes
in addition another input file that describes the diameters of particles (file diameter.dat already
described in the Section 3.8.2). The output files are binary files, one for each gaseous species
and one for each couple (species, diameter).

134 CHAPTER 5. MODELS

5.4.1 Configuration File: puff aer.cfg

It is exactly the same file as the configuration file described in Section 5.3. The only data that
may differ are the paths to the input files.

5.4.2 Source Description: puff_aer.dat

It is the same file as the pulff file for gaseous species described in Section 5.3, except that obviously
some (or all) emitted species will be particulate species. The corresponding sections are named
[aerosol_source]. However, some lines are different for aerosols:

e The species is given after the key word “Species_name” instead of “Species”, and only one
species per source can be given.

e The dates are not read, only the time (in seconds) after the beginning of the simulation
when the puff is released, after the word “Release_time”.

e Only puff sources can be treated, not continuous sources.

5.4.3 Vertical Levels, Species, Meteo and Diameters

Vertical level file and gaussian meteo file have been described in Section 5.1 and diameter files
is the same as in Section 3.8.2. Species file is the same file as described for the plume model for
aerosol species (Section 5.2.4).

5.5. POLAIR3DTRANSPORT 135

5.5 Polair3DTransport

The model Polair3DTransport is configured with three configuration files (polair3d.cfg,
polair3d-data.cfg and polair3d-saver.cfg) and two data files (levels.dat and
species.dat). The main configuration file (polair3d.cfg) provides the paths to the four
other files.

5.5.1 Main Configuration File: polair3d.cfg

The configuration file polair3d.cfg gives information on the domain definition and the options
of the simulation:

Date_min
Delta_t
Nt

x_min
Delta_x
Nx

ymin

Delta.y

Ny

Nz
Vertical_levels
Cartesian

Species

With_advection
With_diffusion
With_air_density

With_initial_condition

With_boundary_condition
With_deposition

[domain]
Starting date in any legal format (see Section D.7). The
date can therefore include seconds.
Time step in seconds.
Number of iterations of the simulation (integer).
Abscissa of the center of the lower-left cell. Provide a
longitude (in degrees) or, in case Cartesian coordinates
are chosen, an abscissa in meters.
Step length along x, in degrees (longitude) or in meters
(for Cartesian coordinates).
Number of cells along z (integer).
Ordinate of the center of the lower-left cell. Provide a
latitude (in degrees) or, in case Cartesian coordinates are
chosen, an ordinate in meters.
Step length along y, in degrees (latitude) or in meters
(for Cartesian coordinates).
Number of cells along y (integer).
Number of vertical levels (integer).
Path to the file that defines vertical levels interfaces.
If activated, coordinates are Cartesian and in meters.
Otherwise, coordinates are latitudes and longitudes in
degrees.
Path to the file that defines involved species and their
chemical properties.

[options]
Are species advected?
Are species diffused?
If activated, vertical wind is diagnosed from div(pV) =0
where p is the air density and V' the wind, and the dif-
fusion term is div (pK V%) where c is the concentration
and K is the diffusion matrix. If this option is not ac-
tivated, it is assumed that p is constant and therefore
disappears from the previous equations.
Are initial conditions provided for given species? If not,
initial concentrations are set to zero.
Are boundary conditions available for given species?
Is dry deposition taken into account?

136

With_point_emission
With_surface_emission
With_additional _surface_emission
With_volume_emission

Scavenging model

Collect_dry_flux

Collect_wet_flux

Data_description
Horizontal diffusion
Isotropic_diffusion

Configuration_file

CHAPTER 5. MODELS

Are point emissions provided?

Are emissions at ground provided?

Are additional emissions at ground provided?

Are volume emissions provided?

Which scavenging model is applied? If none, the scav-
enging is not taken into account. Otherwise, the fol-
lowing model is applied: constant for constant scav-
enging coefficient, belot for the Belot model (of the
form ap®, where pqg is the rain intensity in mm h=1) or
microphysical for the scavenging model based on mi-
crophysical properties of species.

Are the dry deposition fluxes collected in order to post-
process them if dry deposition is taken into account?
Are the wet deposition fluxes collected in order to post-
process them if wet deposition is taken into account?

[data]
Path to the configuration file that describes input data.
Horizontal diffusion coefficient in m?s~!.
If activated, horizontal diffusion is set equal to vertical
diffusion.

[output]
Path to the configuration for the output saver.

5.5.2 Data Description: polair3d-data.cfg

This configuration file describes input data files (binary files). It is divided into sections: for
deposition, for meteorological fields, etc. A section roughly looks like this:

[meteo]

Date_min: 2004-08-09
Delta_t = 10800.

Fields: MeridionalWind ZonalWind Temperature Pressure Rain CloudHeight Attenuation\

SpecificHumidity

Filename: /u/cergrene/a/ahmed-dm/TestCase-1.0/data/meteo/&f.bin

VerticalDiffusion: /u/cergrene/a/ahmed-dm/TestCase-1.0/data/meteo/Kz_TM.bin

It is assumed that all binary files start at the same date, and this date is Date_min (see dates
formats in Section D.7). The time step is Delta_t, in seconds.

Then a list of fields is provided after Fields. These are fields that the model needs, and
their names are determined by the model. Below, all fields required by the model (depending
on its options) are listed. A generic path (full file name) is then provided (entry Filename).
In this path, the shortcut ’&f’ refers to a field name. In the previous example, the full path to
the temperature is /u/cergrene/a/ahmed-dm/TestCase-1.0/data/Temperature.bin. In the
specific case of boundary conditions, the shortcut ‘&c’ is replaced by x, y and z.

If a few fields are not stored in a file with a generic path, their specific paths can be provided
after the entry Filename. This is the case for VerticalDiffusion in the previous example.

5.5. POLAIR3DTRANSPORT 137

Note that:

1. entries Fields, Filename and additional paths must be at the end of the section, and in
this order;

2. at least one element (possibly not a required field) must be provided to Fields and at
least one element (possibly not a path) to Filename; for instance:

Fields: ---

Filename: --- # means no generic path.

but:

Fields: # Illegal: one element required.
Filename: # Illegal: one element required.

In most sections, Fields is used to specify all chemical species involved in the process, e.g.:

[deposition]

Date_min: 2001-01-02
Delta_t = 10800.

Fields: 03 NO NO2 H202 HCHO PAN HONO SO2 HNO3 OP1 PAA ORA1
Filename: /u/cergrene/A/mallet/2001/data/dep-2005-01-19/&f.bin

ALD /u/cergrene/A/mallet/2001/data/dep-2005-01-19/ALD-modified.bin
Cc0 0.002

Notice that CO is not associated with a path but with a numerical value. This is a feature:
a binary file may be replaced with a numerical value. In this case, the field (in the example,
CO deposition velocity) is set to a constant value (in every cell and at every time step). This
works with any field, including meteorological fields (section [meteo]). This feature is often
used to set constant boundary conditions.

In polair3d-data.cfg, several sections are required. Several sections have to be included
only if given options are activated. In the following table, all possible sections are listed, with
their entries.

Section Entries Comments
[initial_condition] Fields, Filename If initial conditions are activated
(With_initial_condition).

[boundary condition] Date min, If boundary conditions are activated
Delta_t,Fields, (With_boundary_condition).
Filename

[meteo] Date_min, Delta_t, Required fields are: MeridionalWind
Fields, Filename and ZonalWind if advection is activated,

density is taken into account.

Fields, Filename

VerticalDiffusion if diffusion is activated,
and Temperature and Pressure in case air

[deposition] Date min, Delta_t, If deposition is activated (With_-deposition).

138 CHAPTER 5. MODELS

[point_emission] file Path to the file which defines the point emis-
sions (described below). If point emissions are
activated (With_point_emissions).

[surface_emission] Date_min, Delta_t, If surface emissions are activated
Fields, Filename (With_surface_emission).

[additional _surfa...] Date_min, Delta_t, If surface additional emissions are activated
Fields, Filename (With_additional_surface_emission). This

is mostly useful for biogenic emissions. Note
that a species with additional surface emissions
must have emissions in [surface_emission].
You might need to add the given species (say
IS0) in section [surface emission] with zero
emissions (a line like IS0: 0).

[volume_emission] Date_min, Delta_t, Nz, If volume emissions are activated
Fields, Filename (With_volume emission). Nz is the num-
ber of levels in which pollutants are emitted.
[scavenging] Fields If the scavenging model is not set to “none”
(Scavenging model).

If there are point emissions, the point emission file used by the model is of the general type
described Section 5.15.

5.5.3 Vertical Levels and Species

Vertical levels are defined in a single data file. They are defined by their interfaces. This
means that the file contains Nz+1 heights, where Nz is the number of levels specified in the main
configuration file. The concentrations are computed at layers mid-points.

Species are listed in the section [species] of a configuration file. In addition, some scav-
enging models needs extra data:

e The constant model requires a section [scavenging coefficient] which contains a
threshold of rain to apply scavenging (in mmh~!) and the name of the species with its
associated scavenging coefficient (in s~!); for instance:

[scavenging_coefficient]

Scavenging is applied above the following threshold over rain [mm / h].
Scavenging_rain_threshold: 1.

Scavenging coefficient of the species: [s~{-1}]
NO2 1.e-4 S02 1.e-4

Notice that if the previous lines are replaced by

Scavenging coefficient of the species: [s"{-1}]
all l.e-4

the same scavenging coefficient will be used for all scavenged species.

e The belot model has the following expression a py? where coefficients a and b have to be
provided for every species in a section [belot]; for instance:

5.6. POLAIR3DCHEMISTRY 139

[belot]

Coefficients a and b for the Belot parameterization ($a * {p_0}"b$)
where po is the rain intensity [mm / h].

species a b
all 1.e-05 0.8

e In case the microphysical model is used, Henry constants (in molL~!atm~!) and gas-
phase diffusivities (in cm?s~!) should be provided. Henry constants are listed in section
[henry]; for instance:

[henry]

Henry constant: [mol / L / atm]

03 l1.e-2 NO 2.e-3 NO2 1.e-2 H202 1.e5
HCHO 6.e3 ALD 15. PAN 3.6 HONO 1.eb
S02 1.e5 HNO3 1.e14 O0OP1 2.4e2 PAA 5.4e2
ORA1 4.e6 cOo 1.e3 N205 1.e14

Gas-phase diffusivities are provided in the same way in section [diffusivity].

5.6 Polair3DChemistry

Model Polair3DChemistry is configured with three configuration files:

e Main configuration file: polair3d.cfg for RADM, racm.cfg for RACM, racm2.cfg for
RACM2 and cb05.cfg for CB05

e Data description file: polair3d-data.cfg for RADM, racm-data.cfg for RACM,
racm2-data.cfg for RACM2 and cb05-data.cfg for CB5

e QOutput saver file: polair3d-saver.cfg for RADM, racm-saver.cfg for RACM,
racm2-saver.cfg for RACM2 and cb05-saver.cfg for CB05

and two data files (levels.dat and species-racm.dat for RACM). The main configuration
files (polair3d.cfg) provide the paths to the four other files.

A configuration for Polair3DChemistry is an extension of the configuration for Po-
lairdDTransport. In this section, the description is limited to PolairdDChemistry additional
configuration. See Section 5.5 for the rest of the configuration.

5.6.1 Main Configuration File: polair3d.cfg

In addition to fields introduced in Section 5.5.1, the following fields are read by Po-
lair3DChemistry:

[options]
With_chemistry Should chemistry occur?
With photolysis Should photolysis occur?
With_tabulated_photolysis Should photolysis rate be tabulated? If yes, the option

Computed_photolysis must be set to no.

140 CHAPTER 5. MODELS

Photolysis_tabulation_option Read only if With tabulated _photolysis. If 1, the tab-
ulation generated by SPACK is used. If 2, the binary
files obtained by preprocessing tools (JProc or FastJ)
are used.

Computed_photolysis must be set to no if With_tabulated_photolysis. If
they are not tabulated, photolysis rates must be com-
puted during the preprocessing stage (options preproc,
to better take into account clouds)

With_forced_concentrations If activated, the concentrations of a few species are set
to values read in files.
Source_splitting If activated, source splitting is used within chemistry in-

tegration. Advection and diffusion fluxes are included

in the chemistry integration as sources. This slightly in-

creases the memory requirements but is recommended

for numerical stability.
With_adaptive_time_step_for_gas_chemistry

With adaptive time stepping for gaseous chemistry?

Adaptive_time_step_tolerance Tolerance for the adaptive time step.
Min_adaptive_time_step Minimum for the adaptive time step.
Option_chemistry Chemistry mechanism used in the simulation. You can

choose among RACM, RACM2 and CBO5.

5.6.2 Data Description: polair3d-data.cfg

In addition to the configuration described in Section 5.5.2, a section [photolysis_rates] may be
required (if the chemical mechanism includes photolysis reactions). Depending on the chosing
option for photolysis rates, different fields are read. If photolysis rates are tabulated, they
depend on days, time angle, latitude and altitude. During the time integration, they are linearly
interpolated in all cells. The following fields describe the tabulation parameters that must be
filled.

Section Entries Comments
[photolysis_rates] Ndays Number of steps.
Time_angle min Starting time angle in hours.
Delta time_angle Time angle step in hours.
Ntime_angle Number of time angles.
Latitude min First latitude in degrees.
Delta latitude Step along latitude in degrees.
Nlatitude Number of latitude steps.
Altitudes List of altitudes in meters at which photolysis
rates are provided.
Date_min Starting dates of photolysis rates.
Delta_t Time step (in days if tabulated photolysis
rates).
Fields, Filename Photolysis reaction names and the paths to the

files in which photolysis rates are stored.

In the case where photolysis rates are calculated during the preprocessing stage, photolysis
rates have the same form as meterological data. Therefore only the following fields are required:

5.7. POLAIR3DAEROSOL 141

Section Entries Comments
[photolysis_rates] Date min Starting dates of photolysis rates.
Delta_t Time step (in seconds).
Fields, Filename Photolysis reaction names and the paths to the
files in which photolysis rates are stored.

5.6.3 Vertical Levels and Species

Section 5.5.3 is relevant for Polair3DChemistry, and in particular the file giving the lev-
els is exactly the same. As for species, a section [molecular weight] lists the molecu-
lar weights (in gmol™!) of all species. If photolysis reactions are involved, the section
[photolysis_reaction_index] is required. This section provides all reaction names and their
indices in the list of reactions. Below is an example for RACM.

[photolysis_reaction_index]

NO2 0 0301D 1 0303P 2 HONO 3
HNO3 4 HNO4 5 NO3NO 6 NO3NO2 7
H202 8 HCHOmol 9 HCHOrad 10 ALD 11
MHP 12 HOP 13 PAA 14 KETONE 15
GLYform 16 GLYmol 17 MGLY 18 UDC 19
ORGNIT 20 MACR 21 HKET 22

The previous section is quoted from Polyphemus/processing/photochemistry/species-racm.dat
and is consistent with RACM (as implemented in Photochemistry — Section 6.2.1).

5.7 Polair3DAerosol

Polair3DAerosol is configured with three configuration files (polair3d.cfg, polair3d-data.cfg
and polair3d-saver.cfg) and two data files (levels.dat and species.dat). The main con-
figuration file (polair3d.cfg) provides the paths to the four other files.

A configuration for Polair3DAerosol is an extension of the configuration for Po-
lair3DChemistry. In this section, the description is limited to Polair3DAerosol additional pa-
rameters. See Section 5.6 for the rest of the configuration.

5.7.1 Main Configuration File: polair3d.cfg
In addition to fields introduced in Section 5.6.1, the following fields are read by Polair3DAerosol.

[domain]
Bin_bounds The bounds of the diameter classes for aerosol species.
Note that the classes are the same for each aerosol
species.

[options]
With_initial_condition_aerosol Are initial conditions provided for given aerosol species?
If not, initial concentrations are set to zero.
With_boundary_condition_aerosol Are boundary conditions available for given aerosol
species?

142

With_pH
Lwc_cloud_threshold

Fixed_aerosol_density
With_deposition_aerosol
Compute_deposition_aerosol

With_point_emission_aerosol
With_surface_emission_aerosol
With_volume_emission_aerosol
With_scavenging aerosol
With_in_cloud_scavenging
Collect_dry_flux_ aerosol

Collect_wet_flux_aerosol

CHAPTER 5. MODELS

Does the aerosol module returns cloud droplet pH?
Liquid water content threshold above which a cloud is
diagnosed in the cell.

Fixed aerosol density in kg m~3 used in the model.

Is dry deposition taken into account for aerosol species?
If set to yes, deposition velocities for aerosol species are
computed with land data, otherwise they are read in files.
Only needed if dry deposition is taken into account.
Are point emissions provided for aerosol species?

Are emissions at ground provided for aerosol species?
Are volume emissions provided for aerosol species?

Is there scavenging for aerosol species?

Is there in cloud scavenging for aerosol species?

Are the dry deposition fluxes are collected in order to
postprocess them if dry deposition is taken into account?
Are the wet deposition fluxes are collected in order to
postprocess them if wet deposition is taken into account?

Options related to online photolysis rates, only needed if Computed_photolysis = on-line
Time_step_for_computing photolysis_rates

Wet_computation_option

Well mixed_computation_option

Black_carbon_treatment

Directory_OPAC

File_index_water

File_species_match

Directory_efficiency_factor

FastJ_wavelength

Tabulation_refractive_index_real

time between two computation of photolysis rates.
Option to compute the aerosol wet refractive index from
the dry refractive index. Put 1 to use Hénel’s relation or
2 to use aerosol water computed in the model.

Option to compute the index of an internally well-mixed
mixture. Put 1 to use the chemical formula or 2 for
Lorentz-Lorenz formula.

Put 2 to consider black carbon as a core or 1 otherwise.
Path to the directory containing the OPAC data (nor-
mally ../../include/opac/optdat/).

Path to the file containing the water refrac-
tive indices at several ~wavelengths (normally
../../include/opac/index _water_tab.dat).

Path to the file containing the correspondence between
the model species and the OPAC species (normally
../../include/opac/species_opac match.dat).

Path to the directory containing the efficiency factors file
(normally ../../include/fastJ/Mie_table).

List of the wavelengths for which the optical parameters
are computed (in pm).

Dimension of the tabulation (efficiency factors) for the
real part of the refractive index.

Tabulation refractive_index_imaginary

Ndiameter

N_OPAC_wavelength

Dimension of the tabulation (efficiency factors) for the
imaginary part of the refractive index.

Dimension of the tabulation (efficiency factors) for the
aerosol diameters.

Number of wavelengths for which OPAC data are given
(do not change).

5.7. POLAIR3DAEROSOL 143
N_water wavelength Number of wavelengths for which water refractive indices
are given.
FastJ_parameter files Path to the directory containing FastJ parameter files

(normally ../../include/fastJX/)

The bin bounds are presented as follow:

Bin_bounds:

diameter of the particle classes in micrometers.

0.00.111.525

Note that these values are the bounds of the various diameter classes and that therefore there

is one more value than there are classes.

The section Options related to online photolysis rates is only read if photolysis
rates are computed online in the processing stage (option Computed photolysis = online
in Polair3DChemistry). If this option is chosen, 2 initial steps are nedded: 1) firstly during the
preprocessing stage, meteo data must be calculated with the option Photolysis_option set to
3. 2) secondly, the OPAC package must be downloaded. Operations that must be followed to

downloaded it are given Section 7.4.1.

5.7.2 Data Description: polair3d-data.cfg

In addition to the sections described in Section 5.6.2, some parameters may be necessary:

Section Entries
[initial_condition_aerosol] Fields, Filename

[boundary_condition_aerosol] Date_min, Delta t,
Fields, Filename
[deposition_velocity_aerosol] Fields, Filename

[point_emission_aerosol] file

[surface_emission_aerosol] Date_min, Delta_t,
Fields, Filename

[volume_emission_aerosol] Date_min, Delta_t,
Nz Fields,
Filename

[meteo] Date_min, Delta_t,

Fields, Filename

Comments

If initial conditions are activated
(With_initial _condition_aerosol).

If boundary conditions are activated
(With boundary condition aerosol).

If deposition is activated
(With_deposition_aerosol) and de-
position velocities are mnot computed
(Compute_deposition_aerosol set to no).
Path to the file which defines the point
emissions. If point emissions are activated
(With_point_emissions_aerosol).

If surface emissions are activated
(With_surface_emission_aerosol).

If volume emissions are activated
(With_volume_emission_aerosol). Nz
is the number of levels in which pollutants
are emitted.

If photolysis rates are computed on-line
(Computed_photolysis set to online) re-
quired files are CloudOpticaldepth and
IceOpticalDepth.

The point emissions, if needed, are given in files very similar to the point files described in
Section 5.15 for gaseous species, except that there is only one species and one bin in each section
[source]. The species and bin are given after the entry Species, in the form species _bin (for

144 CHAPTER 5. MODELS

example PN03_0). Only the types “continuous” and “puff” can be used.

5.7.3 Vertical Levels and Species

Section 5.6.3 is relevant for Polair3DAerosol. In addition, there is at least a section added in
the file species.dat:

[aerosol_species]

PMD PBC PNA PS04 PNH4 PNO3 PHCL PARO1
PARO2 PALK1 POLE1 PAPI1 PAPI2 PLIM1 PLIM2 PPOA PH20

5.8 Polair3DChemistryAssimConc

Polair3DChemistryAssimConc is dedicated for a state space formulation of the underlying dy-
namical model. The stochastic modeling is implemented for diverse applications such as data
assimilation.

Polair3DChemistryAssimConc is configured with three configuration files (polair3d.cfg,
polair3d-data.cfg and polair3d-saver.cfg) and two data files (levels.dat and
species.dat). The four files other than the main configuration file (polair3d.cfg) are the
same as those for Polair3DChemistry. The main configuration file is an extension of that of
Polair3DChemistry.

The additional parameters are:

[state]

on the same line.

vector. All levels must be on the same line.

