Polyphemus Training Day

v. Maile

Goals

Structure, development guidelines

Current

Next

Polyphemus Training Day Introduction to Polyphemus (translated from French)

Vivien Mallet, for the development team

27 March 2007

Outline

Polyphemus Training Day

V. Malle

Goals

Goals

Curren Conter Structure, development guidelines

Next.

Current Content

4

Next...

Polyphemus Images

Polyphemus Training Day

V. Mallet

Goals

Structure, developmen guidelines

Current

Next.

Greek Mythology

 Polyphemus, cyclops in Odyssey

Why this name?

- « Poly » : multiple
- « phemus » : speech

Multiple Goals

Polyphemus Training Day

V. Malle

Goals

Structure, developmer guidelines

Current Conten

Next

Multiple Models

- Scales : from local scale to continental scale
- Formulations : Gaussian, Eulerian, . . .

Multiple Pollutants

- Passive, radionuclides
- Photochemistry
- Aerosols
- Persistent organic pollutants, heavy metals, . . .

Multiple Inputs

- From meteorological models
- Ground data

Multiple Methods

Polyphemus Training Day

V. Malle

Goals

Structure, developmer auidelines

Current Conten

Marek

Data Assimilation

- Sequential
- Variational
- Inverse modeling (parameter estimation)

Ensemble Forecast

- Multimodels
- Monte Carlo
- Models combinations (« superensembles », ...)

Models Coupling

- Feedbacks
- Impact

Constraints

Polyphemus Training Day

V. Mallet

Goals

Structure, developmen guidelines

Current Conten

Next.

Perennial Code

- System maintenance
- Scalable, integration of new developments

Open

- Availability, distribution
- Development or contributions from other teams

Field Context

From research to operational use

Overall structure

Polyphemus Training Day

V. Mallet

Goals

Structure, development guidelines

Current Content

Next..

Programming Choices

Polyphemus Training Day

V. Malle

Coolo

Structure, development quidelines

Current Conten

Next

Main language: C++

- Efficient for scientific computing
- Advanced object design
 - Inheritance, genericity
 - Management of complex objects
 - Exceptions
- Widely used and perennial

Example: Data Manipulation

```
LinearInterpolationRegular(SoilWater, SoilWater_out);
SoilWater out.Threshold(0., 1.);
```

Example: Model Manipulation

```
Model.Forward();
OutputSaver.Save(Model);
```

Programming Choices

Polyphemus Training Day

V. Mallet

Goals

Structure, development guidelines

Current Conten

Next.

Complementary Language: Python

- Dynamic, interactive
- Visualization
- Scripts
- Increasingly used in scientific computing

1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 28.5

Programming Choices

Polyphemus Training Day

V. Malle

Goals

Structure, development guidelines

Current Conten

. . .

Historical Language: Fortran 77

- Automatic differentiation
- Continuity
- Calls from C++

Policy

- To avoid dealing with too many languages
- To use primarily languages with strong potential and productivity

Overall Structure

Polyphemus Training Day

V. Mallet

Goals

Structure, development guidelines

Current Content

Next.

Libraries

AtmoData, SeldonData, AtmoPy, Talos

Polyphemus Training Day

V. Malle

Goal

Structure, development guidelines

Current Content

Next

Preprocessing, Data Management

- SeldonData (C++)
 - Interpolations, input/output operations, . . .
- AtmoData (C++)
 - Extension of SeldonData to atmospheric sciences

Physics

- AtmoData (C++, Fortran 77)
 - Meteorology, emissions, . . .

Visualization, Postprocessing, Statistics

AtmoPy (Python)

Miscellaneous

• Talos (C++): configuration files

Models

Polyphemus Training Day

V. Mallet

Goals

Structure, developmen guidelines

Current Content

Next

Gaussian Models

- Stationary Gaussian model and puff Gaussian model
- Gas and aerosols
- Several parameterizations to compute the dispersion

Eulerian Models

- Castor (clone of the gas version of Chimere)
 - Passive and chemical versions
- Polair3D
 - Passive, chemical, aerosol and adjoint (for gas) versions
- Modules for transport, chemistry and aerosols

Modules

Polyphemus Training Day

V. Malle

Structure, developme guidelines

Current Content

Next

Transport

Advection (DST3, PPM), diffusion (ROS2)

Chemistry

- RADM, RACM, Melchior
 - Radioactive or biological decay

Aerosols

SIREAM (semi-Lagrangian)

Output Savers

- Whole domain, list of points
 - Boundary conditions (for nesting)
 - Deposition fluxes, ...