[data_assimilation]

Species List of species included in model state vector. All species must be

Levels List of vertical levels of model domain included in model state

Error_covariance model Stochastic model for model and background error covariance.
With option set to Balgovind, the corresponding error covariance
matrix is calculated using Balgovind correlation function; with
option set to diagonal_constant, the corresponding error covari-
ance matrix is a diagonal matrix of which the diagonal elements
are error variances.

Background_error_variance Error variance for background concentrations. The unit for the
option value is pgm™3.

Balgovind_scale_background Balgovind scale for background error covariance. The model grid
interval is chosen to be the unit for option values.

Model_error_variance Error variance for model simulations (in ugm™3).

Balgovind_scale model Balgovind scale for model error covariance. The model grid inter-
val is chosen to be the unit for option values.

The data file is the same as in Section 5.6.2, the species and levels files are the same as those
presented in Section 5.6.3.

5.9. CASTORTRANSPORT

5.9 CastorTransport

145

5.9.1 Main Configuration File: castor.cfg

Model CastorTransport is based on IPSL model Chimere. Its option are provided in a config-

uration file:

Date_min
Delta_t
Nt

Xx_min
Delta_x
Nx

y_min

Delta.y

Ny
Nz
Vertical_levels

Species

With_transport
With_initial_condition
Interpolated_initial _condition

With_boundary_condition
With_deposition
With_volume_emission

Data_description

Configuration_file

[domain]
Starting date in any legal format (see Section D.7). The
date can therefore include seconds.
Time step in seconds.
Number of iterations of the simulation (integer).
Abscissa of the center of the lower-left cell. Provide a
longitude (in degrees) or, in case Cartesian coordinates
are chosen, an abscissa in meters.
Step length along x, in degrees (longitude) or in meters
(for Cartesian coordinates).
Number of cells along x (integer).
Ordinate of the center of the lower-left cell. Provide a
latitude (in degrees) or, in case Cartesian coordinates are
chosen, an ordinate in meters.
Step length along y, in degrees (latitude) or in meters
(for Cartesian coordinates).
Number of cells along y (integer).
Number of vertical levels (integer).
Path to the file that defines vertical levels interfaces.
This field is read but is not used.
Path to the file that defines involved species and their
chemical properties.

[options]
Is transport taken into account?
Are initial conditions used?
If set to yes, initial conditions are interpolated from
boundary conditions, otherwise they are read in binary
files.
Are boundary conditions provided?
Is deposition taken into account?
Are volume emissions taken into account?

[datal
Path to the configuration file that describes input data.

[output]
Path to the configuration for the output saver.

5.9.2 Data Description: castor-data.cfg

The data description is very similar to that of Polair3DTransport (see Section 5.5.1), except

that the data can be different.

146 CHAPTER 5. MODELS
Section Entries Comments
[initial_condition] Fields, Filename If initial conditions are activated

[boundary_condition] Fields, Filename

[meteo] Date_min, Delta_t,
Fields, Filename

[deposition] Date_min, Delta_t,
Fields, Filename
[volume_emission] Date_min, Delta_t, Nz,

Fields, Filename

(With_initial condition) and mnot inter-
polated (Interpolated initial_condition
set to no).

If boundary conditions are activated
(With_boundary_condition).

Required fields are: Temperature, Pressure,
Altitude, AirDensity, MeridionalWind,
ZonalWind and VerticalDiffusion.

If deposition is activated (With_deposition).

If volume emissions are activated
(With_volume emission). Nz is the num-
ber of levels in which pollutants are emitted.

5.9.3 Vertical Levels and Species

A file containing vertical levels similar to the one for “Polair3D” models is read but is not useful.

Give any such file.
Species file has two sections:

e [species] which contains all species managed by the simulation.

e [species_ppm] which contains all species for which an upwind scheme is not used.

5.10 CastorChemistry

Model CastorChemistry is derived from CastorTransport and all data presented in Section 5.9
are necessary for this model too. In addition some other parameters are needed.

5.10.1 Main Configuration File: castor.cfg

[options]
With_chemistry Is chemistry taken into account?
[chemistryl
Reaction file Data file containing the reactions.
Stoichiometry file Data file containing the stoichiometry of the reactions.
Photolysis_file Data file containing the photolysis reactions.

Rates_file Data file containing t

he reaction rates.

5.10.2 Data Description and Species

Data Description The only difference with what is described in Section 5.9.2 is that more

meteorological fields are necessary (see Section 2.6.4).

Species The species file is exactly the same as the one presented in Section 5.9.3.

5.11. PLUMEINGRID: TRANSPORT, CHEMISTRY AND AEROSOL 147

5.10.3 Chemistry Files

When model CastorChemistry is used, four files are necessary to describe the chemistry:

e Reaction_file which gives the reactions between the species managed in the format
2 Cco OH 2 HO2 C02

The first column gives n the number of species reacting, the n following columns give
the name of the species reacting, the following columns are the number and names of the
species resulting from the reaction.

e Stoichiometry file
e Photolysis_file

e Rates file

5.11 PlumelnGrid: Transport, Chemistry and Aerosol

The base files for plume-in-grid model are PlumeInGrid.hxx and PlumeInGrid.cxx. Basically,
it is a model, but it can be used as a driver. The plume-in-grid model uses both an Eulerian
model and a Gaussian model. The Gaussian model can be GaussianPlume or GaussianPuff.

It processes major emissions first with the Gaussian model. When GaussianPuff is used,
puffs are fed back to the Eulerian model when their size is large enough. When GaussianPlume
is used, plumes, emitted from line sources or point sources, are fed back to the Eulerian model
at a distance of 200 m to the source on a trapezoidal surface. The PlumelnGrid model that use
GaussianPlume is presented in [|. Apart from this special treatment
of sources, the Eulerian simulation is performed as if BaseDriver were used. The Eulerian
model can be, for example, Polair3DAerosol, Polair3DChemistry, or CastorChemistry. For the
time being, when GaussianPuff is used, only Polair3DChemistry with RACM mechanism can
be used for reactive cases.

The plume-in-grid model uses basic configuration files for the Eulerian model, with some
changes that are described below, and the file puff.cfg for options for the Gaussian puff model
or plume.cfg for options for the Gaussian plume model.

5.11.1 Main configuration file

In the main configuration file, there is a new section named [gaussian] that provides:

[gaussian]
gaussian_type Type of the Gaussian model : ”puft” or ”plume-line”.
file gaussian Name of the configuration file for the Gaussian model.

With_temporal_profile

Proportional_emission

Emitted_species

Set to "yes” if a temporal profile must be used for Gaussian emis-
sion (with GaussianPlume only).

Set to yes if Gaussian emissions are proportional from one species
to another, for all sources. If yes, only one emitted species must
be specified in the source file, others are specified below.

This field is required if "Proportional_emission” is set to yes. It
must contains the name of the emitted species associated with a
multiplicative factor (all on the same line) that will be applied to
the emitted species of the source file.

148 CHAPTER 5. MODELS

5.11.2 Data description file

In the data configuration file, there is a new section [gaussian meteo] that provides more
meteorological fields than the ones used for Eulerian model:

1. Fields LowCloudiness, MediumCloudiness, HighCloudiness and SolarRadiation will be
used to compute stability class. It is used only with Briggs parameterization for standard
deviations. In other cases, put whatever value you want for those fields (they are still read
but not used).

2. Fields FirstLevelWindModule, FrictionModule, BoundaryHeight and LMO provide re-
spectively the friction velocity, the boundary layer height and the Monin-Obukhov length.
They are always read but used only in case similarity theory is used to compute standard
deviations. In other cases, put any value for those fields.

In addition, there is a new section [plume-in-grid] that provides several information
detailed below.

[plume-in-grid]
size (by default: 4).
(by default: 4).
reinjection criterion is based on the puff horizontal size).
or interpolated at the puff center (”yes”)?

With reinjection_time is set to "yes”).

Horizontal_coefficient Coefficient by which to multiply o, to obtain the puff horizontal
Vertical_coefficient Coefficient by which to multiply o, to obtain the puff vertical size
With reinjection time Is puff reinjection forced after a given time? (if set to "no”, the
With_interpolation Are meteorological data taken at the center of the puff cell ("no”)
Reinjection_time Reinjection time in seconds after the puff emission (used only if

Injection method Puft feedback method into the Eulerian model: “column” for an

injection on one column of cells, “integrated” for an injection pro-
portional to the puff quantity in all neighboring cells (used only
with GaussianPuff).

With_chemistry feedback Is there some feedback of the chemical products in the Eulerian
cell at each time step (“yes”), or does everything stay in the puff

until reinjection (“no”)?

Note: The option With_chemistry_feedback allows to save some computational time, since
the chemical interaction between the background species in a cell and all puffs within this cell
is computed only once, and not for each puff separately. However, it is not advised to use
this option for the time being, since its stability is not guaranteed.

Note that there is no point emission for the Eulerian model, since the source file is directly
read by the Gaussian puff model (it is provided in the Gaussian puff configuration file).
Hence, if you set the option With_point_emission to ”yes” and provide the same configura-
tion file for point source, the source file will be read twice and taken into account by both models.

A section [ground] provides some information about the land use coverage. This is used
by the Briggs parameterization: it uses the urban formulae when the cell contains more than a
given proportion of the urban luc. Instead of a binary file, the keywords “rural” or “urban” can

5.11. PLUMEINGRID: TRANSPORT, CHEMISTRY AND AEROSOL 149

be provided, to use the corresponding Briggs formulae.

[ground]
LUC file Path to the binary file that describes land use cover or rural, or
urban.
Urban_index Index of the urban areas in land categories (0 for usgs, and 13 for
glef).
Urban_proportion Proportion of urban LUC in a cell to use the urban formulae.
Default: 0.25.

Finally a section [temporal_profile] is required when the option "temporal _profile” is
set to yes (only with GaussianPlume). It must contain the temporal profile file path along with
its starting date.

5.11.3 Puff configuration file: puff.cfg (when GaussianPuff is used)

In addition, the Gaussian puff model needs the usual configuration files. However, few of their
information are actually used, since most information are directly provided by the plume-in-grid
model.

The most important information given in puff.cfg are the time step Delta_t, and the
source information: File puff is the path to the source file (point sources to be treated by the
Gaussian model), and Delta_t_puff is the time step between two puff emissions.

There are two constraints for these time step values:

1. Time step of the Gaussian model must not be smaller than time step between two puff
emissions. The plume-in-grid model checks this, and sets Delta_t_puff equal to the value
of Delta_t if necessary.

2. Time step of the Gaussian model is used in an inner-loop of the Eulerian time-loop. Hence,
it must not be greater than Eulerian time step. The number N of iterations for the Gaussian
model performed at each iteration of the Eulerian model is therefore computed as:

A .
N = max ('_ tEulerlanJ (51)

1
At(}auussian ’)

the time step of the Gaussian model (Delta_t in file puff.cfg), Aty is the time step between
two puff emissions, and Atgylerian 18 the time step of the Eulerian model, given in the main
configuration file.

In short, it is ensured that Af,ug > AtGaussian and AtGaussian < AtEulerian Where AtGayssian 18

The plume-in-grid model needs some other information in file puff.cfg: it reads all
options and parameterizations. Note that with plume-in-grid, it is advised to set the option
With_increasing sigma to 'yes’.

For plume-in-grid with chemistry, the option With_chemistry has to be set to ’yes’ both in
the main configuration file and in puff.cfg. The option With_puff_interaction normally has
to be set to ’yes’, in order to take into account the chemical interaction between two puffs. It
can be set to 'no’ to save computational time, but it is not advised to do so.

Other information is read but not used. Scavenging, deposition and radioactive decay can
be used in the Gaussian model. For scavenging and deposition to be used, the option has

150 CHAPTER 5. MODELS

to be set to ’yes’, both in the Gaussian puff model and in the Eulerian model, in order to
ensure consistency between the two models. If deposition in the Gaussian model is used, the
Chamberlain deposition has to be used, instead of the Overcamp model.

There is no need to provide a meteorological file, since these data are fed to the puff model
by the plume-in-grid model. The species file is still read. It is advised to use the same as the
species file for Eulerian model. The names of the levels file and saver file are still read but the
files are not used.

5.11.4 Plume configuration file: plume.cfg (when GaussianPlume is used)

In addition, the Gaussian plume model needs the usual configuration files. However, few of their
information are actually used, since most information are directly provided by the plume-in-grid
model.

The most important information given in plume.cfg are the time step Delta_t, and the
source information: File_source is the path to the source file (point or line sources to be
treated by the Gaussian model).

Delta_t specified in the ”plume.cfg” file while the Delta_t specified in the main configuration
file is the Eulerian time step. The Eulerian time step must be inferior or equal to the Gaussian
time step (to ensure the convergence of the chemistry scheme) :

Gaussian time step = n x Eulerian time step

with n is a positive integer.

Note that care must be taken when a small Gaussian time step is used. Indeed, Gaussian-
Plume model assume that plumes reaches a stationary state which might not be the case if a
small Gaussian time step is used.

For plume-in-grid with chemistry, the option With_chemistry has to be set to 'yes’ both
in the main configuration file and in plume.cfg. The options ”"With_.NO2_chemistry” and
”"With_OH_chemistry” can be used with the plume-in-grid model.

Other information is read but not used. Scavenging, deposition and radioactive decay can
be used in the Gaussian model. For scavenging and deposition to be used, the option has
to be set to 'yes’, both in the Gaussian plume model and in the Eulerian model, in order to
ensure consistency between the two models. If deposition in the Gaussian model is used, the
Chamberlain deposition has to be used, instead of the Overcamp model. There is no need to
provide a meteorological file, since these data are fed to the plume model by the plume-in-
grid model. The species file is still read. It is advised to use the same as the species file for
Eulerian model. The names of the levels file and saver file are still read but the files are not used.

5.12 StationaryModel

This model is used to perform a simulation at local scale, with an Eulerian model. The model
mostly creates an interface between the driver (normally BaseDriver) and an underlying Eule-
rian model, such as Polair3DChemistry. At each time step of StationaryModel (“simulation
time step”), iterations of the underlying model are performed with a much smaller time step
(“internal time step”) until convergence is reached. The driver moves StationaryModel from
one simulation time step to the next one.

5.13. LAGRANGIANTRANSPORT 151

Convergence is checked by computing the norm of the difference between the concentrations
before and after the iteration (1-norm, 2-norm or infinity-norm, see below), normalizing it with
the mean or the maximum of the concentration before and by comparing it to a convergence
criterion.

The output on screen for each iteration gives whether or not the inner-loop converged and
, if it did, after how many iterations. If the number of iterations is too small or too big, this
means that the way to check convergence is not adapted. Try changing the norm used, the
method or the convergence criterion.

Both models (StationaryModel and the underlying model) are built with the same con-
figuration file(s). Except for a few points described below, the configuration file must be the
one for the underlying model (see the Section describing it). The differences are only in section
[domain] and two additional sections ([stationary] and [convergence]):

[domain]
Nt Maximum number of iterations of the underlying model. This is different
from what is normally defined here.
Delta_t Time-step of the internal loop (“internal time step”). This is different

from what is normally defined here.

[stationary]
Nt Number of time steps for the simulation.
Delta t Time-step of the simulation (in seconds).
[convergence]
Norm Norm used to check convergence: one, two or infinity.
Method Method used to normalize the norm: mean or max.
Epsilon Convergence criterion (for instance 1.e-4).
5.13 LagrangianTransport
The LagrangianTransport model was implemented according to []. The imple-

mentation is still primary and does not take into account such phenomenon as the scavenging,
the wet or dry deposition, the boundary layer effect etc...

It has successfully been tested and evaluated with the ETEX dispersion case where these
parameterizations are not significant.

Its use is illustrated in processing/lagrangian-stochastic. It is there configured with
three configuration files:

e lagrangian-stochastic.cfg,

e lagrangian-stochastic-data.cfg,

e lagrangian-stochastic-saver.cfg,
and two data files:

e levels.dat,

e point_emission.dat.

152 CHAPTER 5. MODELS

5.13.1 Main Configuration File: lagrangian-stochastic.cfg

The main configuration file lagrangian-stochastic.cfg gives information on the domain def-
inition and the options of the simulation:

[domain]
Date_min Starting date in any legal format (see Section D.7). The
date can therefore include seconds.
Delta_t Time step in seconds.
Nt Number of timesteps (integer).
x_min Abscissa of the center of the lower-left cell. Provide a
longitude (in degrees).
Delta x Step length along x, in degrees (longitude).
Nx Number of cells along z (integer).
ymin Ordinate of the center of the lower-left cell. Provide a
latitude (in degrees).
Delta_y Step length along y, in degrees (latitude).
Ny Number of cells along y (integer).
Nz Number of vertical levels (integer).
Vertical levels Path to the file that defines vertical levels interfaces.
Species Path to the file that defines involved species.
[species]

List of species.

[options]

With_air density If activated, vertical wind is diagnosed from div(pV') = 0
where p is the air density and V' the wind, and the dif-
fusion term is div (pK V%) where ¢ is the concentration
and K is the diffusion matrix. If this option is not ac-
tivated, it is assumed that p is constant and therefore
disappears from the previous equations.

With_point_emission Are point emissions provided? Should be set to yes be-
cause there is now no other way to introduce particles in
a Lagrangian simulation!

[datal
Data_description Path to the configuration file that describes input data.
Horizontal diffusion Horizontal diffusion coefficient in m?s~!.

Gaussian kernel_horizontal _diffusionHorizontal diffusion coefficient used in the computation
of the gaussian kernel distribution in m?s~".

[output]
Configuration file Path to the configuration for the output saver.

5.13.2 Data Description: lagrangian-stochastic-data.cfg

The data configuration file is very simple because the model LagrangianTransport takes into
account very few parameterizations.

5.14. LAGRANGIAN PARTICLES 153

[meteo]
Date min Starting time of the meteo data files (see dates formats
in Section D.7).
Delta_t Timestep of the meteo data files (in seconds).
Fields Required fields are: MeridionalWind and ZonalWind,

and Temperature and Pressure in case air density is

taken into account.

Filename Generic path where the shortcut ’&f’ refers to a field

name defined in Fields.
VerticalDiffusion File name for VerticalDiffusion.

[point_emission]

file Path to the file which defines the point emissions (de-
scribed below).

Delta_t_particle_emission Time interval between the emission of two particles (in
seconds).

5.13.3 Vertical Levels and Point Emission

Vertical levels are defined the same way as in 5.5.3. As for point emission, its related file is of
the general type described in Section 5.15.

5.13.4 Noteworthy Remarks about Output Saving

The simulation outputs can be saved with the unit saver types related to the SaverUnitDomain
(see 4.10.2) or SaverUnitPoint (see 4.10.7). The following types should therefore be avail-
able: domain, domain ensemble forecast, domain _ensemble analysis, indices_list and
coordinates_list. Take notice that the option Averaged is not supported: it should then
always be set to no.

When using SaverUnitDomain, you might be surprised by the time needed to complete the
saving of a given timestep. This deserves some further explanations.

Unlike Eulerian models, Lagrangian models do not compute the concentration in every cells
of the domain at each timestep. This calculation has to be performed besides the Lagrangian
algorithm as an explicit projection from the Lagrangian particles onto the domain mesh. Such
a projection can be very expensive in CPU time depending on the particle type and the mesh
size.

The particles that are now implemented in Polyphemus are Gaussian kernels whose projection
is particularly costful because each particle is considered to contribute to each cell concentra-
tion. This was inherited from the DIFPAR algorithm, so it is reasonable to expect significant
improvement in versions to come.

As a consequence, you are invited to consider saving the results over the whole domain as a
scarce ressource whereas saving results at a list of points has to be favoured whenever it makes
sense. Of course, the number of saved levels is also to be decided carefully.

5.14 Lagrangian Particles

The LagrangianTransport model can transport different types of particles who might differ
for instance, by the way their displacement is computed given meteorological velocity fields
or by the way their mass distribution is modelled. You can change the type of particle you

154 CHAPTER 5. MODELS

want in processing/lagrangian-stochastic/lagrangian-stochastic.cpp when declaring
your model:

typedef LagrangianTransport<real, ParticleDIFPAR_Horker<real> >
ClassModel;

ParticleDIFPAR Horker was set up above. This particle model is implemented in the related
files you should easily find in include/models. You can also decide to develop your own particle
model. In such a case, derive it from the BaseParticle class (or from other existing classes).
They are all located in include/models.

Up to now, following [|, we implemented two types of particles, both using the
Gaussian kernel model for mass distribution.

5.14.1 ParticleDIFPAR _Horker

The Horker formulation is so simple that there are no parameter to be set. Notice that the fields
Horizontal diffusion and Gaussian kernel horizontal diffusion defined in

processing/lagrangian-stochastic/lagrangian-stochastic.cfg are irrelevant for this
particle model.

5.14.2 ParticleDIFPAR_FokkerPlanck

Like [], we considered the horizontal diffusion splits between the
horizontal turbulence used in the displacement computation (named simply
Horizontal diffusion) and the horizontal diffusion used in the mass distribution (named
Gaussian kernel horizontal diffusion). In the ETEX case of [], the first
field was set to 25000m? s~ whereas the the second one was assigned 50000m?s~!.

5.15 Point Emission Management

The management of point emissions for gaseous species is common to several models. In
particular, Polair3D, GaussianPlume (Section 5.1.2), GaussianPuff (Section 5.3.2), Plumeln-
Grid and LagrangianTransport (Section 5.13) use the common point emission manager. The
configuration file needed for these emissions, as well as the various types of point emissions
available, are described in this section.

Important note: The common point emission manager is only available for gaseous
species, for the time being. The aerosol species are still managed by each model separately.
For point emission files used with GaussianPlume_aer and GaussianPuff_aer, please refer to the
Sections 5.2.2 and 5.4.2 respectively. For point emission files used with Polair3DAerosol, please
refer to the Section 5.7.2.

The file for gaseous point emissions has to contain a section [source] for each point emission,
with the following features:

e its location: Abscissa and Ordinate are given in degrees (or in meters, in case Cartesian
coordinates are chosen) and Altitude is the vertical height in meters. For Eulerian models,
the emission is released in the cell containing the location of the point emission.

e the list of emitted species is filled after Species.

5.15. POINT EMISSION MANAGEMENT 155

e the type Type may be continuous, puff for instantaneous release, temporal for continuous
emissions varying in time or continuous_line for continuous line emissions.

5.15.1 Continuous emissions

The continuous emission is described with the following entries:

Date_beg The date at which the emission starts. The date must be in a format de-
scribed in Section D.7.

Date_end The date at which the emission ends. The date must be in a format described
in Section D.7.

Rate The list of rates (one per emitted species) in mass unit per seconds. The
mass unit is arbitrary and output data will then use the same mass unit as
input data.

Velocity The stack exit velocity (m/s)

Temperature The source temperature (Celsius degrees)

Diameter The source diameter (m)

The source velocity, temperature and section are read, and used for plume rise calculation
if the option is activated (namely in Gaussian models). If they are not known, put zero. The
diameter may also be used to compute the initial horizontal extent of the emitted plume. The
configuration file for point emissions may contain a section looking like this:

[source]

Abscissa: 5.2
Ordinate: 48.5
Altitude: 10.

Species: NO NO2

Type: continuous

Rate: 1. 1.5

Date_beg: 2001-04-22_00-05
Date_end: 2001-04-22_00-07

Velocity: O.
Temperature: O.
Diameter: 0.2

5.15.2 Puff emissions

The puff emission is described with the following entries:

Date The date at which the puff is emitted. The date must be in a format
described in Section D.7.
Quantity The list of quantities (one per emitted species) in mass unit.

The configuration file for point emissions may contain a section looking like this:

[source]

156

Abscissa: 10.3

Ordinate: 48.
Altitude: 80.

Species: S02

Type: puff
Quantity: 1.

CHAPTER 5. MODELS

Date: 2001-04-22_00-05

Velocity: O.

Temperature: O.

Diameter: 0.2

5.15.3 Temporal emissions

The temporal emission is the same as a continuous emission, but temporal factors are applied
to the emission rate in order to account for temporal variations. In addition to the continuous
emission entries, the following entries are required:

Datemin_file

Delta_t

TemporalFactor

The date at which the temporal factor file starts. The date must be in a
format described in Section D.7, and must be lower than, or equal to, the
emission beginning date.

The time step (in seconds) between two temporal factors.

The name of the binary file where the temporal factors are read.

At each simulation time step, the emission rate is multiplied by the temporal factor read in
the file. The index of the temporal factor is given by the file beginning date and time step, as
well as the date at the current simulation time step. The temporal factor file is a binary file,
containing the list of factors, from the beginning date (in float type).

The configuration file for point emissions may contain a section looking like this:

[source]

Abscissa: 10.3

Ordinate: 48.
Altitude: 80.

Species: 3502

Type: temporal

Rate: 1.

Date_beg: 2001-04-22_00-05
Date_end: 2001-04-23_00-00
TemporalFactor: hourly_factor.bin

Date_min_file:
Delta_t: 3600.

2001-04-01

5.16. CHIMERE 157

5.15.4 Continuous line emission

The continuous_line emission is described with the following entries:

Date_beg The date at which the emission starts. The date must be in a format de-
scribed in Section D.7.
Date_end The date at which the emission ends. The date must be in a format described

in Section D.7.

Coordinate file Path of the coordinate file (which replaces the Abscissa, Ordinate and Alti-
tude entries of the continuous point emission, described in Section 5.15.1).
It has the same syntax as the data file line-emission.dat described in
Section 3.8.1.

The configuration file for point emissions may contain a section looking like this:

[source]
Species: Iodine Caesium

Type: continuous_line
Date_beg: 2001-01-01_01-00-00
Date_end: 2001-01-01_04-00-00

Coordinate_file: line-emission.dat

5.16 Chimere

Polyphemus provides a C++ interface to the chemistry-transport model Chimere (http://
www.1lmd.polytechnique.fr/chimere/). This interface allows to plug Chimere to Polyphemus
drivers and to Verdandi assimilation methods. Note that, contrary to Castor, the interface is
not a reimplementation of Chimere. It simply calls the Chimere routines and provides C++
methods for communication with other objects from Polyphemus and Verdandi.

5.16.1 Installation

Polyphemus supports the version 2008c of Chimere. The later can be downloaded at http://
www.lmd.polytechnique.fr/chimere/downloads/. Please refer to the Chimere documentation
for its installation. This user’s guide only addresses the specific steps required for the interface
to work.

You need to make one single change in Chimere. Note that this change is harm-
less: after it, you will be able to use Chimere either directly or through the C++4 in-
terface. In the Chimere directory (probably named chimere2008c/), go into scripts/.
You should find chimere-run.sh. This file should be patched with the Polyphe-
mus file include/models/chimere/chimere-run.sh_patch: patch -pO chimere-run.sh <
/path/to/polyphemus/include/models/chimere/chimere-run.sh patch

You need to add to LIBRARY_PATH the path to the libraries of g95, which may not be in
/usr/lib/. For instance, with the Debian package (from g95 web site) available at the time
these lines are written, LIBRARY PATH should be updated with

export LIBRARY_PATH=/usr/share/g95/1ib/gcc-1ib/x86_64-unknown-linux-gnu/4.1.2/:\
$LIBRARY_PATH

http://www.lmd.polytechnique.fr/chimere/
http://www.lmd.polytechnique.fr/chimere/
http://www.lmd.polytechnique.fr/chimere/downloads/
http://www.lmd.polytechnique.fr/chimere/downloads/

158

CHAPTER 5. MODELS

Make a copy of the example directory processing/chimere/. This copy will be your working
directory in which you store the Chimere configuration and the interface configuration. In this
directory, you need to have the scripts compile_run.py and run.py, and a SConstruct file.

In your working directory, follow these steps:

1. In Sconstruct and run.py, set the variable polyphemus_path to the Polyphemus direc-

tory.

2. Put (or copy) your configuration script chimere.sh in the working directory.

3. Edit chimere.sh to set the variable chimere_root to the Chimere path.

4. If you use the parallel version, run lamboot as usual.

5. Run the script run.py chimere.cfg after you properly configured in chimere.cfg (see

below).

5.16.2 Configuration

The configuration file for the script run.py (called chimere.cfg by default) is described below.

Configuration

Date_min
Delta -t
Nt

X_min

Delta x
Nx
y_min

Delta.y

Ny

Nz
Vertical_levels
Species
Species_aer
Bin_bounds

Nreac

Data_description

[chimere]
Path to the configuration file for the main program.

[domain]
Starting date in any legal format (see Section D.7).
Put 3600 because Chimere always advances by an hour.
Number of timesteps (integer), that is, number of hours.
Abscissa of the center of the lower-left cell. Provide a
longitude (in degrees).
Step length along z, in degrees (longitude).
Number of cells along z (integer).
Ordinate of the center of the lower-left cell. Provide a
latitude (in degrees).
Step length along y, in degrees (latitude).
Number of cells along y (integer).
Number of vertical levels (integer).
Path to the file that defines vertical levels interfaces.
Path to the file that defines gas-phase species.
Path to the file that defines aerosol species.
The bounds of the diameter classes for aerosol species.
Note that the classes are the same for each aerosol
species.
Number of gas-phase reactions.

[data]
Path to the file that lists all emitted anthropogenic
species, all emitted biogenic species, the number of ver-
tical levels in the emissions and the names of the species
families.

[display]

5.17. STREETNETWORK (MUNICH): TRANSPORT AND CHEMISTRY 159

Show_iterations If activated, each iteration is displayed on screen.

Show_date If activated, the starting date of each iteration is dis-
played on screen in format YYYY-MM-DD HH:II (notations
from Section D.7).

[output]
Configuration file Path to the configuration for the output saver.

5.17 StreetNetwork (MUNICH): Transport and Chemistry

Models StreetNetworkTransport and StreetNetworkChemistry consist a street network model,
the Model of Urban Network of Intersecting Canyons and Highways (MUNICH). MUNICH is
used to simulate subgrid concentrations in the urban canopy represented by the street network
(http://cerea.enpc.fr/munich/).

The associated programs to be run are munich-transport and munich-chemistry.
They are configured with three configuration files (munich.cfg, munich-data.cfg
and munich-saver.cfg) and three data files (intersection.dat, street.dat and
species-cb05.dat). The main configuration file munich.cfg provides the paths to the three
data files. There are several output files: concentrations for each species and text-type files
which contain concentrations for all species at each time step.

A document for more details is available at http://cerea.enpc.fr/sing-workshop/doc/
Formation_MUNICH.pdf.

5.17.1 Main Configuration File: munich.cfg

The main configuration file munich.cfg gives informations on the options of the simulation.
There are many sections, e.g., [display], [domain], in the file. Here, we explain a specific
section [street] for MUNICH. Please see Section 5.5.1 for the other sections.

[street]
Transfert_parameterization Parameterization to compute turbulent transfert velocity:
“Sirane” or “Schulte”
Mean wind_speed_parameterization Parameterization to compute mean wind speed within the
street-canyon: “Sirane” or “Lemonsu”

With horizontal fluctuation If the horizontal fluctuation is taken into account.
Intersection File containing the input data for intersections.

Street File containing the input data for streets.

Minimum Street _Wind_Speed Minimum wind speed within the streets.

With_local_data If meteo data and background concentrations are available

for each street.

5.17.2 Input data files: intersection.dat and street.dat

- intersection.dat: intersection id, longitude and latitude of the intersection, number of
streets whice are connected to the intersection followed by the connected street id.

#id;lon;lat;number_of_streets;lst_street_id;2nd_street_id;...
1;2.49961040621;48.8639959388;6;1;605;852;3;8;11;
2;2.49977706824;48.8650938211;1;1;
6;2.49810836399;48.8642684425;1;3;

http://cerea.enpc.fr/munich/
http://cerea.enpc.fr/sing-workshop/doc/Formation_MUNICH.pdf
http://cerea.enpc.fr/sing-workshop/doc/Formation_MUNICH.pdf

160 CHAPTER 5. MODELS

7;2.50328738802;48.8643530022;1;4;
8;2.50263219496;48.8630192684;4;4;5;10;19;
10;2.50111432732;48.8635255708;4;5;7;664;851;
11;2.48158743003;48.8656369541;1;6;
12;2.48236756109;48.8639495836;3;6;749;710;
13;2.50067262662;48.8626783551;4;7;8;23;676;

- street.dat: street id, two intersection id which connect the street, street length, width
and height.

#id;begin_inter;end_inter;length;width;height
1;1;2;122.686160495;7.5;6.9
3;1;6;107.94798805;7.5;6.9
4,7;8;155.856467313;7.5;6.9
5;8;10;124.490042998;7.5;6.9
6;11;12;196.113095869;41.0;10.2
7;13;10;99.5930099431;7.5;6.9
8;1;13;169.563212564;7.5;6.9

5.18 Street-in-Grid (SinG): Transport and Chemistry

Models StreetInGridTransport and StreetInGridChemistry consist of a new multi-scale
model of urban air pollution. These models combine Polair3D and MUNICH.

The associated program to be run is street-in-grid. It is configured with five con-
figuration files: a main configuration file (street-in-grid.cfg, a file for output saver
(street-in-grid-saver.cfg), a file for Polair3D, polair3d-data-cb05.cfg and two files for
MUNICH, munich.cfg and munich-data.cfg). Five data files are needed: three for Polair3D
(species-cb05.dat, glc2000.dat and levels.dat) and two for MUNICH (intersection.dat
and street.dat).

5.18.1 Main Configuration File: street-in-grid.cfg

The main configuration file street-in-grid.cfg gives informations on the options of the sim-
ulation. There are many sections which are already explained in sections for Polair3D and
MUNICH. Here, we explain a specific section [street] for Street-in-Grid.

[street]
With_interpolation Are input data (meteo and species) interpolated for a street?
With_corrected_background Are background concentrations corrected using fractions of

grid volume (urbanized volume over total grid volume)?
With horizontal fluctuation If the horizontal fluctuation is taken into account.
Street_configuration Path to the configuration file for MUNICH.

Chapter 6

Modules

6.1 Transport Modules

6.1.1 AdvectionDST3

Module AdvectionDST3 is the transport module associated to advection for Polair3D. It is
based on a third-order “direct space-time” scheme with a Koren-Sweby flux limiter. The data
needed are the wind components and boundary conditions if they are available.

Please note that Courant-Friedrichs-Lewy (CFL) condition is not verified and that the user
should choose the mesh dimensions and the time-step of simulations very carefully. In order to
enforce the CFL, you may use module SplitAdvectionDST3 instead.

6.1.2 SplitAdvectionDST3

Module SplitAdvectionDST3 is the same as AdvectionDST3 except that
e it uses directional splitting;
e it performs automatic subcycling in order to satisfy the CFL.

It is the advection module used in every program driver/*.cpp, except the ones for data
assimilation.

6.1.3 GlobalAdvectionDST3

Module GlobalAdvectionDST3 is the same as AdvectionDST3 for global scale (boundary con-
ditions are not used).

6.1.4 DiffusionROS2

Module DiffusionR0S2 is the transport module associated to diffusion for Polair3D. It is based
on a second-order Rosenbrock method. Fortran routines are used to perform all numerical
computations.

6.1.5 GlobalDiffusionROS2

Module GlobalDiffusionR0S2 is the same as DiffusionR0S2 for global scale.

161

162 CHAPTER 6. MODULES

6.1.6 TransportPPM

Module TransportPPM is the numerical solver for transport used in Castor model. It uses
piecewise parabolic method (PPM) for advection but can also use an upwind scheme for some
species.

In the species file associated with castor there are two sections: [species] and
[ppm_species]. For all species in [species] but not in [ppm_species] an upwind scheme
will be used.

6.2 Chemistry Modules

6.2.1 Photochemistry

Module Photochemistry is the most common photochemical module used with Polair3D. It
implements three chemical mechanisms: RACM ([1997]), RACM2(

[]) and CBO5([]). It uses a second-order Rosenbrock method
for time integration. Computations are performed by Fortran routines (automatically generated
by the chemical preprocessor SPACK) and a C++ program is used as a frame to launch all
these calculations.

It only deals with gaseous species. Information about species and reactions is given below.

Chemical mechanisms no of species no of reactions

RACM 72 237 including 23 photolysis
RACM2 113 349 including 34 photolysis
CBO5 52 155 including 23 photolysis

The units of input data (e.g., initial condition, boundary condition etc.) should be given as
pg/m? in using Photochemistry module.

6.2.2 ChemistryRADM

Module ChemistryRADM is quite similar to Photochemistry. RACM has actually been derived
from RADM.
RADM manages 61 species, 157 reactions involving those species and 21 photolysis reactions.
The units of input data (e.g., initial condition, boundary condition etc.) should be given as
pg/m? in using ChemistryRADM module.

6.2.3 ChemistryCastor

Module ChemistryCastor is the default chemical module for Castor. It involves 44 species
and 118 reactions. It is based on several data files which must be provided: Reaction file,
Stoichiometry_file, Photolysis_file and Rate_file.

6.2.4 Decay

This chemistry module is used for species (gaseous or particulate) which have a radioactive or
biological decay, that is to say a natural decrease in their concentrations over time. It requires
two more options in the configuration file (polair3d.cfg).

[options]
With_time_dependence If set to yes, the value of the half-life time for each species depend
on the time of the day.

6.2. CHEMISTRY MODULES 163

‘ With_filiation matrix If set to yes, decay and filiation are represented by a matrix.

Note that With_time_dependence and With filiation matrix cannot be both set to yes at
the same time.

Use of One Value of Decay The first possibility is that each species has a half-life time which
is given in species.dat. In that case With_time_dependence and With_filiation matrix are
both set to no. The variation of concentration due to decay only is described in equation (6.1)
where T /o is the species half-life time in days and ¢ is a reference time. If a species has no
decay, its half-life time is set to 0, and this is interpreted by Decay as the fact that concentration
does not vary due to decay.

C(t) = C(to) exp <_(t—;10/)21n2> (6.1)

The parameters needed are provided in species.dat as follow.
[species]

Spl Sp2 Sp3 Sp4

[aerosol_species]

Aerl Aer2

[half_life]

Half-lives in days, put O for species without decay.
Spl 300

Sp2 216

Sp3 0

Sp4 41

[half_life_aerosol]

Half-lives in days, put O for species without decay.
Aerl 250
Aer2 120

Use of Two Values of Decay Another option is that each species has two values of Tj s,
one for the day and one for the night. This is in particular the case for species which have a
biological effect. As before, for a species without decay, both half-life times are set to 0. The
equation involved is very similar to equation (6.1), except that the value of T; /2 can vary. In
that case With_time_dependence is set to yes and With filiation matrix to no.

The parameters needed are provided in species.dat.

[species]

Spl Sp2 Sp3 Sp4

164 CHAPTER 6. MODULES

[aerosol_species]
Aerl Aer2
[half_life_time]

Half-lives in days, put O for species without decay.
First value for day, second for night.

Spl 300 500
Sp2 216 300
Sp3 0 0

Sp4 41 72

[half_life_time_aerosoll]

Half-lives in days, put O for species without decay.
First value for day, second for night.

Aerl: 250 350

Aer2: 120 180

Decay tests whether it is day or night and chooses the value of half-life time to use.

Use of a Filiation Matrix The last solution is that a single matrix (called filiation matrix)
is specified for all gaseous species (and one for all aerosol species), which takes into account
both decay and the fact that a species can react to form other species. As a result, the evo-

lution of the concentration due to decay only is described in equation (6.2). In that case
With_time _dependence is set to no and With filiation matrix to yes.

C"(z,y,2) = AC™(z,y, 2) (6.2)
cg(z,y, 2)

where A is the s x s filiation matriz and C™(z,y,z) = cl(z,y,2) with ¢'(z,y, z) the

C?71 (QS‘, Y, Z)
concentration of species i at time-step n in point of coordinate (z,y,z) and s the number of
species involved.
The parameters are specified as follows, in species.dat

[species]

Spl Sp2 Sp3 Sp4
[aerosol_species]
Aerl Aer2

[filiation_matrix]
File: matrix.dat

6.3. AEROSOL MODULES 165

[filiation_matrix_aerosol]
File: matrix_aer.dat

The s x s filiation matrix is specified in file matrix.dat as below :

0.7 0.05 0 0.1
0 0.8 0.1 0.05
0.1 0.1 0.6 0.1
0.15 0 0.1 0.7
The matrix for aerosol species is very similar to the one for gaseous species, except that its
size is s, X S, where s, is the number of aerosol species.

6.3 Aerosol Modules

6.3.1 Aerosol SIREAM_SORGAM
For Aerosol_SIREAM_SORGAM to work, you have to install ISORROPIA (see Section 1.3.5).

Aerosol SIREAM_SORGAM This aerosol module is used for gas and aerosol species for
general purposes as air quality modeling and risk assessment. The gas chemistry is solved with
one of three chemical mechanisms: the RACM ([1), the RACM2(
[]) and the CBO5([|. The aerosol dynamics is solved by the
SIREAM model ([). When a cloud is diagnosed in one cell of the domain, then
instantaneous aerosol activation is assumed and the SIREAM model is replaced by the VSRM
cloud chemistry model ([2003]).
The number of aerosol bins is directly inferred from the number of bounds provided by the
Bin_bounds option in main configuration file (polair3d.cfg). Further options are required in

this configuration file.

With_pH

Scavenging model
Lwc_cloud_threshold
With_coagulation
With_condensation

With nucleation

Fixed_ aerosol_density
aqueous_module

With_in _cloud_scavenging
With_heterogeneous_reactions
With kelvin_effect
Dynamic_condensation_solver

Fixed_cutting_diameter
Sulfate_computation

Redistribution_method

[options]
Does the aerosol module returns cloud droplet pH?
Which below cloud scavenging model is used?
Liquid water content threshold for clouds.
Is coagulation taken into account?
Is condensation taken into account?
Is nucleation taken into account?
Fixed aerosol density in kgm™ used in the module.
Which aqueous module is used (none, simple or VSRM)?
Is in-cloud scavenging taken into account?
Are heterogeneous reactions taken into account?
Is Kelvin effect taken into account?
Which solver is used for dynamic condensation (etr,
ros2 or ebi)?
Fixed cutting diameter in pm.
Which method is used to solve sulfate condensation
(equilibrium or dynamic)?
Which redistribution method is used
(number-conserving or interpolation)?

166 CHAPTER 6. MODULES

Nucleation model Which nucleation model is used (binary or ternary)?

With fixed density Is aerosol density fixed in the module?

Wet_diameter_estimation Which method is used to compute aerosol wet diameters
(Gerber or Isorropia)?

Thermodynamics_module Which thermodynamics module is used in bulk equilib-
rium (isorropia or egsam, see below)?

The liquid water content threshold is the amount of liquid water in the air above which a
cloud is diagnosed in the cell.

This chemistry module returns the cloud droplet pH, this means that With_pH can be set
to yes, and that microphysical-pH scavenging model can be used. Otherwise choosing the
microphysical-pH scavenging model may result in crash or errors.

Note that options With_pH, Lwc_cloud_threshold and Fixed aerosol_density are used by
both model and module. That is to say the fixed aerosol density is the same in the model as in
the module.

The fixed cutting diameter has to be given as an aerosol diameter in um. Aerosol bins below
that diameter are assumed at equilibrium, and those above that diameter are not considered
at equilibrium. The criteria is the comparison between the fixed cutting diameter and the bin
bounds. The aerosol bin whose bounds are surrounding the fixed cutting diameter is included
in the equilibrium bins.