Preprocessing

Polyphemus Training Day

V. Malle

Goal

Structure, developmer auidelines

Current Content

Next

Meteorological Fields

- ECMWF, MM5
- Vertical diffusion : Louis and Troen&Mahrt

Ground Data

- Land use cover: USGS, GLCF
- Emissions from EMEP
- Biogenic emissions (Simpson et al., 1999)
- Deposition : Emberson, Wesely and Zhang

Boundary Conditions

- Mozart 2, Inca
- Gocart

Gaussian Models

Drivers

Polyphemus Training Day

V. Mallet

Goal

Structure, developmen

Current Content

Next

Forward Simulation (BaseDriver)

A model is a C++ object

```
/*** Initializations ***/
Model.Init();
OutputSaver.Init(Model);
/*** Time loop ***/
for (int i = 0; i < Model.GetNt(); i++)
    Model.InitStep();
    OutputSaver.InitStep(Model);
    Model.Forward();
    OutputSaver.Save(Model);
```

Drivers

Polyphemus Training Day

V. Malle

Goals

Structure, developmen auidelines

Current Content

Next

Optimal Interpolation

```
for (int i = 0; i < Model.GetNt(); i++)
        Model.InitStep();
        OutputSaver.InitStep(Model);
        Model.Forward();
        OutputSaver.SetGroup("forecast");
        OutputSaver.Save(Model);
        // Retrieves observations.
        ObsManager.SetDate(Model.GetCurrentDate());
        if (ObsManager.IsAvailable())
            Model.GetState(state_vector);
            Analyze(state_vector);
            Model.SetState(state_vector);
```

Drivers

Polyphemus Training Day

V. Malle

Structure, developmer guidelines

Current Content

Next.

Forward Simulation

- BaseDriver, StationaryDriver
- PlumeDriver, PuffDriver

Data Assimilation

- Optimal interpolation
- Kalman filters : ensemble version et reduced-rank version
- 4D-Var (and adjoint validation)

Under development

- Plume-in-grid model
- Monte Carlo
- Models coupling: soil model / atmospheric model

Postprocessing

Polyphemus Training Day

V. Mallet

Goal

Structure, developmen guidelines

Current Content

Next

Programs

- Comparisons to observations (error statistics, visualization)
- Water diagnosis in a plume

AtmoPy Library

- Graphical visualization
- Observations management
- Statistical measures
- Ensembles management (models combinations)

Polyphemus Training Day

V. Mallet

Goals

Structure, developmen guidelines

Current Content

Next..

Code

- 50 000 lines of hand-written code (SLOCcount)
- 50 000 lines automatically generated

Subversion Repository (without SIREAM)

Polyphemus Training Day

V. Mallet

Goal

Structure, developmen guidelines

Current Content

Next

Current Developers

Lin Wu (INRIA)

Meryem Ahmed de Biasi (INRIA)	diffusion
Édouard Debry (ENPC)	aerosols
Karine Kata-Sartelet (ENPC)	aerosols
Irène Korsakissok (ENPC)	local
Vivien Mallet (ENPC)	ensemble
Denis Quélo (IRSN)	passive
Yelva Roustan (ENPC)	impact
8 Bruno Sportisse (ENPC)	aerosols
Marilyne Tombette (ENPC)	aerosols

assimilation

Polyphemus Training Day

V. Malle

Structure, developmen

Current Content

Next

Documentations for users

- User's guide (140 pages)
- Scientific documentation for AtmoData
- Reference documentation for AtmoPy

Documentations for developers

- Guide and reference documentation for SeldonData
- Reference documentation for AtmoData
- Reference documentation for Talos

Examples

- Test cases (Eulerian and Gaussian)
- Practical sessions (primarily for courses at ENSTA and ENPC)

Polyphemus Training Day

V. Mallet

Gnale

Structure, developmen

Current Content

Next.

http://www.enpc.fr/cerea/polyphemus/ Polyphemus - Konqueror 💨 📂 贅 🚳 💥 🖟 🕽 tttp://www.enpc.fr/cerea/polyphemus/applications.html W_ Wikipedia - The Free E POLYPHEMUS About Polyphemus **Applications** Introduction News Dispersion of Radionuclides **Applications People and Contacts** The objective of this work is to investigate the validity of Polyphemus for the dispersion of radionuclides. Positions and Internships Model-to-data comparisons have been performed for three cases: the ETEX campaign, the Chernobyl accident (see film) and the Algeciras release. The results are similar to those usually given in the literature by state-of-the-art models. Some preliminary sensitivity analysis indicate the main sources for uncertainties. This study Resources is the first step before the operational use of the Polyphemus system for the future emergency system for Download long-range dispersion of radionuclides at IRSN (Institute of Radiation Protection and Nuclear Safety). Click on the Fulerian Test Case image to launch the film: Gaussian Test Case 1986-04-26T00:43:00 Technical FAQ **Polyphemus Modules** AtmoData AtmoPy Contact

Next...

Polyphemus Training Day

V. Malle

Goals

Structure, developmer guidelines

Current Conten

Next...

Models (mostly implemented, but not yet included in Polyphemus)

- Secondary organic aerosols
- Modal aerosol module (MAM)
- Heavy metals, mercury
- Passive hemisphere model

Next Steps

- Parallelization
- Lagrangian particle model
- Drivers for assimilation and coupling