Dynamic condensation is intended for aerosol bins which are not at equilibrium, and therefore
time resolved mass transfer has to be computed for them. The solver for dynamic condensation
may be set to either etr or ros2 or ebi. The etr solver is an Explicit Trapezoidal Rule second
order algorithm, the ros2 solver is the Rosenbrock implicit second order scheme (

[]), and ebi is an Euler Backward Iterative scheme. Each of these solvers usually needs
some numerical parameters, these are gathered in the Fortran include file paraero.inc.

Option With kelvin effect only affects dynamic bins.

Among aerosol species, sulfate condensation may have a different treatment. If
Sulfate_computation is set to equilibrium then its treatment is equivalent to other species
for both equilibrium and dynamic bins. But if it is set to dynamic then sulfate condensation is
time resolved for all bins, using an analytic solution of mass transfer equations. This method is
implemented in the sulfdyn.f Fortran routine.

As dynamic condensation is solved with a Lagrangian scheme, a redistribution process over
the fixed aerosol size grid has to be performed at the end of condensation. Two methods
are possible: number-conserving or interpolation. The former conserves the relationship
between mass and number concentration in each bin, the latter relaxes this relationship.

Available nucleation models are either binary nucleation H,SO,~H,0O (

[]) or ternary nucleation H,SO,~H,O-NH; ([D-

In the aerosol module, the aerosol density can be either fixed or recomputed at run time
according to option With_fixed density. If set to yes the aerosol density will always be equal to
the fixed aerosol density mentioned above, if set to no the module will recompute one density for
each aerosol bins according to their chemical compositions given by the thermodynamic model.

Two parameterizations are available to compute wet diameters depending on the option
Wet_diameter_estimation. If set to Isorropia the aerosol liquid water content computed by
the thermodynamic model, for instance ISORROPIA, is used. If set to Gerber, a simpler but
faster method, the Gerber formula, is used.

Note that when Gerber option is used, the aerosol density is fixed for all aerosol processes
except condensation even if option With fixed density is set to no. In other words if run
time computation of density is chosen, it will only affect condensation. Indeed when using the

6.3. AEROSOL MODULES 167

Gerber formula for fastness purpose there is little interest in recomputing density. Then the
fixed density is that specified with Fixed aerosol_density option.

It is possible to wuse another thermodynamic model instead of ISORROPIA
(option Thermodynamics module), but only in a full equilibrium configuration
(Fixed_cutting diameter is the maximum diameter, generally 10 pm). The alternative
model is EQSAM ([,a]), version v03d. To obtain the source code of
EQSAM, you have to ask Swen Metzger by email (metzger@upch-mainz.mpg.de). EQSAM
consists in only one file (egqsam_v03d.£90), written in Fortran 90 language. To use EQSAM,
you have to put the source code in the directory include/eqsam/.

The units of input data (e.g., initial condition, boundary condition etc.) should be given as
pg/m? in using Aerosol SIREAM_SORGAM module.

6.3.2 Aerosol SIREAM _H20

This aerosol module has been developed on the basis of Aerosol SIREAM_SORGAM module and
shares with it most of its characteristics and options. The main difference lies in the replacement
of SORGAM organic module by H20 organic module ([,]). It also requires
a modified version of ISORROPIA, as explained in Section 1.3.6.

Aerosol SIREAM _H20 We list below the changes between Aerosol SIREAM _SORGAM and
Aerosol _SIREAM_H20:

e Organic module
All physical data needed for organics have been moved from include Fortran files to the
aerosol-species.dat configuration file.

The following option lets you the possibility to account for oligomerization (
[]) of some organic species. Currently only BiAOD (an aldehyde) is con-
cerned.

[options]
With_oligomerization Is oligomerization taken into account?

e Equilibrium / Dynamic computation

This aerosol module can only be run in equilibrium mode, that is to say all bins must be
at equilibrium, which means that the Fixed_cutting diameter must always be superior
to the upper bound of the aerosol size spectrum.

Nevertheless one can still choose the dynamic computation but the H20 organic module
will be skipped.

e Missing options

Some options of Aerosol SIREAM_SORGAM have not yet been reported to this module:

— Thermodynamics_module: only isorropia is available.

— With_cloud_chemistry: it replaces the previous option. Put yes to take into account
cloud chemistry.

The units of input data (e.g., initial condition, boundary condition etc.) should be given as
pg/m? in using Aerosol_SIREAM_H20 module.

metzger@mpch-mainz.mpg.de

168 CHAPTER 6. MODULES

6.3.3 Aerosol SIREAM _SOAP

The Secondary Organic Aerosol Processor (SOAP) model | , | is im-
plemented in Polyphemus [) .

SOAP is designed to be modular with different user options depending on the computing
time and the complexity required by the user. This model is based on the molecular surrogate
approach, in which each surrogate compound is associated with a molecular structure to estimate
some properties and parameters (hygroscopicity, absorption on the aqueous phase of particles,
activity coefficients, phase separation).

Each surrogate can be hydrophilic (condenses only on the aqueous phase of particles), hy-
drophobic (condenses only on the organic phase of particles) or both (condenses on both the
aqueous and the organic phases of particles). Activity coefficients are computed with the UNI-
FAC thermodynamic model for short-range interactions and with the AIOMFAC parameter-
ization for medium and long-range interactions between electrolytes and organic compounds.
Phase separation is determined by Gibbs energy minimization.

The user can choose between an equilibrium and a dynamic representation of the organic
aerosol. In the equilibrium representation, compounds in the particle phase are assumed to be
at equilibrium with the gas phase. However, recent studies show that the organic aerosol (OA)
is not at equilibrium with the gas phase because the organic phase could be semi-solid (very
viscous liquid phase). The condensation or evaporation of organic compounds could then be
limited by the diffusion in the organic phase due to the high viscosity. A dynamic representation
of secondary organic aerosols (SOA) is used with OA divided into layers, the first layer at the
center of the particle (slowly reaches equilibrium) and the final layer near the interface with the
gas phase (quickly reaches equilibrium).

SOAP use two approaches to compute SOA formation: An equilibrium approach where
organic-phase concentrations (Ap) and aqueous-phase concentrations (Aaq) are assumed at
equilibrium with the gas-phase concentrations (Ag). This approach is called by the subrou-
tine solve_system in solving.cxx. For this approach, the model needs as inputs:

e Temperature, relative humidity

e particle phase concentrations (Ap and Aaq) for initialization

total concentrations (Atot = Ag + Ap +Aaq)

the liquid water content (LWC)

the hydronium ion concentration (chp)

the ionic strength (ionic)

e inorganic concentrations.

A dynamic approach where concentrations according to the kinetic of condensa-
tion/evaporation/diffusion described in []. Organic-phase concen-
trations Ap_layer_init are divided by bins of diameters of particles, by layers and by phases.
Aqueous phase concentrations Aaq_bins_init are divided by bins of diameters. This approach
is called by the routine dynamic_system in solving.cxx. For this approach, the model need as
inputs:

e Temperature, relative humidity

e initial concentrations over all bins, layers and phases (Ap_layer_init and Aaq bins_init)

6.3. AEROSOL MODULES 169

total concentrations

the liquid water content for each bin (LWC_bins)

the hydronium ion concentration for each bin (chp_bins)
e the ionic strength for each bin (ionic_bins)

The code contains the following files: solving.cxx : the routines solve_system and
dynamic_system to solve the two approaches equilibrium.cxx : routines to solve the system
with the equilibrium approach dynamic.cxx : routines to solve the system with the dynamic
approach properties.cxx : various routines to compute some general properties (like parti-
tioning coefficients and activity coefficients) aiomfac.cxx and unifac.cxx : routines for the
thermodynamic models UNIFAC and AIOMFAC parameters.cxx : all the global parameters
of the system and parameters of the thermodynamic models species.cxx : all the species and
their properties

SOAP use two classes: the class config and the class species. These two classes are de-
fined in species.h. The class config gathered the parameters for the configurations of the
model. For example, the user can change the parameter equilibrium of config by changing
config.equilibrium=true to config.equilibrium=false. The species are gathered into the
vector of species surrogate. For example, the name of the first species can be accessed with
surrogate [0] .name. The order is defined in species.cxx These two classes are initialized by
the routine parameters() which must be called before any calculation.

SOAP parameters : the user can change the parameters in parameters.cxx

system_aiomfac and param unifac contain the parameters of the models AIOMFAC and
UNIFAC. Used functional groups or ions can be added to the model by changing these parame-
ters. init_transfert_parameters contains parameters for particle phase diffusion and defines
the properties of layers. Here are the main parameters:

config.max_iter (integer) : maximal number of iterations for the newton raphson
method config.hygroscopicity (true or false) : Does hygroscopicity has to be com-
puted? config.activity model (“unifac” or “ideal”) : choice of the organic thermody-
namic model. config.compute_long and medium range_interactions (true or false) : Us-
ing AIOMFAC for the computation of interactions between organic compounds and ions.
config.first_evaluation_activity_coefficients (true or false) : Use initial concentrations
to compute activity coefficients config.LWClimit (double) : LWC under which there is no
aqueous phase config.compute_saturation (true or false) : Should organic-phase separation
be computed? config.max number of phase (integer, if compute _saturation) : The maxi-
mal number of phases config.equilibrium (true or false) : If set to true, the equilibrium
approach is used. If set to false the dynamic approach is used. config.precision (dou-
ble, for equilibrium approach) :absolute precision under which the system has been solved
config.initialized saturation (true or false, for equilibrium approach) : if set to true, phase
separation or mixing is initialized from the surrogate[i] . Ap_sat_init (concentrations over sev-
eral organic phases: nphase ; 1) else the phase separation is initialized from surrogate[i] .Ap
(nphase=1) config.relative precision (double, for dynamic approach) : relative precision
under which the system has been solved. config.first_evaluation of_saturation (true or
false, for dynamic approach) : is true, the model use initial concentrations to compute (the num-
ber of phases will not change) config.compute kelvin effect (true or false, for dynamic ap-
proach) : Should the kelvin effect be computed? config.tequilibrium (double, for dynamic ap-
proach) characteristic time under which equilibrium is assumed (in seconds) config.EPSER (dou-
ble, for dynamic approach) relative difference of ros2. The lower, EPSER is, the lower time steps

170 CHAPTER 6. MODULES

are. config.deltatmin (double, for dynamic approach) : minimal time step config.nlayer
(integer, for the dynamic approach) : the number of layers config.nbins (integer, for the dy-
namic approach) : number of bins for the diameter of particles config.kp low volatility
(double, for the dynamic approach) : partitioning constant over which the species is consid-
ered non-volatile config.compute_rho_aqueous (true or false) : Compute aqueous phase den-
sity as a function of the composition. If false, a default value is used (config.rho_aqueous).
config.compute_organic (true or false) : Compute the partitioning of organic compounds.
config.compute_inorganic (true or false) : Compute the partitioning of inorganic compounds.

SOAP species : species are defined in species.cxx. The order of species in species.cxx
defined the order of species in the code. Here is an example of species creation.

species BiA2D;

BiA2D.name="BiA2D";

BiA2D.is_inorganic_precursor=false;

BiA2D.Psat_ref=1.43e-7; // Saturation vapor pressure at Tref (torr)
BiA2D.kp_from_experiment=false; // Use experimental partitioning constant at Tref?

BiA2D.Tref=298; // Temperature of reference (K)

BiA2D.MM=186; // Molar mass (g/mol)

BiA2D.deltaH=109.0; // Enthalpy of vaporization (kJ/mol)
BiA2D.Henry=2.67e8; // Henry’s law constant at Tref (M/atm)
BiA2D.aq_type="diacid"; // "none","diacid","monoacid" or "aldehyde"
BiA2D.Kacidity1=3.95e-4; // First acidity constant
BiA2D.Kacidity2=7.70e-6; // Second acidity constant
BiA2D.hydrophilic=true; // Does the species condense on the aqueous phase?

BiA2D.hydrophobic=false; // Does the species condense on the organic phase?
BiA2D.nonvolatile=false; // Is the compound nonvolatile?

BiA2D.is_organic=true; // Is the compound organic?

BiA2D.compute_gamma_org=true; // Compute the activity coefficients of the organic phase 1
BiA2D.compute_gamma_aqg=true; // Compute the activity coefficients of the aqueous phase f«
BiA2D.Koligo_org=0.0; //oligomeriation constant in the organic phase
BiA2D.rho=1300.0;

BiA2D.KDiffusion_air=1.0e-5;

BiA2D.accomodation_coefficient=alpha;

BiA2D.viscosity=1.68e12;

//Group: if no functionnal group in the species use the default species
//for the computation of activity coefficients

//

double group_tmp_bia2d [] = {2.0,2.0,2.0,1.0, // group C
0.0,0.0,0.0,0.0, //group C[OH]

0,0.0,0.0,0.0, //group Calcohol

0,0.0,0.0,0.0, //group Calcohol-tail
.0,0.0,0.0,0.0,0.0, //group C=C

0,0.0, //group aromatic carbon (AC)

0,0.0,0.0, // group //AC-C

0, //group OH

.0, //group H20

.0, //group ACOH

.0,0.0, //group ketone

O O OO O O O o o

6.3. AEROSOL MODULES

b

b

O O O N O O O

0
0
0

.0,
0
0
0

b

int size = sizeof (group_tmp_bia2d)/sizeof (double);

//group aldehyde

,0.0, //group ester
,0.0,0.0, //group ether
//group acid

//group ACN0O2

,0.0,0.0, //group NO3
0.0

,0.0}; //group CO-OH

assert(size = 45);

for(int 1 = 0; i < size; ++i)

BiA2D.groups[i] = group_tmp_bia2d[i];

// Find the number in the aerosol species list

BiA2D.soap_ind = -1;
for (int i = 0; i < nsp; ++i)

if (species_list_aer[i].substr(1,-1) == BiA2D.name)

BiA2D.soap_ind = 1i;

surrogate.push_back(BiA2D) ;

To add a new species, you must:

1. Create the new species : species X;

2. Set the values of parameters. For example, X.MM=100;

3. Give the decomposition into functional groups. For BiA2D:

171

//Group: if no functionnal group in the species use the default species

//for the computation of activity coefficients

//

double

0

O O O NOOOO OO OO oo oo

0,0.0, // group //AC-C
, //group OH

O O O O

.0, //group H20

.0, //group ACOH

.0,0.0, //group ketone
.0, //group aldehyde
.0,0.0, //group ester
.0,0.0,0.0, //group ether

//group acid

0,
.0, //group ACNO2
0,
0,

0.0,0.0, //group NO3
0.0,0.0}; //group CO-O0H

group_tmp_bia2d []1 = {2.0,2.0,2.0,1.0, // group C
.0,0.0,0.0,0.0, //group C[OH]

.0,0.0,0.0,0.0, //group Calcohol

.0,0.0,0.0,0.0, //group Calcohol-tail
,0.0,0.0,0.0,0.0, //group C=C

,0.0, //group aromatic carbon (AC)

,0.

172 CHAPTER 6. MODULES

int size = sizeof (group_tmp_bia2d)/sizeof (double);
assert(size = 45);

for(int i = 0; i < size; ++i)
BiA2D.groups([i] = group_tmp_bia2d[i];

4. Push back the species into the vector surrogate (or else the species will not be taken into
account) : surrogate.push back(X)

List of species parameters

For all species : X.is_organic: boolean. Is the species organic?
X.is_inorganic_precursor: boolean. Is the species an inorganicaerosol precursor 7 HNO3,
HCIl, H2SO4 and NH3 are taken into account. X.hydrophilic: boolean. If true, the species
condense on the aqueous phase. For water, if true, there is additional absorption of water due
to the absorption of organics. X.hydrophobic: boolean. If true, the species condense on the
organic phase. Water can be hydrophobic. In that case, water condenses on the organic phase.
X.compute_gamma_org: boolean. If true, the species is taking into account for the organic-phase
activity coefficient computation. Must be set to false, for inorganic ions. X.compute_gamma aq:
boolean. If true, the species is taking into account for the aqueous-phase activity coeflicient
computation. Must be set to false, for inorganic ions. X.name: string. Name of the species.
X.MM: double. Molar mass (g/mol). X.rho: double. Density (kg/m3).

For organic species: X.nonvolatile: boolean. If true, species is nonvolatile
X.kp_from_experiment: boolean. If true, the model use a partitioning constant instead of a par-
titioning coefficient computed from vapor pressure and particle phase composition. X.Psat-ref
(used only if X.nonvolatile==false and X.kp_from_experiment==false): double. Saturation
vapor pressure of X at T=X.Tref. X.Tref (used only if X.nonvolatile==false): Reference
Temperature. X.DeltaH: double (used only if X.nonvolatile==false). Vaporization enthalpy.

For hydrophobic organic species: X.kp_from experiment: double (used only if
X.kp_from experiment==true). Partitioning constant at T=Tref X.Koligo_org: double (used
only if X.nonvolatile==false). Oligomer/monomer ratio.

For hydrophilic organic species: X.Henry: double. Henrys law constant. If j=0.0, Hen-
rys law constant is computed from the saturation vapor pressure and the activity coeffi-
cient at infinite dilution in water. X.aq_type: string. Must be set to none, monoacid,
diacid or aldehyde. If set to monoacid or diacid, the model take into account acid
dissociation in water. If set to aldehyde, the model compute oligomerisation in water.
BiA2D.Kacidityl: double (for X.aq-type==monoacid and X.aq-type==diacid). First acid
dissociation constant. BiA2D.Kacidity2: double (for X.aq type==diacid). Second acid disso-
ciation constant. B1AOD.Koligo_aq=0.1; BiAOD.pHref=6.0 et BiAOD.beta=1.91: doubles (used
if X.aq type==aldehyde). Parameters for aldehyde oligomerisation in the aqueous phase.

For inorganic ions: X.charge: double. Electric electric charge of X. X.index_ion_aiomfac:
index of ion in AIOMFACs matrices. (Li, K, Mg, Ca, Br are not in species.cxx but can be
easily added).

. H+

. Li+
Na+
K+

NH4+
Mg2+
Ca2+

SOk W+~ O

6.3. AEROSOL MODULES 173

7: Cl-
8: Br-
9: NO3-
10: HS04-
11: S04

6.3.4 Aerosol SCRAM_H20

The main code of aerosol mixing state simulation is the ”SCRAM” module, located at:
Polyphemus/include/modules/Aerosol _SCRAM_H20/
It contains one main file "aerosol.F90” and 7 subdirectories:

1. ./CHEMISTRY/:Contains codes related to gas phase chemistry.

2. ./H20/:This module solves the gas-particle phase partition of organic species.

3. ./INC/:Files define global parameter and constants.

4. ./Module/: Codes solve general dynamic equation of aerosol.

5. ./RDB/: Codes for aerosol size redistribution.

6. ./SIMPLE_AQUEQUS/: One simplified method for solving aerosol in cloud dynamics.
7. ./VSRM/: One detailed method for solving aerosol in cloud dynamics.

File Aerosol SCRAM H20.hxx and Aerosol SCRAM H20.cxx act as a bridge between the
SCRAM module and the Polyphemus-Polair3D platform.

As an additional dimension is needed to store particle composition information. All codes
related to aerosol within the Polair3D system has been modified to adept this additional dimen-
sion.

In order to compile the Polair3D-SCRAM codes, you should go to the ”processing” folder:
Polyphemus/processing/scram-h2o/ and run ”scons” for a signal thread computation. For
parallel computation, you should use "MPI” method just buy adding an additional flag to the
"scons” (i.g., scons mpi=yes). The sea-salt dynamic is not included by default, you can add
it buy adding the flag "nacl=yes”. The "profile=debug” flag could be used in case you want
debug the program and saving every variable values. ”OpenMP” will be avaiable in a next
version.

At least one configuration file (e.g.,polair3d-cb05.cfg) is needed to run this program.

For example, the configuration file polair3d-cb05.cfg defines the simulation domain and
duration, as well as particle size and composition discretisation. File polair3d-data-cb05.cfg
defines the location of input files. File polair3d-saver-cb05.cfg defines the location of the
results file and how the output of the program will be saved. Files coefficient.nc and
coefficient-composition.nc are the database of coagulation coefficient computed from the
coagulation-coef preprocessing program for internal mixing and external mixing, respectively.

6.3.5 Aerosol SCRAM SOAP

In this module, aerosol mixing state model SCRAM and secondary organic aerosol model SOAP
are coupuled. The main code is located at:
Polyphemus/include/modules/Aerosol _SCRAM_SOAP/
Files Aerosol SCRAM SOAP.hxx and Aerosol SCRAM_SOAP.cxx are used for this coupling.
Many options are commonly used with Aerosol_SCRAM_H20 and Aerosol_SIREAM_SOAP.

174 CHAPTER 6. MODULES

6.3.6 Decay

Module Decay also supports aerosols. See Section 6.2.4.

Chapter 7

Postprocessing

7.1 Graphical Output

7.1.1 Installation and Python Modules

In Polyphemus, we advocate the use of Matplotlib (with NumPy), Basemap and AtmoPy. Please
refer to Sections 1.2 and 1.3 for system-wide installation notes. Below are installation notes for
the user.

IPython and Matplotlib

Matplotlib is a Python 2D plotting library which produces high quality figures. On its website
http://matplotlib.sourceforge.net/, you may find help for all Matplotlib commands. You
may also find many useful examples (Sections “Screenshots” and “Examples (zip)”), a complete
tutorial, a useful FAQ, an interesting “cookbook/wiki” and other resources. We highly rec-
ommend the use of Matplotlib (actually imported through module pylab — see below) together
with IPython (enhanced Python shell, http://ipython.scipy.org/) to benefit from a powerful
interactive mode.

Once IPython, NumPy and Matplotlib installed, launch IPython with command ipython.
IPython needs to be launched once to complete its (user) installation. You should get the prompt
“In [1]:7. If you are aware of Python, you can execute Python commands from this prompt.

Now, try to import Matplotlib:

In [1]: from pylab import *

If no error occurs, your installation is mostly complete. Quit IPython (ctrl+d and
RET). Now edit Matplotlib configuration file. Under Linux or Unix, it is located in
~/ .matplotlib/matplotlibrec. Under Windows, it is in
C:\Documents and Settings\yourname\.matplotlib. You should find the entries numerix
and interactive. Edit them if necessary (warning: it is case sensitive), so that you have:

numerix : numpy # numpy, Numeric or numarray
interactive : True # see http://matplotlib.sourceforge.net/interactive.html

You may change the backend depending on what is installed on your computer. Polyphemus
development team mostly uses the backend TkAgg:

backend : TkAgg

175

http://matplotlib.sourceforge.net/
http://ipython.scipy.org/

176 CHAPTER 7. POSTPROCESSING

But other interactive backends are fine. If you have any question about the backends, consult
Matplotlib website.
Now we test the installation. Launch IPython and:

In [1]: from pylab import *

In [2]: plot([5, 8]1)

On screen, you should get a new window (a figure) with a line (first diagonal) from (0, 5) to
(1,8). And the prompt should still be available:

In [3]:
Make another plot:
In [3]: plot([6, 71)
You should get a new line (in green, probably). The prompt should still be there:

In [4]:

Basemap

Basemap extends Matplotlib so that one may display fields with a map in the background (World
map, Europe map ...).

If your version of Matplotlib is posterior to 0.98, you can test your Basemap installation
with:

>>> from pylab import *

>>> from mpl_toolkits.basemap import Basemap
>>> m = Basemap(projection = ’cyl’)

>>> m.drawcountries()

>>> m.drawcoastlines()

>>> draw()

This should show a World map. With a Matplotlib’s version prior to 0.98, you should replace
the second line with:

>>> from matplotlib.toolkits.basemap import Basemap

Other examples are available on Matplotlib website.

AtmoPy

Recall that extract_configuration.cpp must be compiled (in atmopy/talos) — see Section 1.3.

Then make sure that Python will be able to find the AtmoPy directory in order to load it. In

the distribution, AtmoPy is in directory Polyphemus/include/atmopy. When you load AtmoPy

under Python (from atmopy import * in a program or in IPython), Python searches for the

directory atmopy in the local directory (that is, ./atmopy). If atmopy is not in the current

directory, Python searches for atmopy in all paths of $PYTHONPATH (under Linux and Unix).
Hence you have two options:

1. copy directory atmopy (from Polyphemus/include/) into the current directory, or create
a symbolic link to it (In -s /path/to/Polyphemus/include/atmopy); or

7.1. GRAPHICAL OUTPUT 177

2. update $PYTHONPATH so that it includes the path to atmopy, e.g., in Bash: export
PYTHONPATH=$PYTHONPATH: /path/to/Polyphemus/include/atmopy, which you may put
in ~/.bashrc.

If Matplotlib and Basemap are properly installed, then AtmoPy should work. A test function
is provided with AtmoPy to check:

>>> from atmopy import *
>>> atmopy_test ()

If you get Figure 7.1, AtmoPy is properly installed.

1.92

1.68

1.44

1.20

0.96

0.72

0.48

0.24

Figure 7.1: Output of function atmopy_test. If you get this figure, AtmoPy is properly installed.

7.1.2 A Very Short Introduction to Python and Matplotlib

In this section, several examples are meant to introduce to Python and Matplotlib. The following
commands are sometimes given with comments (after character #). You can execute them under
IPython if you wish.

Base and Lists

>>x =5

>>> y =2 xx + 7

>>> print 2 * y # Under IPython, print is useless; just type 2 * y
34
>>> y
y=7
>>> a = [-1, 5, 3] # ’a’ is a list
>>> print a[0] # 0 is the first index
-1

>>> a = range(10); print a

7; print "y =", y # Combined commands with semicolon

178 CHAPTER 7. POSTPROCESSING

[O’ 1’ 2’ 3’ 4’ 5’ 6’ 7’ 8, 9]
>>> for i in range(3):
print "i =", i

]
N = O

In Python, blocks are delimited by the indentation. For instance (without the prompt >>>):

y=0; x=0

for i in [2, 5, 15]: # First loop
for j in [1, 3, 9]: # Nested loop
X += 1 % j # Inside the inner loop
y += X # Outside the inner loop, but still inside the outer loop
print y # Outside the loops; the loops are "closed"

Arrays (NumPy)

>>> from numpy import * # Loads NumPy

>>> a = arange(6, dtype = ’d’) # "d" means double (floating point precision)
>>> print a

[o. 1. 2. 3. 4. 5.1

>>> a = zeros((2, 3), dtype = ’d’) # 2D array

>>> print a.shape

2, 3)

>>> a[1, 2] = 5.

>>> a0, :] = 10. # Fills the first line

>>> a1, 0:2] = -1. # From column O to column 1 (2 is excluded)

>>> print a
[[10. 10. 10.]
[-1. -1. 5.]]
>>> print a.sum(), a.max(), a.min(), a.mean(), al:, 0].sum()
33.0 10.0 -1.0 5.5 9.0
>>> print 2. * al:, 1:] - 2. # Calculation without the first column
[[18. 18.]
[-4. 8.]1]

Matplotlib

>>> from numpy import x*

>>> from pylab import * # Loads Matplotlib
>>> x = arange(10, dtype = ’d’)

>>> y =X *¥ X

>>> plot(y)

>>> plot(x, y)

>>> figure() # New figure

>>> plot(x, y, "k-") # "k" for "black", "-" for a solid line
>>> figure(1) # Comes back to the first figure
>>> plot(x, y, "k--") # "--" for a discontinuous line

>>> close() # Closes current figure
>>> plot(x, y, "k:") # ":" for a dotted line

7.1

>>>
>>>
>>>
>>>
>>>
>>>
>>>

7.1

GRAPHICAL OUTPUT 179

clf() # Clears the figure

plot(x, y, "k-", label = "Simple") # "label =" is for the legend

plot(x, 2. * y, "k--", label = "Double")

legend)

xlabel("Abscissa")

ylabel("Ordinate")

savefig("plot_example.eps") # Saves the figure in EPS (could be PNG or JPG)

.3 Visualization with AtmoPy

AtmoPy provides functions to use Basemap easily and to process data (mainly statistics). It is
first used to load binary files (generated in preprocessing, or output of a model or a driver).

Configuration File: disp.cfg

In order to load and process data in a binary file, it is convenient to use AtmoPy with a small
configuration file, often called disp.cfg. This file describes the data to be read:

[input] (optional)

Nt Number of time steps to be read in the binary file. It can be less than the total
number of time steps in the file. It cannot be more. If you want to load all
available steps, put 0: Nt will be deduced from the file size and other dimensions
(Nx, Ny and Nz). If you do so, please check the number of steps that are actually
read by AtmoPy; if the number of steps is surprising, check Nx, Ny and Nz in
your configuration file.

x_min Abscissa (longitude) of the center of the lower-left cell. It is primarily used to
load a background map in figures.

Delta x Space step along z (longitude). It is primarily used to load a background map
in figures.

Nx Number of cells along .

y-min Ordinate (latitude) of the center of the lower-left cell. It is primarily used to
load a background map in figures.

Delta.y Space step along y (latitude). It is primarily used to load a background map in
figures.

Ny Number of cells along .

Nz Number of vertical layers.

file Path to the binary file containing the data.

Here is an example of such a configuration file where the data to be read is in results/03.bin

(e.g., ozone at ground level):

[in

Nt
X_m

y_m
Nz

fil

put]

= 121

in = -10.0 Delta_x = 0.5 Nx = 67

in = 35 Delta_y = 0.5 Ny = 46

=1

e: results/03.bin

Note that general.cfg, polair3d.cfg, ...contain similar entries. You may simply copy

and paste these entries. The number of time steps and vertical layers might be different. For

180 CHAPTER 7. POSTPROCESSING

instance, polair3d.cfg contains the number of model layers, not necessary the number of levels
in the target file.
Python Commands: Loading and Processing Data

In IPython, AtmoPy first reads the configuration file (disp.cfg):

>>> from atmopy import * # Loads AtmoPy
>>> from atmopy.display import * # Loads AtmoPy submodule display
>>> d = getd("disp.cfg") # d is a 4D array

You may overwrite the entries in disp.cfg:

>>> d = getd("disp.cfg", filename = "results/NO.bin") # Loads another file
without editing disp.cfg
>>> d = getd("disp.cfg", Nt = 0) # Overwrites Nt
>>> d = getd("disp.cfg", filename = "results/NO.bin", Nt = 0)
>>> d = getd("disp.cfg", filename = "results/NO.bin", Nt = 0, Nz = 2)

The array d has four dimensions: NtxNzxNyxNx. Hence d[10, 0, 2, 9] refers to data
at the time step #10 (11*" time step since indices start at 0), in the first level, in horizontal
cell with indices 2 along y and 9 along x. Another example is d[15, 0] which is a 2D array
(dimensions: y, x) of data at 16" time step and in the first layer.

A few examples show the way data can be manipulated:

>>> d = getd("disp.cfg", filename = "results/03.bin")

>>> d_ref = getd("disp.cfg", filename = "results/03-reference.bin")

>>> print d.shape # Same as d_ref.shape: Nt = 48, Nz = 1, Ny = 46, Nx = 67

(48, 1, 46, 67)

>>> print d.mean()

78.55697571528

>>> print abs(d - d_ref).mean()

16.99608674

>>> from numpy import * # Needed for sqrt (see below)

>>> print sqrt(((d - d_ref) * (d - d_ref)).mean()) # Elementwise multiplication

22.6488311576

>>> print (d[10:25] - d_ref[10:25]).min() # Selected time steps

-78.5329427719

>>> print (d[:, 0, 23, 34] - d_ref[:, 0, 23, 34]).max() # Selected cell in the
middle of the domain

-1.01527786255

Python Commands: Visualization
Using AtmoPy:

>>> from atmopy import * # Loads AtmoPy

>>> from atmopy.display import * # Loads AtmoPy submodule display

>>> from pylab import * # Matplotlib is needed for figure() and plot()

>>> d = getd("disp.cfg") # d is a 4D array

>>> m = getm("disp.cfg") # Loads the background map; an empty figure should pop up
>>> disp(m, d[2, 0]) # Displays data at the third time step and first level

7.1. GRAPHICAL OUTPUT 181

>>> disp(m, d[2, 1]) # Next vertical level

>>> figure() # Another figure

>>> disp(m, d[0, 0], vmin = 0, vmax = 200) # Data range (for the color bar)
>>> dispcf(m, d[10, 0]) # With contours

>>> dispcf(m, d[10, 0], V 10) # With ten contours

>>> dispcf(m, d[10, 0], V = [0, 50, 100, 150, 200]) # Sets the contours
>>> disp(m, d[10, 0], interpolation = "nearest") # No interpolation

Figure 7.1 shows the result of dispcf with 25 contours.
Without disp or dispcf (in case there is no background map, e.g. at small scale):

>>> contourf(d[10, 0])
>>> colorbar ()

Figure 7.2 illustrates contourf.

IO.SG
0.48

Figure 7.2: Concentration map obtained with the command contourf.

In addition, functions stat.spatial distribution and stat.time_evolution may be very
useful:

>>> 4 = getd("disp.cfg")

>>> print d.shape

(48, 1, 46, 67)

>>> d_max = stat.spatial_distribution(d, "max") # Takes time maxima
>>> print d_max.shape

(1, 46, 67)

In every cell, function stat.spatial_distribution takes the maximum concentration over the
time. If you want to display the time averages:

>>> dispcf(m, stat.spatial_distribution(d, "mean") [0])

Function stat.time_evolution computes the time evolution of a spatial indicator. For
instance:

182 CHAPTER 7. POSTPROCESSING

>>> d_min = stat.time_evolution(d, "min") # Spatial minimum as function of time
>>> print d_min.shape

(48,)
>>> plot(d_min, label = "Spatial minimum")
>>> plot(stat.time_evolution(d, "max"), label = "Spatial maximum")

To Get Further Help

In TPython command line, you can get help this way:

>>> help(plot)
>>> help(stat.time_evolution)

In addition, all AtmoPy functions are described in a reference documentation (generated
with epydoc). See AtmoPy web page: http://cerea.enpc.fr/polyphemus/atmopy.html.
Other online resources:

—_

. http://diveintopython.org/, learning Python (most useful chapters: 2, 3, 4 and 6);
2. http://docs.python.org/, documentations about Python;
3. http://www.scipy.org/Tentative_NumPy_Tutorial, introduction to NumPy;

4. http://matplotlib.sourceforge.net/, Matplotlib website, see Sections “Tutorial”
and “Screenshots”;

5. http://www.scipy.org/, SciPy library which includes many scientific modules (linear

algebra, optimization, etc.).

7.2 Postprocessing for Gaseous Species

7.2.1 Configuration File

The configuration file simulation.cfg is needed for disp.py and evaluation.py.
Here is a brief explanation of the various options provided in simulation.cfg but more
details can be found in the file itself for some options.

[input]
file Binary file with the results to postprocess.
multiple file Boolean stating whether several files are used.
t_min Initial date of the binary file(s), in format YYYYMMDD or
YYYYMMDDHH.
Delta_t Time step in hours.
Nt Number of time step in the binary file(s).
xmin Abscissa of the center of the lower-left cell (longitude in degrees).
Delta x Step length along x, in degrees (longitude).
Nx Number of cells along x (integer).
ymin Ordinate of the center of the lower-left cell (latitude in degrees).
Delta.y Step length along y, usually in degrees (latitude).
Ny Number of cells along y (integer).
Nz Number of vertical levels (integer).
station_file File describing the stations.

station file type Type of station file (Emep, Airbase, BDQA, Pioneer).

http://cerea.enpc.fr/polyphemus/atmopy.html
http://diveintopython.org/
http://docs.python.org/
http://www.scipy.org/Tentative_NumPy_Tutorial
http://matplotlib.sourceforge.net/
http://www.scipy.org/

7.2. POSTPROCESSING FOR GASEOUS SPECIES 183

obs_dir

station

t_range
concentrations

paired
daily_basis

y_range

scatter
meas_style

sim_style
select_station

measure

cutoff
ratio

output

Directory where observations are stored.

[output]
Name of the station for which concentrations and observations are
displayed.
Dates for which concentrations and observations are displayed.
What kind of concentrations are displayed: hourly, daily or peak
concentrations?
Should peak concentrations be paired in time?
In case daily concentrations are chosen, are observations provided
on a daily basis?
If two numbers are provided, they define the axis range along y
(and along x for scatter plots). If only one number is provided,
the axis ranges are automatically set.
Is there a scatter plot? See the configuration file for the various
options.
Style for the display of measurements.
Style for the display of simulated data.
Which stations are involved in statistical measures? Either set
to single for a single station (defined in station), all for all
stations or a couple Field-Value for all stations for which Field is
equal to Value.
Statistical measures to be applied to data (see configuration file
for all measures available).
All observations below cutoff are discarded.
All stations for which the ratio between the number of available
observations and the total number of time steps is below ratio
are discarded. For instance, if ratio is set to 0.3, stations with
over 70% of missing observations are discarded.
Type of the output (summary, statistics for all stations or results
written in a file).

[file list]
List of files used if multiple_file is set to yes.

[legend]
List of the legends associated to the files in [file 1list] (in the
same order).

7.2.2 Script evaluation.py

Script evaluation.py is meant to assess the performances of a chemistry-transport model
(CTM). Results of the CTM are compared to measurements at stations and statistics on the
differences are computed. The output of the script is presented on screen or can be saved in a

file.

7.2.3 Script disp.py

This script written in Python allows to display concentrations and observations at the sta-
tion station with regard to the time. Measurements are displayed with the style defined in

184

CHAPTER 7. POSTPROCESSING

meas_style and simulation results with sim_style.

7.3 Postprocessing for Aerosols

7.3.1 Configuration File

The configuration file simulation_aerosol.cfg is the same as simulation.cfg (Section 7.2)

with aerosol parameters added:

Nbins

computed
Dmin, Dmax

file_bounds
bin_index_shift
primary
inorganics
organics
primary _names
inorganics_names
output_species

with_organics
graph_type

graphs_at_station
i_range
j-range

log plot

directory_list

[input]
Number of size bins.
If yes, the bin bounds are computed using a logarithmic law. If
no, they are given in a file.
If bin bounds are computed, the minimum and the maximum di-
ameters.
If bin bounds are given in a file, the name of the file.
Number of the first bin (typically 0 or 1).
Names of the primary species in the model.
Names of the inorganic species in the model.
Names of the organic species in the model.
Real names of the primary species (to be displayed).
Real names of the inorganic species (to be displayed).
Aggregated data in output (PMjg, PMy5, total mass for each
chemical component, total mass and number in each bin).
If yes, total masses will take into account organic species.
Graphs that will be displayed when launching graph_aerosol.py
(chemical composition, mass and number distribution, time series).
If yes, the graphs will be displayed for the simulation at a given
station. If no, graphs will be an average over the domain defined
by i_range and j_range.
First and last indices in x direction for the considered domain.
First and last indices in y direction for the considered domain.
If yes, the mass and number distributions will be displayed with a
log scale for diameters.
List of directories where outputs are, the aggregated data will be
written in a file in the same directory as the output.

The file simulation aerosol.cfg is wused by scripts init_aerosol.py and

graph_aerosol.py.

7.3.2 Script init_aerosol.py

The outputs of the model for aerosols will be several files: <species> <number>.bin where
<species> is an aerosol chemical component (in [aerosol_species], see Section 5.5.3) and
<number> is the index of the size bin. But often, measurements are aggregated data:

e PM;p and PM, 5 are the mass of aerosol with a diameter smaller than 10 um and 2.5 wm

respectively,

e Total mass of one chemical component.

7.4. COMPUTATION OF AEROSOL OPTICAL PARAMETERS 185

One can also be interested by the number of particles in each size bin (granulometry), or by
the mass distribution along the size bins. This will be done by the script graph_aerosol.py,
but before you have to launch init_aerosol.py by the command:

python init_aerosol.py simulation_aerosol.cfg

Then you can launch disp.py and evaluation.py with species such as PM10, PM2.5, PNA
(total mass for sodium), etc.

7.3.3 Script graph_aerosol.py
You can launch graph_aerosol.py by the command:
python graph_aerosol.py simulation_aerosol.cfg}

Then each desired graphs (specified in graph_type section of the configuration file) will be
displayed in a different window.

7.4 Computation of Aerosol Optical Parameters

Aerosol optical parameters such as Aerosol Optical Thickness/Depth (AOT/AOD), Single Scat-
tering Albedo (SSA), absorption and extinction coefficients (Babs/Bext) can be computed from
the output of a suitable chemistry-transport model. For that purpose, concentrations for each
aerosol species in each section and for all the vertical layers should be saved while running
polair3d-siream. Details of the equations and the method used are described in
[2008].

First, go to the optics/ directory. For instance, if you installed Polyphemus in a directory
named Polyphemus/, you may type:

cd Polyphemus/postprocessing/optics/

Here are the files Optics.cxx, optics.cpp, optics.cfg, SConstruct, and the input/ directory.
This code uses data from the OPAC package | , | for the indices of species at several
wavelengths and tabulations of extinction and absorption efficiencies obtained from the Mie code
of Mishchenko (in [| the Mie code of W.J. Wiscombe [, | was
used).

If you previously runned polair3d-siream-sorgam with the option Computed photolysis
set to online you already had to install the OPAC package and you can directly go to the
Tabulation of a Mie Code subsection.

7.4.1 OPAC Package

The first step is to get the OPAC package. Download the package in the tar file opac3la.tar.gz
in the include/opac/ directory from the web address:

ftp://ftp.lrz-muenchen.de/pub/science/meteorology/aerosol/opac/index.html.
Untar the file by making:

cd Polyphemus/include/opac/
tar xzvf opac3la.tar.gz

There are two directories resulting from this command: opac31/ and optdat/. Only the files
in optdat/ will be used. As the lines in these files all begin with a #, that Polyphemus does
not read, you have to remove all # by making:

cd optdat/
../../../../utils/replace_string ’#’ ’’ *

ftp://ftp.lrz-muenchen.de/pub/science/meteorology/aerosol/opac/index.html

186 CHAPTER 7. POSTPROCESSING

7.4.2 Tabulation of a Mie Code

The next step is to tabulate the Mie Code. The Mie of code of Mishchenko is directly included
in the distribution packaged here: include/mie_code mishchenko.

To create the tabulation, you have to go to the optics postprocessing to compile and execute
the tabulation (you may have to change the compiler name in scons to fit your platform):

cd postprocessing/optics/input/Mie_tab/
scons
./compute_optic_tabulation

Two files are then created: Mish Grid Mie.dat and
Mish_efficiency _factors_tab_550.dat.
Warning: the tabulation of the efficiency factors will then be done at the wavelength 550 nm,

unless you change the value of wavelength tab in compute_optic_tabulation.f.

7.4.3 Computation of Optical Parameters

To compute the optical parameters, go to the optics/ directory and compile optics.cpp:

scons

The optics program generated needs two configuration files: the general.cfg from the
preprocessing and the optics.cfg described hereafter.

Directory_simulation_result
File_temperature
File_pressure
File_specific_humidity

Directory_0OPAC

File_index_water

File_species_match

Directory_efficiency_factor

Directory_result

Date

t_min
Delta_t
Nt

[paths]

Path to the results of the polair3d-siream simula-
tion.

Path to the temperature field file (general domain).
Path to the pressure field file (general domain).
Path to the specific humidity field file (general do-
main).

Path to the directory containing the OPAC data
(normally ../../include/opac/optdat/).

Path to the file containing the water refrac-
tive indices at several wavelengths (normally
../../include/opac/index_water_tab.dat).
Path to the file containing the corre-
spondence between the model species
and the OPAC species (normally
../../include/opac/species_opac_match.dat).
Path to the directory containing the efficiency fac-
tors file (normally input/Mie_tab/).

Path to the directory where the computed optical
fields will be written.

[domain_result]

Date of the beginning of the polair3d-siream simu-
lation.

Starting time (in seconds) since midnight.
Simulation time step.

Simulation number of time steps.

7.4. COMPUTATION OF AEROSOL OPTICAL PARAMETERS 187

x_min

Nx
y_min

Delta.y

Ny

Nz

Wavelength
Tabulation_refractive_index_real
Tabulation_refractive_index_imaginary
Ndiameter

N_OPAC_wavelength

N_water_wavelength

Nbins

min diameter, max_diameter
aerosol_water_name
Nspecies

Dry_diameter_option

Wet_computation_option

Well mixed computation_option

Black_carbon_treatment

Abscissa of the center of the lower-left cell (longitude
in degrees).

Number of cells along x (integer).

Ordinate of the center of the lower-left cell (latitude
in degrees).

Step length along y, usually in degrees (latitude).
Number of cells along y (integer).

Number of vertical levels (integer).

[optic]

List of the wavelengths for which the optical param-
eters are computed (in pum).

Dimension of the tabulation (efficiency factors) for
the real part of the refractive index.

Dimension of the tabulation (efficiency factors) for
the imaginary part of the refractive index.
Dimension of the tabulation (efficiency factors) for
the aerosol diameters.

Number of wavelengths for which OPAC data are
given (do not change).

Number of wavelengths for which water refractive
indices are given.

[aerosol]
Number of size bins.
The minimum and the maximum diameters.
Name of aerosol water content in output.
Number of aerosol species in the model (corresponds
to the file_species match file).

[Options]
Option to compute the aerosol wet diameter from
the dry diameter. Put 1 to use Hanel’s relation, 2 for
Gerber’s formula or 3 to use aerosol water computed
in the model.
Option to compute the aerosol wet refractive index
from the dry refractive index. Put 1 to use Héanel’s
relation or 2 to use aerosol water computed in the
model.
Option to compute the index of an internally well-
mixed mixture. Put 1 to use the chemical formula
or 2 for Lorentz-Lorenz formula.
Put 2 to consider black carbon as a core or 1 other-
wise.

To launch the optics program, type:

./optics ../../preprocessing/general.

cfg optics.cfg 20010101

188 CHAPTER 7. POSTPROCESSING

7.5 Ensemble Forecasting

Based on an ensemble of simulations (generated with Polyphemus ensemble capabilities, or gen-
erated with other air quality systems), AtmoPy provides methods to produce ensemble forecasts.
Assume that, at station s and time round ¢, the model m predicts z7, , and that the correspond-
ing observation is y;. One may try to forecast the time round 7"+ 1 with a linear combination
of the models predictions: @\% 1= E%zl U, T+1 xfn’T 41 The weights v,, 741 of the ensemble
forecast ¥}, are computed with all z, ; and y; (¢ < T'). The procedure is repeated for all time
rounds and is called sequential aggregation. For further details, it recommended to read

[| available at http://www.dma.ens.fr/edition/publis/2007/resu0708.html.
This is done in two steps: (1) the ensemble and the observations are loaded in an instance
of EnsembleData, and (2) the sequential aggregation is carried out by a derived class of
EnsembleMethod such as ExponentiatedGradient or RidgeRegression.

Examples are given in postprocessing/ensemble/. You should find the files:

1. all.cfg: a configuration file;

2. example.py: an example in which the ensemble data is loaded and a few sequential ag-
gregations are performed, including with a meta-learning approach (i.e., the ensemble
members, used in the linear combination, already include aggregated predictions);

3. number models.py: tests the performances of an aggregation method against the number
of models in the ensemble;

4. oracle.py: shows the performances of a posteriori combinations.

7.5.1 Loading Data: Configuration File and EnsembleData

EnsembleData is a class, defined in AtmoPy, that loads the outputs of an ensemble of models and
the corresponding observations. It requires a configuration file like all.cfg. Actually all.cfg
includes more entries than needed by EnsembleData: it may also be used with disp.py and
evaluation.py (see Section 7.2). The entries needed by EnsembleData are shown below.

[input]
tmin Initial date of the binary files, in format Polyphemus standard
format (see Section D.7).
Delta_t Time step in hours.
Nt Number of time step in the binary files.
xmin Abscissa of the center of the lower-left cell (longitude in degrees).
Delta_x Step length along x, in degrees (longitude).
Nx Number of cells along x (integer).
y-min Ordinate of the center of the lower-left cell (latitude in degrees).
Delta.y Step length along y, usually in degrees (latitude).
Ny Number of cells along y (integer).
Nz Number of vertical levels (integer).
station file File describing the stations.
station file type Type of station file (Emep, Airbase, BDQA, Pioneer).
obs_dir Directory where observations are stored.
[output]
t_range Range of dates (standard format, see Section D.7) over which con-

centrations and observations should be considered.

http://www.dma.ens.fr/edition/publis/2007/resu0708.html

7.5. ENSEMBLE FORECASTING 189

concentrations

paired
select_station

measure
cutoff

ratio

What kind of concentrations are considered hourly or peak con-
centrations?
Should peak concentrations be paired in time?
Which stations are involved in statistical measures? Either set
to single for a single station (defined in station), all for all
stations or a couple Field-Value for all stations for which Field is
equal to Value.
Statistical measures to be computed (see configuration file for all
measures available).
All observations below cutoff are discarded for certain statistical
measures.
All stations for which the ratio between the number of available
observations and the total number of time steps is below ratio
are discarded. For instance, if ratio is set to 0.3, stations with
over 70% of missing observations are discarded.

[file 1list]
List of binary files that store the ensemble simulations (one file per
simulation).

The ensemble may then be loaded with lines like:

from atmopy.ensemble import *
ens = EnsembleData("all.cfg", verbose = True)

The statistics for all members can be easily accessed:

ens.ComputeStatistics()
print ens.stat

Even statistics per station, or per time step:

ens.ComputeStationStatistics()
print ens.stat_station[’rmse’] # or any other measure.

ens.ComputeStepStatistics()

print ens.stat_step[’correlation’]

The main attributes of ens are:

1. Nsim: number of simulations (i.e., members) in the ensemble;

2. sim: list (for simulations) of list (for stations) of arrays (concentrations at a given station);

3. Nstation: number of stations;

4. station: list of Station instances;

5. obs: observations at stations;

6. date: dates of observations;

7. all_dates: list of all dates
with the last observation;

in the time period starting with the first observation and ending

8. stat (possibly): global statistics;

190 CHAPTER 7. POSTPROCESSING

9. stat_step (possibly): statistics per time step.
10. stat_station (possibly): statistics per station.

Hence a EnsembleData instance gathers all useful information to process an ensemble of simu-
lations and the corresponding observations.

Read AtmoPy reference documentation to get a description of all methods and attributes of
a EnsembleData instance.

7.5.2 Sequential Aggregation

The sequential aggregation methods, which linearly combine the predictions of an ensemble,
are implemented in classes derived from EnsembleMethod (also in AtmoPy). The interface of
a EnsembleMethod (derived) class is similar to that of EnsembleData, except that only one
member is provided (the linear combination). The attributes are usually:

1. all _dates: dates in the covered period;
2. date: the list (per station) of dates;

3. sim: the ensemble combination;

4. obs: corresponding observations;

5. weight (if relevant): model weights (indexed by time step if the weights are time-
dependent, also indexed by stations if needed);

6. weight_date (if relevant): the list (per station) of dates (for weights).

7. stat (possibly): global statistics;

8. stat_step (possibly): statistics per time step.

9. stat_station (possibly): statistics per station.

Applying the sequential aggregation on an instance ens of EnsembleData is straightforward:

em = EnsembleMean(ens) # Trivial combination.

els = ELS(ens) # A posteriori least-squares ensemble.

eg = ExponentiatedGradient(ens) # A learning algorithm.

rg = RidgeRegression(ens) # Another learning algorithm.

rg = RidgeRegression(ens, penalization = 0.001) # With a different parameter.
rg.ComputeStatistics() # Same as with the

print rg.stat[’rmse’] # EnsembleData instances.

Consult the AtmoPy reference documentation to get a description of all aggregation methods
(from a technical point of view). Read [], available at http://www.dma.
ens.fr/edition/publis/2007/resu0708.html, for a complete scientific description. A large
number of methods are available; for instance, the list of aggregation methods available in
Polyphemus 1.3 is:

1. BestModel, BestModelStep and BestModelStepStation: select the best model according
to a given statistics measure, globally, per time step or for each observation (that is, per
time step and per station) [a posteriori method];

2. EnsembleMean: ensemble mean;

http://www.dma.ens.fr/edition/publis/2007/resu0708.html
http://www.dma.ens.fr/edition/publis/2007/resu0708.html

7.6. LIQUID WATER CONTENT DIAGNOSIS 191

3. EnsembleMedian: ensemble median;
4. ELS: least-squares ensemble [a posteriori method];
5. ELSd: least-squares ensemble per time round [a posteriori method];

6. ELSAN: least-squares ensemble per time round, with learning period (also known as “su-
perensemble” | , D;

7. ExponentiallyWeightedAverage;

8. ExponentiatedGradient, ExponentiatedGradientWindow and
ExponentiatedGradientDiscounted, ExponentiatedGradientAdaptive:

9. Prod;

10. GradientDescent;

11. RidgeRegression and RidgeRegressionDiscounted and RidgeRegressionWindow;
12. Mixture;

13. Polynomial;

14. PolynomialGradient;

15. FixedShare;

16. FixedShareGradient;

17. VariableShareGradient;

18. OnlineNewtonStep;

19. InternalZink, InternalPolynomialGradient, InternalExponentiatedGradientDiscounted;
20. DynamicLinearRegression.

Also have a look at the example codes example.py, oracle.py and number models.py.

7.6 Liquid Water Content Diagnosis

The post-processing program postprocessing/water_plume/water_plume.cpp uses meteoro-
logical data and a concentration field of water (liquid and vapor) and diagnoses the proportion
of liquid water. It is launched with two configuration files water_plume.cfg and general.cfg
(which can be merged into a single configuration file) and a date.

7.6.1 Configuration File: water_plume.cfg

[simulation]
Date Simulation first day.
Delta_t Simulation time step (in hours).
PlumeWater File containing the simulation results (total water concentration).
Factor Conversion factor to be applied to the water concentration field to
convert it into gm™3.

192

Path

Temperature
Pressure
SpecificHumidity
LiquidWaterContent

source_temperature
source_water_content
Option

Unit
LiquidWaterContent

CHAPTER 7. POSTPROCESSING

[meteo]
Path to the meteorological data files.
Temperature file.
Pressure file.
Specific humidity file.
Liquid water content file.

[parameters]
Liquid water potential temperature (in K) at source.
Total water content at the source (mass fraction).

[output]
Should the liquid water content in the plume only (option plume)
or in the plume and the ambient air (option total) be computed?
Unit of the output. Put a for gkg™!, and b for gm™3.
Output file name: file containing the field of liquid water mass
fraction.

The water content diagnosis is done at each simulation time step for the whole domain. The
domain description is contained in general.cfg. Note that you may have to change the number
of vertical levels in general.cfg, in case not all levels where saved during the simulation.

Appendix A

Polair3D Test-Case

The test case is available on Polyphemus site’!. In order to use the test-case, you should
download:

e The meteorological data file MM5-2004-08-09.tar.bz2. The file is not included in the
test-case so that it can be used for various applications and has not to be downloaded each
time.

e The archive TestCase-Polair3D-1.6.tar.bz2.

Note that you should have Polyphemus installed and working in order to use the test-case.

A.1 Preparing the Test-Case

The first step is to extract the archive TestCase-1.5-Polair3D.tar.bz2:
tar xjvf TestCase-Polair3D-1.6.tar.bz2

The directory TestCase-Polair3D, referred to as TestCase in what follows, will be created. It
is divided in four subdirectories:

e data, which contains all precomputed data.

e raw_data, which contains all data used for preprocessing. After preprocessing, the results
are stored in data to be used directly during the simulation.

e config, where configuration files are provided.
e results, where the results of the simulation are stored.
MM5-2004-08-09 should be extracted and then placed in raw_data.

cd TestCase/raw_data/MM5/
wget http://cerea.enpc.fr/polyphemus/test_case/MM5-2004-08-09.tar.bz2
tar xjvf MM5-2004-08-09.tar.bz2

Now you have all data necessary to perform preprocessing for the ground and for meteorological
data. All other data (emissions, deposition velocities ...) are provided and ready-to-use.

In what follows, ~/TestCase refers to the path to TestCase-Polair3D and ~/Polyphemus
to the Polyphemus directory path.

Mhttp://cerea.enpc.fr/polyphemus/

193

http://cerea.enpc.fr/polyphemus/

194 APPENDIX A. POLAIR3D TEST-CASE

A.2 Verifying the General Configuration File

The file general . cfg is used by all preprocessing programs and gives a description of the domain
and the dates considered. Here is a copy of this file:

[general]

Directory_raw_data: raw_data
Directory_computed_fields: data
Directory_ground_data: <Directory_computed_fields>/ground

[domain]

Date: 2004-08-09

Delta_t = 1.0

x_min = -10.0 Delta_x = 0.5 Nx = 65
y_min = 40.5 Delta_y = 0.5 Ny = 33

Nz =5

Vertical_levels: config/levels.dat

Normally this file is written in a way that no modification should be necessary, but you are
advised to check it.

Other paths needed for the simulation depend on these ones so modifying them should be
sufficient. The domain is defined for a simulation over Europe. Make sure that the date is
2004-08-09 (date for which meteorological raw data is provided).

A.3 Computing Ground Data

Ground data are not necessary to perform the simulation but they are needed to compute the
vertical diffusion using Troen and Mahrt parameterization. If you wish to use Louis parameter-
ization, this step is not necessary and you can go to Section A.4.

A.3.1 Land Use Cover

Compile and execute luc-usgs (from your Polyphemus directory):

cd “Polyphemus/preprocessing/ground/

../../utils/scons.py luc-usgs

cd "/TestCase/

~/Polyphemus/preprocessing/ground/lus-usgs config/general.cfg config/luc-usgs.cfg

The output on screen will be:

Reading configuration files... done.
Memory allocation for data fields... done.

Reading LUC data... done.
Building LUC data on output grid... done.

Writing output data... done.

A.4. COMPUTING METEOROLOGICAL DATA 195

A.3.2 Roughness

The preprocessing program roughness needs as input data the result of luc-usgs.
Compile and execute roughness.

cd Polyphemus/preprocessing/ground/

../../utils/scons.py roughness

cd ~/TestCase/

~/Polyphemus/preprocessing/ground/roughness config/general.cfg
config/roughness.cfg

The output on screen will be:

Reading configuration files... done.
Reading roughness data... done.
Writing roughness binary ... done.

A.4 Computing Meteorological Data

No modification to configuration file MM5-meteo.cfg should be necessary but make sure to use
the version of this file included in directory TestCase and not in directory Polyphemus.

You can open the file and check that Database MM5-meteo is the path to the file
MM5-2004-08-09.

For details about the other options available in the configuration file, see Section 3.4.4.

Then compile MM5-meteo:

cd ~/Polyphemus/preprocessing/meteo/
../../utils/scons.py MM5-meteo

and execute it:

cd ~/TestCase/
~/Polyphemus/preprocessing/meteo/MM5-meteo config/general.cfg \
config/MM5-meteo.cfg 2004-08-09

The output on screen will be:

Reading configuration files... done.
Memory allocation for grids... done.
Memory allocation for output data fields... done.
Conversion from sigma levels to heights... domne.
Converting from latlon to MM5 indices... done.
Applying transformation to read fields... done.
Computing pressure... done.
Computing surface pressure... done.
Interpolations... done.
Computing Richardson number... done.
Computing attenuation...
+ Computing relative humidity and critical relative humidity... done.
+ Computing cloud profile... done.
+ Computing attenuation... done.

Linear interpolatioms...

196 APPENDIX A. POLAIR3D TEST-CASE

Attenuation
SpecificHumidity
Liquid Water content
CloudHeight
SurfaceTemperature
SkinTemperature
SoilWater
SensibleHeat
Evaporation
SolarRadiation
Rain

+ + + + + + + + + + + o+

FrictionModule
+ BoundaryHeight
done.
Computing Kz... done.
Computing PAR... done.
Writing data... done.

Note that in that case meteorological data has been generated for 23 hours, but emissions
data are only available for this length of time, so it is not necessary to generate more meteoro-
logical data.

If you want to compute vertical diffusion using Troen and Mahrt parameterization, compile
and execute Kz_TM.

cd ~/Polyphemus/preprocessing/meteo/
../../utils/scons.py Kz_TM
cd ~/TestCase/
~/Polyphemus/preprocessing/meteo/Kz_TM config/general.cfg \
config/MM5-meteo.cfg 2004-08-09

The output on screen will be:

Reading configuration files... done.
Memory allocation for data fields... done.
Extracting fields... done.

Computing Kz... done.

Writing output files... done.

A.5 Launching the Simulation

A.5.1 Modifying the Configuration File

You should check and modify polair3d.cfg if necessary. You have to check the paths
(in particular check that the data and saver files are config/polair3d-data.cfg and
config/polair3d-saver.cfg) and to make sure that the date for the simulation is 2004-08-09.

A.5.2 Modifying the Data File

Check config/polair3d-data.cfg. If you decided to use Louis parameterization for vertical
diffusion, modify the file associated to VerticalDiffusion in the section [meteo].

A.6. VISUALIZING RESULTS 197

As before, check the paths and dates. In particular, if the dates in any section (except for
[photolysis], see below) are not right, you can have an error message.

ERROR!
An input/output operation failed in FormatBinary<T>::
Read(ifstream& FileStream, Array<TA, N>& A).

Unable to read 42900 byte(s). The input stream is empty.

Indeed, input data can be computed for several days, so the program will discard the data
for the days between Date_ min in a section of polair3d-data and Date_ min for the simulation.
Here, as the data has been computed for one day only, it would be as if the data files were
empty, hence this error.

Remark In the case of photolysis, data are provided for a whole year and Date min must be
2004-01-01_12.
A.5.3 Modifying Saver File

The file polair3d-saver.cfg should be ready to use. You can modify the species to save (you
are advised against saving concentrations for all species). You can choose to save instantaneous
concentrations or concentrations averaged over Interval_length by setting Averaged to no or
yes respectively.

A.5.4 Simulation

Compile the driver.

cd ~/Polyphemus/processing/photochemistry
../../utils/scons.py polair3d

Launch the simulation from TestCase:

cd "/TestCase/
“/Polyphemus/processing/racm/polair3d config/polair3d.cfg
A.5.5 Checking your results

First, check the size of your output files (see 2.7 for details). You can also have a quick look on
the values by applying get_info_float to for instance NO.bin. You should get something like
(if you used Kz_TM in your simulation chain):

Minimum: 3.47425e-09
Maximum: 100.513
Mean: 0.58594

A.6 Visualizing Results

A.6.1 Modifying Configuration File

Modify results/disp.cfg if necessary (in particular if you have modified
polair3d-saver.cfg).

198 APPENDIX A. POLAIR3D TEST-CASE

[input]

Number of time steps for which concentrations are saved.

Nt = 22

Domain description for x and y.

X_min = -10.0 Delta_x = 0.5 Nx = 65

y_min = 40.5 Delta_y = 0.5 Ny = 33

Number of levels for which concentration are saved.
Nz =5

file: 03.bin

A.6.2 Using IPython

For details see Section 7.1.3. Remember that the directory atmopy should be in your
$PYTHONPATH. Launch IPython and then type in command line (comments starting with “#”have
been added to explain the meaning of each line):

cd results/
ipython

dispcf(m, d4[5,0]) Display the data for the 8th time step
and the first vertical level (remember

that indices start at 0).

from atmopy.display import * # Import to the interactive session all
functions from the module ’display’
of ’atmopy’
m = getm(’disp.cfg’) # Create the map.
d = getd(’disp.cfg’) # Create a data with the results.
#
#
#

The image obtained is Figure A.1.

You can create other data if you like to visualize concentrations for other species. In that
case, the map has already been created and less information is needed to create the data. In
particular it is not necessary to provide a file disp.cfg:

d2 = getd(filename = ’NO.bin’, Nt = 22, Nz = 5, Ny = 33, Nx = 65)
disp(m, d2[5,0])

A.6. VISUALIZING RESULTS 199

160

140

120

1100

60

40

20

Figure A.1: Figure obtained using IPython and AtmoPy (unit is pgm=3)

200 APPENDIX A. POLAIR3D TEST-CASE

Appendix B

Gaussian Test-Case

This document explains how to proceed to perform simulations using the test case for Gaussian
models provided with Polyphemus.

When the archive TestCase-Gaussian-1.8.tar.bz2 is extracted a directory
TestCase-Gaussian/ is created. It is referred to below as TestCase.

tar xjvf TestCase-Gaussian-1.8.tar.bz2

The subdirectory config/ holds all configuration files necessary and the subdirectory
results/ is meant to store the results of simulations. It is divided in three subdirectories (one
for each possible simulation) : puff_line/ for the Gaussian puff model and a gaseous line
source, puff_aer/ for the puff model with point sources of gaseous and aerosol species, and
plume/ for the Gaussian plume model with gaseous species only.

To launch the test cases, you do not need to modify the configuration files. In the following
commands, ~/Polyphemus and ~/TestCase have to be replaced by the paths to the Polyphemus
directory and test case directory respectively.

B.1 Preprocessing

Prior to use Gaussian models, you need to compute scavenging coefficients and deposition ve-
locities for the various species. This is achieved by using gaussian-deposition_aer.
First compile it :

cd ~/Polyphemus/preprocessing/dep/
../../utils/scons.py gaussian-deposition_aer

Then run it from the test case directory:

cd ~/TestCase/config
~/Polyphemus/preprocessing/dep/gaussian-deposition_aer gaussian-deposition_aer.cfg

The output on screen will be :

Reading configuration file... done.
Reading meteorological data... done.
Reading species... done.
Reading diameter... done.

201

202 APPENDIX B. GAUSSIAN TEST-CASE

Computation of the scavenging coefficients... done.
Computation of the deposition velocities..done.
Writing data... done.

The file gaussian-meteo_aer.dat has been created in the directory ~/TestCase/config/.
It will be used for puff simulations with aerosol species and with line source.

Note that if your simulation only involves gaseous species, you can use the preprocessing
program gaussian-deposition. Here we use gaussian-deposition_aer because its output
can be used for simulations with or without aerosol species.

B.2 Discretization

This step is only necessary for the simulation with a line source. Its aim is to discretize this
source into a series of puffs. To do so, compile the preprocessing program discretization:

cd ~/Polyphemus/preprocessing/emissions/
../../utils/scons.py discretization

Then run it from the test case directory:

cd ~/TestCase/config
~/Polyphemus/preprocessing/emissions/discretization discretization.cfg

The output on screen will be:

Reading configuration file... done.
Reading trajectory data... done.
Length of the trajectory: 48.0278
Number of points on the trajectory: 49
Writing source data... done.

The file puff-discretized.dat has been created in the directory ~/TestCase/config. It
contains a series of puffs representing the discretized line source.

B.3 Simulations

B.3.1 Plume

This simulation uses the program plume, which is the program for the Gaussian plume model.
It uses the following data:

e Gaseous species : Caesium, lodine.

Sources : 2 point sources for Iodine, one point source for Caesium.

Sources : 2 line sources for Iodine and Biological.

Meteorological situations : 4 situations, rotating wind with an increasing speed (0.1 ms™!,

2ms~ !, 5ms™! and 10 ms™1).

Urban environment.

B.3. SIMULATIONS 203

The simulation uses the following files :
e plume.cfg gives the simulation domain, the options and the paths to the other files.
e gaussian-levels.dat gives the vertical levels.

e gaussian-species_aer.dat gives the species data (species names and radioactive half-
lives are used here).

e meteo.dat gives all meteorological data. It does not contain scavenging coefficients or de-
position velocities since the simulation will not take these processes into account. There-
fore, it was not necessary to use the preprocessing program gaussian-deposition to
create this file.

e plume-source.dat contains all the data on stationary sources.
e plume-saver.cfg contains the options and paths to save the results.

e correction-coefficient.dat contains correction coefficient for the line source Gaussian
formula.

e line-emission.dat contains the coordinates of the line sources.
Compile the program plume :

cd ~/Polyphemus/processing/gaussian
../../utils/scons.py plume

Then execute it from ~/TestCase/config :

cd "/TestCase/config
~/Polyphemus/processing/gaussian/plume plume.cfg

The output on screen will be :

Temperature Wind angle Wind velocity Stability
Case #0

10 30 3 A
Case #1

15 -100 2 B

Results are stored in ~/TestCase/results/plume/. You can check the size of the file
Iodine.bin (see 2.7 for details) and then have a quick look on the values by applying
get_info_float to Iodine.bin. You should get something like:

Minimum: O
Maximum: 3.3259
Mean: 0.0236683

B.3.2 Puff with Aerosol Species

The simulation uses puff_aer, which is the program for puffs with aerosol species, and the
following data:

e Gaseous species : lodine.

204 APPENDIX B. GAUSSIAN TEST-CASE

e Aecrosol species : aerl, aer2.
e Sources : 1 point source per species.
e Meteorological situation : same 4 situations.
e Rural environment.
The simulation uses the following files:
e puff_aer.cfg gives the simulation domain, options and the paths to the other files.
e diameter.dat gives the aerosol diameters.
e gaussian-levels.dat gives the vertical levels.

e gaussian-species_aer.dat gives the species data (only species names are used, since all
other data have been used during preprocessing).

e gaussian-meteo_aer.dat gives all meteorological data and data on scavenging and depo-
sition. It was created during preprocessing (see Section B.1).

e puff-source_aer.dat contains all the data on gaseous and aerosol sources.
e puff-saver_aer.cfg contains the options and paths to save the results.
Compile the program puff_aer:

cd ~/Polyphemus/processing/gaussian
../../utils/scons.py puff_aer

Then execute it from TestCase/config:

cd “/TestCase/config
~/Polyphemus/processing/gaussian/puff_aer puff_aer.cfg

Results are stored in ~/TestCase/results/puff_aer/. You can check the size of your out-
put files (see 2.7 for details) and then have a quick look on the values by applying get_info float
to for instance Iodine.bin. You should get something like:

Minimum: O
Maximum: 4.83636e+07
Mean: 620.376

B.3.3 Puff with Line Source

The simulation uses puff, which is the program for puffs with gaseous species only, and the
following data:

e Gaseous species : CO2.
e Source : 1 line source.
e Meteorological situations : Same four situations.

e Rural environment.

B.4. RESULT VISUALIZATION 205

The simulation uses the following files:

e puff.cfg gives the simulation domain, options and the paths to the other files. It also
contains the species name.

e gaussian-levels.dat gives the vertical levels.

meteo.dat gives all meteorological data. Loss processes are not taken into account so
there is no need to have scavenging coefficients or deposition velocities.

puff-discretized.dat gives data on the discretized source. It has been created using
program discretization (see Section B.2).

e puff-saver.cfg gives the options and paths to save the results.
Compile the program puff:

cd ~/Polyphemus/processing/gaussian
../../utils/scons.py puff

Then execute it from TestCase/config:

cd “/TestCase/config
~/Polyphemus/processing/gaussian/puff puff.cfg

Results are stored in ~/TestCase/results/puff_line/. You can check the size of the
file C02.bin (see 2.7 for details) and then have a quick look on the values by applying
get_info_float to C02.bin. You should get something like:

Minimum: O

Maximum: 6.5739e+07
Mean: 634.202

B.4 Result Visualization

To visualize the results of a simulation, use the interactive python interpreter IPython (launched
with the command ipython). For details see Section 7.1.3.

B.4.1 Gaussian Plume

Launch IPython from the plume results directory:

cd "/TestCase/results/plume
ipython

Import the modules that are needed for results visualization with the command:

>> import atmopy
>> from atmopy.display import *

Then, import the concentration field you want to visualize:

>> d = getd(filename = ’Iodine.bin’, Nt=4, Nz=2, Ny=200, Nx=200)

206 APPENDIX B. GAUSSIAN TEST-CASE

Nt is normally the number of time steps. Here, as it is a stationary simulation, it should be
equal to 1. However, as there are four meteorological situations, we have here Nt = 4, as each
situation is similar to a time step for an unstationary simulation. It would be the same if it
was an unstationary simulation (puff model) with several meteorological situations. If there
are 10 time steps, and 4 meteorological situations, you will put Nt = 40. The first ten time
steps represent the first situation, from 10 to 20 you have the concentration field for the second
situation, and so on ...

To visualize the concentration over the domain for the first situation and add a colorbar, use
the following commands:

>> contourf (d[0,0])
>> colorbar()

You should obtain the Figure B.1.
You can visualize the concentration field for the other meteorological situations. You should

150

Figure B.1: Plume visualization for the first meteorological situation. Ground concentration in
-3
pgm -

see that the wind is turning with increasing speed.

B.4.2 Gaussian Puff with Aerosol Species

You can go into the directory ~/TestCase/results/puff_aer/ and launch ipython from there,
or either change directory from the ipython shell:

>> cd "/TestCase/results/puff_aer/
>>

By doing that you ensure that you do not have to import atmopy again. However, when
quitting ipython, you will be back in the directory from where it was launched.

To visualize the ground concentration on the domain at time step t for meteorological situ-
ation i, you have to visualize the index (i — 1) x Ny + ¢t where Ny is the total number of time
steps for one situation (here, Ny = 80). For example, the simulation time step 10 for the first
situation corresponds to the index 10, for the second situation to the index 90, for the fourth
situation to the index 250. To visualize the results at index i,use the command:

B.4. RESULT VISUALIZATION 207

>> d = getd(filename = ’aer1_0.bin’, Nt=320, Nz=2, Ny=30, Nx=55)
>> contourf(d[i, 0])

If you want to clear the figure, use the command c1f (). Figure B.2 gives an example of what

you can obtain.

: : Iy
251 4.2
3.6

201
3.0
150 24
1.8

10
1.2
0.6
00 10 20 30 40 50 0.0

Figure B.2: Puff visualization at time step 30 for species aerl and first diameter. Third meteo-

rological situation. Ground concentration in pg-m™3.

w

B.4.3 Gaussian Puff with Line Source

To visualize results, go to the directory ~/TestCase/results/puff_line/ and use the com-
mands getd and contourf. Figure B.3 provides examples of what you can obtain.

208 APPENDIX B. GAUSSIAN TEST-CASE

24000

™ ™ ™ ™ ™ IZSUOOO
25 1 240000 21000
18000
20 200000
15000
41160000
15 12000
120000
9000
10|
80000
6000
5
40000 3000
00 £0 2‘0 ?;0 4‘0 5;0 0 0
(a) Ground concentration at t = 1s (b) Ground concentration at t = 3 s

I10500
9000

7500

5600
I4800
4000
16000

13200

4500 2400

3000 1600

1500 800

0 0

(c) Ground concentration at t =5's (d) Ground concentration at t = 8 s

Figure B.3: Puff line visualization at time steps 10, 30, 50 and 79. Second meteorological

situation. Ground concentration in pg-m=3.

Appendix C

Castor Test-Case

The goal of the following test case is to reproduce Chimere test case for the 2003 Heat Wave in
FEurope.
You must have already downloaded and installed Polyphemus to have this test-case working.
First, you need to download TestCase-1.2-Castor.tar.bz2, which also works with version
1.8.1 of Polyphemus, from the website. To uncompress this file, execute the following command:

$ tar xjvf TestCase-1.2-Castor.tar.bz2

This create a directory TestCase-Castor/ containing:

a directory raw_data/, with data necessary for preprocessing.

a directory data/, for the results of preprocessing.

a directory config/, with all configuration files used.

a directory results/, where the results are stored.

e a program, called sum-emissions.py, and its configuration file (sum-emissions.cfg),
used to sum biogenic and anthropogenic emissions.

a file version stating for what version of Polyphemus the test-case was made.
The test-case also requires data from Chimere test-case:

e the meteorological file (http://euler.lmd.polytechnique.fr/chimere/downloads/
MMOUT_EUR2_20030730_20030803.gz)

e the emission data
(http://euler.1lmd.polytechnique.fr/chimere/downloads/AemiCONT3-200311.tar.

gz)

e the INCA data (http://euler.1lmd.polytechnique.fr/chimere/downloads/
INCA-200501.tar. gz)

Some command lines have been divided by \ but should be put as one line.

209

http://euler.lmd.polytechnique.fr/chimere/downloads/MMOUT_EUR2_20030730_20030803.gz
http://euler.lmd.polytechnique.fr/chimere/downloads/MMOUT_EUR2_20030730_20030803.gz
http://euler.lmd.polytechnique.fr/chimere/downloads/AemiCONT3-200311.tar.gz
http://euler.lmd.polytechnique.fr/chimere/downloads/AemiCONT3-200311.tar.gz
http://euler.lmd.polytechnique.fr/chimere/downloads/INCA-200501.tar.gz
http://euler.lmd.polytechnique.fr/chimere/downloads/INCA-200501.tar.gz

210 APPENDIX C. CASTOR TEST-CASE

C.1 Modifying the General Configuration File

In what follows, ~/TestCase refers to the path to TestCase-Castor and ~/Polyphemus to the
path to version 1.5 of Polyphemus.

The file config/general.cfg is used by all preprocessing programs and as such must be
the first file you modify when performing preprocessing. Make sure to modify and use the file
provided in the directory TestCase/config/.

You should only need to replace the value of <Programs> to have the path to preprocessing
in the last version of Polyphemus compatible with the test-case you have. The domain is defined
for a simulation over Europe. Make sure that the date is 2003-07-30.

C.2 Computing Input Data

C.2.1 Land Data

A python program is provided among the preprocessing programs to generate land data from
Chimere raw data. Files LANDPAR and LANDUSE_CONT3 from Chimere V200606B are necessary
to generate land data. They have been included in the archive.

$ python ~/Polyphemus/preprocessing/ground/ground-castor.py config/ground-castor.cfg

This creates two files (LUC.bin and Roughness.bin) in data/ground/.

C.2.2 Meteorological Data
Download the meteorological file for Chimere test-case and put it in raw_data, then extract it:

$ cd raw_data
$ wget http://euler.lmd.polytechnique.fr/chimere/downloads/MMOUT_EUR2_20030730_20030803.gz
$ gunzip MMOUT_EUR2_20030730_20030803.gz

After you have done so, execute MM5-meteo-castor to process the MM5 file you have down-
loaded.

$ ~/Polyphemus/preprocessing/meteo/MM5-meteo-castor config/general.cfg \
config/MM5-meteo-castor.cfg 2003-07-30 5d2h

The output on screen will be:

Reading configuration... done.

Memory allocation for grids... done.

Memory allocation for output data fields... done.
Conversion from sigma levels to altitudes... domne.
Converting from latlon to MM5 indices... done.
Computing pressure... done.

Computing surface pressure... done.

Wind rotation... done.

Horizontal interpolations... done.

Vertical diffusion... done.

Computing attenuation... done.

Vertical averages... done.

Writing data... done.

This creates 18 binary files in data/meteo/.

C.2. COMPUTING INPUT DATA 211

C.2.3 Anthropogenic Emissions

We generate anthropogenic emissions using emission data from Chimere test-case. Download
the raw data from Chimere website (in the section with old version of the code and old data)
and put it in raw_data:

$ cd raw_data
$ wget http://euler.lmd.polytechnique.fr/chimere/downloads/AemiCONT3-200311.tar.gz
$ tar xzvf AemiCONT3-200311.tar.gz

This creates a directory raw_data/AemiCONT3-200311/
Launch the generation of emissions with the following command line:

$ ~“/Polyphemus/utils/call_dates ~/Polyphemus/preprocessing/emissions/chimere_to_castor \
config/general.cfg config/chimere_to_castor.cfg 20030730 6

We use utility program call_dates because chimere_to_castor can only be launched for
one day at a time.
The output for the first day will be:

nice time ~/Polyphemus/preprocessing/emissions/chimere_to_castor \
config/general.cfg config/chimere_to_castor.cfg 20030730

Reading configuration... done.
Reading input emissions... done.
Converting to Castor and Polair3D emissions...
+ PPM_big
PPM_coa
PPM_fin
NO
NO2
HONO
Cc0
S02
NH3
CH4
C2H6
NC4H10
C2H4
C3H6
APINEN
C5H8
OXYL
HCHO
CH3CHO
+ CH3COE
done.

+ + + + + + + + + + + + + + + + + +

The program creates 20 binary files in data/emissions/.

C.2.4 Biogenic Emissions

Biogenic emissions are generated from meteorological data, using program bio-castor. Launch
the program with:

212 APPENDIX C. CASTOR TEST-CASE

$ ~/Polyphemus/preprocessing/bio/bio-castor config/general.cfg \
config/bio-castor.cfg 2003-07-30 5d2h

The output on screen will be:

Reading configuration...

Reading meteorological data... done.
Computing biogenic emissions... done.
Writing output emissions... done.

This creates three binary files in data/bio: Isoprene.bin, NO.bin and Terpenes.bin.

C.2.5 Summing Emissions

Anthropogenic and biogenic emissions have to be summed. They can be generated for different
periods of time, which is why a script has been provided to perform the sum. Launch it with:

$ python sum-emissions.py sum-emissions.cfg
The output on screen will be:
Summing anthropogenic and biogenic emissions.
Anthropogenic species: NO.

Biogenic species: NO.
Computing total emissions for NO.

Anthropogenic species: CGHS.
Biogenic species: Isoprene.
Computing total emissions for C5HS8.

Anthropogenic species: APINEN.
Biogenic species: Terpenes.
Computing total emissions for APINEN.

This creates three binary files in data/emissions: APINEN-total.bin, C5H8-total.bin
and NO-total.bin.

C.2.6 Deposition Velocities

Deposition velocities using Emberson parameterization are computed with program
dep-emberson. Launch it with:

$ ~/Polyphemus/preprocessing/dep/dep-emberson config/general.cfg \
config/dep-emberson.cfg 2003-07-30 5d2h

The output on screen will be:

Reading configuration files... done.
Memory allocation for data fields... done.
Extracting input data... done.

Computing deposition velocities... done.

Writing output data... done.

This computes deposition velocities for 23 species.

C.2. COMPUTING INPUT DATA 213

C.2.7 Boundary Conditions
Download and put in raw_data/ the INCA files from Chimere test-case.

$ cd raw_data
$ wget http://euler.lmd.polytechnique.fr/chimere/downloads/INCA-200501.tar.gz
$ tar xzvf INCA-200501.tar.gz

This creates a data directory named raw_data/INCA.

First you need to modify the configuration file config/bc-inca.cfg. Indeed you have to
put the number of time steps for which you want boundary conditions to be generated. As
INCA files provide monthly data, you need only to generate the boundary conditions in July
for two days, that is to say 48 hours. The configuration file will be:

Configuration file for inca boundary conditioms.

[bc_input_domain]

3.75 Nx = 96
2.5 Ny = 73

x_min = -180. Delta_x
-90. Delta_y

y_min
Nz = 19

Input species.
Ns = 14
Species: /bc/species_inca.dat

[bc_files]
Nt = 48
Directory_bc: /boundary_conditions/
Then launch computation of the boundary conditions with:

$ ~/Polyphemus/preprocessing/bc/bc-inca config/general.cfg \
config/bc-inca.cfg raw_data/INCA/INCA.07

The output on screen will be:

Memory allocation for data fields... done
Reads file... done
Input data processing... done
Species:

03 ... done

NO ... done

NO2 ... domne

HNO3 ... done

PAN ... domne

H202 ... done

CO ... domne

CH4 ... domne

HCHO ... domne

C2H6 ... done

214 APPENDIX C. CASTOR TEST-CASE

NC4H10 ... done
C2H4 ... dome
C3H6 ... domne
OXYL ... done

As the simulation is set in July and August 2003, launch the program again using INCA.08
this time and 78 (hourly) time steps in August.
You will obtain boundary conditions for 14 species.

C.3 Launching the Simulation

C.3.1 Modifying the Configuration Files

You should check and modify config/castor.cfg if necessary. You have to check the
paths (in particular check that the data and saver file are config/castor-data.cfg and
config/castor-saver.cfg) and to make sure that the date for the simulation is 2003-07-30
(date from which the preprocessing starts).

Then check the paths and dates in config/data.cfg. In particular, if the dates in any
section are not right, you can have an error message:

ERROR!
An input/output operation failed in FormatBinary<T>::
Read(ifstream& FileStream, Array<TA, N>& A).

Unable to read 42900 byte(s). The input stream is empty.

Indeed, input data can be computed for several days, so the program will discard the data
for the days between Date_min in a section of polair3d-data and Date_min for the simulation.

Also remember that volume emissions given for NO, APINEN and C5HS8 are the sum of
anthropogenic and biogenic emissions.

C.3.2 Simulation

Launch the simulation with:

$ ~/Polyphemus/processing/castor/castor config/castor.cfg
The output on screen will be:

Current date: 2003-07-30 00:00
Current date: 2003-07-30 00:10
Current date: 2003-07-30 00:20
Current date: 2003-07-30 00:30
[...]

Current date: 2003-08-03 23:10
Current date: 2003-08-03 23:20
Current date: 2003-08-03 23:30
Current date: 2003-08-03 23:40
Current date: 2003-08-03 23:50

C.4. VISUALIZING THE RESULTS 215

C.3.3 Checking your results

First, check the size of your output files (see 2.7 for details). You can also have a quick look on
the values by applying get_info_float to, for instance 03.bin. You should get something like:

Minimum: 0.000103238
Maximum: 134.057
Mean: 52.8842

C.4 Visualizing the Results

To visualize the results you have to put the path to Polyphemus/include in your PYTHONPATH.
Then go to the directory results/ and launch IPython.

$ cd results/
$ ipython
>>> from atmopy.display import *
>>> m = getm(’disp.cfg’)
>>> d = getd(’disp.cfg’)
>>> dispcf(m, d[40, 0])

You will obtain the result shown in Figure C.1.

Figure C.1: Figure obtained using IPython and AtmoPy (unit is pgm™3)

216 APPENDIX C. CASTOR TEST-CASE

Appendix D

Lexical Reference of Polyphemus
Configuration Files

D.1 Definitions

All Polyphemus programs rely on flexible configuration files. These configuration files define
simulation domains, input and output paths, options, etc.

Configurations files are text files, preferably with extension .cfg. They primarily contain
fields, that is, entries associated with wvalues provided by the user. In a configuration file, a line
usually reads:

field = value
A practical example is a discretization definition:

x_min = 12.5
Delta_x = 0.5
Nx = 100

The fields x_min, Delta_x and Nx are associated with proper values specified by the user.

The characters put between a field and its value are delimiters. In the previous example,
the delimiters are blank spaces and equal signs. Delimiters are discarded characters. They may
be put anywhere in a configuration file but they are always ignored. Their aims are to delimit
words (i.e., fields and values) and to make the configuration file clearer.

D.2 Flexibility

The fields and values can be introduced in many ways. First, many delimiters are supported:
e blank space (),
e tabulation (),
e line break,
e equal sign (=),
e colon (3),

e semicolon (),

217

218APPENDIX D. LEXICAL REFERENCE OF POLYPHEMUS CONFIGURATION FILES

e coma (,), and

e vertical bar (]).
For example,

x_min = 12.5
Delta_x = 0.5
Nx = 100

is equivalent to

x_min 12.5
Delta_x == 0.5
Nx: 100

Recall that delimiters can only be used to delimit words, and are discarded otherwise.
It means that a field or a value cannot contain a delimiter. The fact that the colon is a
delimiter may raise a problem under Windows where drives are called C:, D:, ...In the
current version of Polyphemus, full paths (that is, with the drive name) should not be
used under Windows. If you need a workaround, please contact the Polyphemus teams at
polyphemus-help@lists.gforge.inria.fr.

Fields and values go by pair, but they can be placed anywhere. In particular, several fields
may be put on a single line:

0.5 Nx = 100
1. Ny = 230

x_min = 12.5 Delta_x
y_min = -6.2 Delta_y

The order in which the fields are placed may or may not be important. In most Polyphemus
configuration files, the order does not matter. Then

x_min = 12.5 Delta_x 0.5 Nx = 100

y_min = -6.2 Delta_y = 1. Ny = 230
is the same as
y_min = -6.2 Delta_y = 1. Ny = 230
Nx = 100 x_min = 12.5 Delta_x = 0.5
Recommandation — Use equal sign '=" between a field and its value if the value is a number

and use semi-colon " if the value is a string. Example:

x_min = 12.5
Output_directory: /home/user/path

D.3 Comments

Comment lines may be added. They start with #’ or with *%’:

Path where results are written.
Output_directory: /home/user/path

They may also be put at the end of a line:
Output_directory: /home/user/path # Path where results are written.

Recommandation — Prefer *#’ for comments, so as to be consistent with Polyphemus default
configuration files.

polyphemus-help@lists.gforge.inria.fr

D.4. MARKUPS 219

D.4 Markups

In order to avoid duplications in a configuration file, Polyphemus features a markup management.
A markup is denoted with surrounding ’<’ and '>’; e.g. <path>. A markup is automatically
replaced with its value whenever it is found. Its value should be provided somewhere in the
configuration file with a proper field; for instance, <path> refers to the field path. Here is a
complete example:

Root: /home/user
Input_directory: <Root>/input/
Output_directory: <Root>/output/

means:

Input_directory: /home/user/input/
Output_directory: /home/user/output/

The markup can be used before its value is defined:

Input_directory: <Root>/input/
Output_directory: <Root>/output/
Root: /home/user # After calls to <Root>. This is legal.

Any field may be used as a markup. The user may define any new markup (that is a new
field). Moreover, several markup substitutions can be performed in a single value, and nested
markups are properly handled:

Home: /home/user

Root: <Home>/Polyphemus/work

Number = 7

Input_directory: <Root>/input-<Number>/

is accepted and means:
Input_directory: /home/user/Polyphemus/work/input-7/

Notice that markups may also replace numbers and may be based on preexisting fields:

X_min 12.5 Delta_x = 0.5 Nx = 100
1.

<x_min> Delta_y = Ny = <Nx>

y_min

D.5 Sections

Fields and values may be protected inside sections. Assume that two domains are defined, one
for input data and another for output data. Instead of:

x_min_in = 12.5 Delta_x_in = 0.5 Nx_in = 100
x_min_out = 35.8 Delta_x_out = 0.3 Nx_out = 400

one may prefer:

[input]

x_min = 12.5 Delta_x 0.5 Nx = 100

[output]
x_min = 35.8 Delta_x

0.3 Nx = 400

220APPENDIX D. LEXICAL REFERENCE OF POLYPHEMUS CONFIGURATION FILES

Conflicts are avoided and the syntax is clear. This is why most Polyphemus configuration files
have sections.
Sections are enclosed by square brackets (’[" and ’]’).

Markups are not bound to any section.

Do not create a markup with o field which is defined in several section, such as z_min in the
previous example. Indeed there is no convention on which value of the field to use for markup
substitution.

Recommandation — Put two blank lines before each section and one blank line after:

(blank line)

(blank line)

[input]

(blank line)

x_min = 12.5 Delta_x

0.5 Nx = 100

[output]

x_min = 12.5 Delta_x 0.5 Nx = 100

D.6 Multiple Files

Several Polyphemus programs accept two configuration files as input. Providing two config-
uration files is then equivalent to providing a single configuration file that would contain all
the lines of both files. This is useful to let several programs share a same configuration base.
For instance, the simulation domain (whose description is needed by most programs) is usually
defined in a configuration file that is provided to every program, in addition to a file dedicated
to the specific configuration of the program.

For instance:

./emissions general.cfg emissions.cfg 2001-05-06

launches the program emissions with two configuration files as input: (1) the configuration file
general.cfg shared with other programs and notably defining the domain description, (2) a
specific configuration file, emissions.cfg, that includes options for emission generation.

Markups defined in one configuration file can be used in the other file. Note however that
each section must be defined in one file only.

D.7 Dates

Date formats are:

YYYY # Year.

YYYY-MM # With the month.
YYYY-MM-DD # With the day.
YYYY-MM-DD_HH # With the hour.
YYYY-MM-DD_HH-II # With the minute.
YYYY-MM-DD_HH-II-SS # With the second.

D.8. BOOLEANS 221

Months range from 01 to 12. Days range from 01 to 31. Hours range from 00 to 23. Minutes
and seconds range from 00 to 59.

If the month is not specified (format YYYY), then the month is set to 01 (January). If the
day is not specified (formats YYYY and YYYY-MM), it is set to 01 (first day of the month). If the
hour, the minute or the second is not specified, it is set to zero (00).

Hyphens and underscores may be replaced with any character that is neither a delimiter (see
Section D.2) nor a cipher. They can also be removed. Examples:

19960413
1996-04-13_20h30
1996/04/1302030

Recommandation — Use hyphens around the month and around minutes. Use an underscore

between the day and the hour (YYYY-MM-DD_HH-II-SS).

D.8 Booleans

Booleans are supported in configuration files and can be specified in any of the following ways:

true t yes y
false £ no n

This is not case-sensitive: e.g., True or NO are valid.

222APPENDIX D. LEXICAL REFERENCE OF POLYPHEMUS CONFIGURATION FILES

Bibliography

Arstila, H., Korhonen, P., and Kulmala, M. (1999). Ternary nucleation: kinetics and application
to water-ammonia-hydrochloric acid system. Journal of Aerosol Science, 30(2):131-138.

Briant, R., Korsakissok, I., and Seigneur, C. (2011). An improved line source model for air
pollutant dispersion from roadway traffic. Atmospheric Environment, 45:4099-4107.

Briant, R. and Seigneur, C. (2012). Multi-scale modeling of roadway air quality impacts: devel-
opment and evaluation of a plume-in-grid model. Submitted to Atmospheric Environment.

Chang, J., Brost, R., Isaken, I., Madronich, S., Middleton, P., Stockwell, W., and Walcek, C.
(1987). A three-dimensional Eulerian acid deposition model: physical concepts and formula-
tion. Journal of Geophysical Research, 92(D12):14,681-14,700.

Couvidat, F. and Sartelet, K. (2015). The secondary organic aerosol processor (soap v1.0)
model: a unified model with different ranges of complexity based on the molecular surrogate
approach. Geoscientific Model Development, 8(4):1111-1138.

Debry, E., Fahey, K., Sartelet, K., Sportisse, B., and Tombette, M. (2007). Technical Note: A
new Slze REsolved Aerosol Model (SIREAM). Atmospheric Chemistry and Physics, 7:1,537—
1,547.

Fahey, K. M. and Pandis, S. N. (2003). Size-resolved aqueous-phase atmospheric chemistry in a
three-dimensional chemical transport model. Journal of Geophysical Research, 108(D22).

Goliff, W. S. and Stockwell, W. R. (10-12 December 2008). The Regional Atmospheric Chemistry
Mechanism, version 2, an update. University of California at Davis. International conference
on Atmospheric Chemical Mechanisms.

Hess, M., Koepke, P., and Schult, I. (1998). Optical properties of aerosols and clouds: the
software package OPAC. Bulletin of the American Meteorological Society, 79(5):831-844.

Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie,
X., Lamarque, J.-F., Schultz, M. G., Tyndall, G. S., Orlando, J. J., and Brasseur, G. P. (2003).
A global simulation of tropospheric ozone and related tracers: description and evaluation of
MOZART, version 2. Journal of Geophysical Research, 108(D24).

Kim, Y., Sartelet, K., and Couvidat, F. (submitted (2018)). Modeling the effect of non-ideality,
dynamic mass transfer and viscosity on soa formation in a 3-d air quality model. Atmos.
Chem. Phys.

Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., T. LaRow, D. B., and Williford, E. (2000).
Multimodel ensemble forecasts for weather and seasonal climate. Journal of Climate, 13:4,196—
4,216.

223

224 BIBLIOGRAPHY

Louis, J.-F. (1979). A parametric model of vertical eddy fluxes in the atmosphere. Boundary-
Layer Meteorology, 17:187-202.

Mallet, V., Mauricette, B., and Stoltz, G. (2007a). Description of sequential aggregation methods
and their performances for ozone ensemble forecasting. Technical Report DMA-07-08, Ecole
normale supérieure de Paris.

Mallet, V., Quélo, D., Sportisse, B., Ahmed de Biasi, M., Debry, E., Korsakissok, 1., Wu, L.,
Roustan, Y., Sartelet, K., Tombette, M., and Foudhil, H. (2007b). Technical Note: The air
quality modeling system Polyphemus. Atmospheric Chemistry and Physics, 7(20):5,479-5,487.

Metzger, S., Dentener, F., Krol, M., Jeuken, A., and Lelieveld, J. (2002a). Gas/aerosol parti-
tioning: 2. Global modeling results. Journal of Geophysical Research, 107(D16).

Metzger, S., Dentener, F., Pandis, S., and Lelieveld, J. (2002b). Gas/aerosol partitioning: 1. A
computationally efficient model. Journal of Geophysical Research, 107(D16).

Monahan, E. C., Spiel, D. E., and Davidson, K. L. (1986). Oceanic Whitecaps — and Their Role
in Air-Sea Fzxchange Processes, chapter A model of marine aerosol generation via whitecaps
and wave disruption, pages 167-174. Kluwer Academic.

Nenes, A., Pandis, S. N., and Pilinis, C. (1998). ISORROPIA: A new thermodynamic equilibrium
model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry, 4(1):123-152.

Njomgang, H., Mallet, V., and Musson-Genon, L. (2005). AtmoData scientific documentation.
Technical Report 2005-10, CEREA.

Pun, B. K., Griffin, R. J., Seigneur, C., and Seinfeld, J. H. (2002). Secondary organic aerosol
2. Thermodynamic model for gas/particle partitioning of molecular constituents. Journal of
Geophysical Research, 107(D17).

Pun, B. K. and Seigneur, C. (2007). Investigative modeling of new pathways for secondary
organic aerosol formation. Atmospheric Chemistry and Physics, 7(9):2,199-2,216.

Pun, B. K., Wu, S.-Y., Seigneur, C., Seinfeld, J. H., Griffin, R. J., and Pandis, S. N. (2003).
Uncertainties in modeling secondary organic aerosols: Three-dimensional modeling studies in
Nashville/Western Tennessee. Environmental Science & Technology, 37(16):3,647-3,661.

Rosenbrock, H. H. (1963). Some general implicit processes for the numerical solution of differ-
ential equations. The Computer Journal, 5:329-330.

Simpson, D., Winiwarter, W., Borjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt,
C. N., Janson, R., Khalil, M. A. K., Owen, S., Pierce, T. E., Puxbaum, H., Shearer, M.,
Skiba, U., Steinbrecher, R., Tarrasén, L., and Oquist, M. G. (1999). Inventorying emissions
from nature in Europe. Journal of Geophysical Research, 104(D7):8,113-8,152.

Smith, M. and Harrison, N. (1998). The sea spray generation function. Journal of Aerosol
Science, 29:189-190.

Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S. (1997). A new mechanism for regional
atmospheric chemistry modeling. Journal of Geophysical Research, 102(D22):25,847-25,879.

Tombette, M., Chazette, P., and Sportisse, B. (2008). Simulation of aerosol optical properties
over Europe with a 3-D size-resolved aerosol model: comparisons with AERONET data.
Atmospheric Chemistry and Physics Discussions, 8:1,321-1,365.

BIBLIOGRAPHY 225

Troen, I. and Mahrt, L. (1986). A simple model of the atmospheric boundary layer; sensitivity
to surface evaporation. Boundary-Layer Meteorology, 37:129-148.

Vehkaméki, H., Kulmala, M., Napari, 1., Lehtinen, K. E. J., Timmreck, C., Noppel, M., and
Laaksonen, A. (2002). An improved parameterization for sulfuric acid-water nucleation rates
for tropospheric and stratospheric conditions. Journal of Geophysical Research, 107(D22).

Wendum, D. (1998). Three long-range transport models compared to the ETEX experiment: a
performance study. Atmospheric Environment, 32(24):4,297-4,305.

Wesely, M. L. (1989). Parameterization of surface resistances to gaseous dry deposition in
regional-scale numerical models. Atmospheric Environment, 23:1,293-1,304.

Wiscombe, W. J. (1980). Improved Mie scattering algorithms. Applied Optics, 19(9):1,505-1,509.

Yarwood, G., Rao, S., Yocke, M., and Whitten, G. (2005). Updates to the carbon bond
chemical mechanism: CBO05 final report to the US EPA, RT-0400675. available at:
http://www.camx.com/publ/pdfs/CB05_Final Report_120805.pdf.

Zhang, L., Brook, J. R., and Vet, R. (2003). A revised parameterization for gaseous dry depo-
sition in air-quality models. Atmospheric Chemistry and Physics, 3:2,067-2,082.

Zhang, L., Moran, M. D., Makar, P. A., Brook, J. R., and Gong, S. (2002). Modelling gaseous
dry deposition in AURAMS: a unified regional air-quality modelling system. Atmospheric
Environment, 36:537-560.

Zhu, S., Sartelet, K., and Seigneur, C. (2015). A size-composition resolved aerosol model for
simulating the dynamics of externally mixed particles: SCRAM (v 1.0). Geoscientific Model
Development, 8(6):1595-1612.

	Introduction and Installation
	Polyphemus Overview
	Requirements
	Operating Systems and Compilers
	External Libraries and Python Modules
	Parallel Computing

	Installation
	Main instructions
	AtmoPy
	NewRan
	WGRIB
	ISORROPIA
	ISORROPIA_AEC

	Using Polyphemus
	Remark
	Guide Overview
	Compiling the Programs
	Compiling with SCons
	Compiling for Parallel Computing

	Editing your Configuration Files
	Running the Programs
	Running a Program from Command Line
	Sharing Configuration
	Notes about the Models
	Running a parallelized program

	Setting Up a Simulation
	Suggested Directory Tree
	Roadmaps
	Mandatory Data in Preprocessing
	Mandatory Data for Models
	Models / Modules Compatibilities

	Checking Results
	Checking the output file size of preprocessing programs
	Checking the output file size of processing programs
	Checking the values

	Useful Tools
	Information about Binary Files
	Differences between Two Binary Files
	MM5 Files
	Script call_dates
	Other Utilities

	Ensemble Generation
	Requirements
	Configuration Files
	Quick Start

	Preprocessing
	Remark
	Introduction
	Running Preprocessing Programs
	Configuration
	Dates
	Data Files

	Ground Data
	Land Use Cover – GLCF: luc-glcf
	Land Use Cover – GLC 2000: luc-glcf
	Land Use Cover – USGS: luc-usgs
	Conversions: luc-convert
	Roughness: roughness
	LUC for emissions: extract-glcf

	Meteorological Fields
	Program meteo
	Program Kz
	Program Kz_TM
	Program MM5-meteo
	Program MM5-meteo-castor
	Program WRF-meteo

	Deposition Velocities
	Program dep
	Program dep-emberson

	Emissions
	Mapping Two Vertical Distributions: distribution
	Anthropogenic Emissions (EMEP): emissions
	Biogenic Emissions for Polair3D Models: bio
	Biogenic Emissions for Castor Models: bio-castor
	Sea Salt Emissions: sea-salt

	Initial and Boundary Conditions
	MOZART 4
	MOZART 2
	Boundary Conditions for Castor: bc-inca
	Boundary Conditions for Aerosol Species: bc-gocart

	Preprocessing for Gaussian Models
	Program discretization
	Programs gaussian-deposition and gaussian-deposition_aer

	Preprocessing for SCRAM aerosol module
	Composition conversion
	Coagulation coefficient

	Drivers
	BaseDriver
	PlumeDriver
	PuffDriver
	StreetDriver
	PlumeMonteCarloDriver
	MonteCarloDriver
	PerturbationDriver
	Data Assimilation Drivers
	AssimilationDriver
	OptimalInterpolationDriver
	EnKFDriver
	RRSQRTDriver
	FourDimVarDriver

	Drivers for the Verification of Adjoint Coding
	AdjointDriver
	GradientDriver
	Gradient4DVarDriver

	Output Savers
	BaseOutputSaver
	SaverUnitDomain and SaverUnitDomain_aer
	SaverUnitSubdomain and SaverUnitSubdomain_aer
	SaverUnitDomain_assimilation
	SaverUnitDomain_prediction
	SaverUnitNesting and SaverUnitNesting_aer
	SaverUnitPoint and SaverUnitPoint_aer
	SaverUnitWetDeposition and SaverUnitDryDeposition
	SaverUnitWetDeposition_aer and SaverUnitDryDeposition_aer
	SaverUnitBackup and SaverUnitBackup_aer

	Observation Managers
	GroundObservationManager
	SimObservationManager

	Perturbation Manager

	Models
	GaussianPlume
	Configuration File: plume.cfg
	Source Description: plume-source.dat
	Vertical Levels: plume-level.dat
	Species: gaussian-species.dat
	Meteorological data file: gaussian-meteo.dat
	Correction coefficients file: correction_coefficients.dat

	GaussianPlume_aer
	Configuration File: plume_aer.cfg
	Source Description: plume-source_aer.dat
	Vertical Levels: plume-level.dat
	Species: gaussian-species_aer.dat
	Diameters: diameter.dat
	Meteorological data: gaussian-meteo.dat

	GaussianPuff: Transport, Chemistry and Aerosol
	Configuration File: puff.cfg
	Puff Description: puff.dat
	Vertical Levels, Species and Meteorological data

	GaussianPuff_aer
	Configuration File: puff_aer.cfg
	Source Description: puff_aer.dat
	Vertical Levels, Species, Meteo and Diameters

	Polair3DTransport
	Main Configuration File: polair3d.cfg
	Data Description: polair3d-data.cfg
	Vertical Levels and Species

	Polair3DChemistry
	Main Configuration File: polair3d.cfg
	Data Description: polair3d-data.cfg
	Vertical Levels and Species

	Polair3DAerosol
	Main Configuration File: polair3d.cfg
	Data Description: polair3d-data.cfg
	Vertical Levels and Species

	Polair3DChemistryAssimConc
	CastorTransport
	Main Configuration File: castor.cfg
	Data Description: castor-data.cfg
	Vertical Levels and Species

	CastorChemistry
	Main Configuration File: castor.cfg
	Data Description and Species
	Chemistry Files

	PlumeInGrid: Transport, Chemistry and Aerosol
	Main configuration file
	Data description file
	Puff configuration file: puff.cfg (when GaussianPuff is used)
	Plume configuration file: plume.cfg (when GaussianPlume is used)

	StationaryModel
	LagrangianTransport
	Main Configuration File: lagrangian-stochastic.cfg
	Data Description: lagrangian-stochastic-data.cfg
	Vertical Levels and Point Emission
	Noteworthy Remarks about Output Saving

	Lagrangian Particles
	ParticleDIFPAR_Horker
	ParticleDIFPAR_FokkerPlanck

	Point Emission Management
	Continuous emissions
	Puff emissions
	Temporal emissions
	Continuous line emission

	Chimere
	Installation
	Configuration

	StreetNetwork (MUNICH): Transport and Chemistry
	Main Configuration File: munich.cfg
	Input data files: intersection.dat and street.dat

	Street-in-Grid (SinG): Transport and Chemistry
	Main Configuration File: street-in-grid.cfg

	Modules
	Transport Modules
	AdvectionDST3
	SplitAdvectionDST3
	GlobalAdvectionDST3
	DiffusionROS2
	GlobalDiffusionROS2
	TransportPPM

	Chemistry Modules
	Photochemistry
	ChemistryRADM
	ChemistryCastor
	Decay

	Aerosol Modules
	Aerosol_SIREAM_SORGAM
	Aerosol_SIREAM_H2O
	Aerosol_SIREAM_SOAP
	Aerosol_SCRAM_H2O
	Decay

	Postprocessing
	Graphical Output
	Installation and Python Modules
	A Very Short Introduction to Python and Matplotlib
	Visualization with AtmoPy

	Postprocessing for Gaseous Species
	Configuration File
	Script evaluation.py
	Script disp.py

	Postprocessing for Aerosols
	Configuration File
	Script init_aerosol.py
	Script graph_aerosol.py

	Computation of Aerosol Optical Parameters
	OPAC Package
	Tabulation of a Mie Code
	Computation of Optical Parameters

	Ensemble Forecasting
	Loading Data: Configuration File and EnsembleData
	Sequential Aggregation

	Liquid Water Content Diagnosis
	Configuration File: water_plume.cfg

	Polair3D Test-Case
	Preparing the Test-Case
	Verifying the General Configuration File
	Computing Ground Data
	Land Use Cover
	Roughness

	Computing Meteorological Data
	Launching the Simulation
	Modifying the Configuration File
	Modifying the Data File
	Modifying Saver File
	Simulation
	Checking your results

	Visualizing Results
	Modifying Configuration File
	Using IPython

	Gaussian Test-Case
	Preprocessing
	Discretization
	Simulations
	Plume
	Puff with Aerosol Species
	Puff with Line Source

	Result Visualization
	Gaussian Plume
	Gaussian Puff with Aerosol Species
	Gaussian Puff with Line Source

	Castor Test-Case
	Modifying the General Configuration File
	Computing Input Data
	Land Data
	Meteorological Data
	Anthropogenic Emissions
	Biogenic Emissions
	Summing Emissions
	Deposition Velocities
	Boundary Conditions

	Launching the Simulation
	Modifying the Configuration Files
	Simulation
	Checking your results

	Visualizing the Results

	Lexical Reference of Polyphemus Configuration Files
	Definitions
	Flexibility
	Comments
	Markups
	Sections
	Multiple Files
	Dates
	Booleans

