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Introduction

This report aims at presenting the aerosol models developed in the PAM
project (Multiphase Air Pollution). This work has been partially funded by
the french Research Program PRIMEQUAL during the period 2001-2005.

The kernel of the PAM project was:

• to develop numerical models that describe the atmospheric multi-
phase mixture of gaseous species, aqueous-phase species (inside cloud
droplets) and aerosols;

• to couple the resulting models to host Chemistry-Transport Models;

• to perform model-to-data comparisons at regional and continental
scales.

Two aerosol models have been developed:

• SIREAM (SIze REsolved Aerosol Model), based on a sectional de-
scription of the aerosol distribution;

• MAM (Modal Aerosol Model), based on a modal discretization.

Both models have common parameterizations, provided by the AtmoData
library (figure 1). They have been hosted by a Chemistry-Transport Model,
Polair3D, inside the modeling system Polyphemus. A preliminary cou-
pling has also been performed with the atmospheric CFD model Mer-
cure Saturne.

This report is structured as follows.
The first chapter describes the background for aerosol modeling and

the main parameterizations that are used. The second and third chapters
present the numerical models SIREAM and MAM, respectively. The focus
in on numerical algorithms. A 0D comparison between both models is also
reported at the end of the third chapter. The fourth chapter details the
coupling to a 3D Chemistry-Transport Model and the parameterizations
that have to be added (emission, scavenging, deposition). This reports
ends with a conclusion and a discussion for some future works. An appendix
presents the main aerosol parameterizations used in the AtmoData library.
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SIREAM MAM

Polair3D
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Figure 1: Architecture of models MAM and SIREAM
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Chapter 1

Aerosol modeling:
parameterizations used for
the GDE

Summary:
This chapter describes the modeling of multiphase processes (General

Dynamic Equation for aerosols and gas/cloud diphasic model). The param-
eterizations used for nucleation, condensation/evaporation, coagulation, mass
transfer, aqueous-phase chemistry, heterogeneous chemistry and formation
of Semi-Volatile Organic Compounds (SVOC) are also given.

1.1 Aerosol Dynamic

In this section, the General Dynamic Equation for aerosols (GDE) and
the 0D processes are described. All processes related to a 3D Chemistry-
Transport Model (transport, emission, scavenging) are described in chapter
4.

In the sequel, T stands for température (in Kelvin) and RH for the
relative humidity (in %).

1.1.1 Notations

Description of aerosols distribution

We use an assumption of internal mixing: for a given size, there is a unique
chemical composition.
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{Xi}i=1,ne is the set of ne chemical species in the aerosol mixture. The
aerosol population is then described by:

1. a size distribution, for instance n(s, t) for the number distribution
(number of aerosols per air volume), a function of the size parameter
s (among volume v, diameter d or dry mass m) and of time;

2. a chemical composition for size s, {qi(s, t)}i=1,ne , with qi(s, t) the
mass distribution of species Xi (1 ≤ i ≤ ne).

The mass distributions meet :

i=ne∑

i=1

qi = mn (1.1)

We also define the mass mi(m, t) of species Xi in aerosols of mass m with :

mi(m, t) =
qi(m, t)
n(m, t)

(1.2)

Notice that :
i=ne∑

i=1

mi(m, t) = m (1.3)

Chemical composition

The following components are taken into account :

• liquid water;

• inert species : mineral dust (MD), elemental carbon (EC) and, in
some applications, heavy trace metals (lead, cadmium);

• inorganic species : Na+, SO2 –
4 , NH+

4 , NO –
3 and Cl – ;

• organic species : one species for Primary Organic Aerosols (POA), 8
species for Secondary Organic Aerosols (ARO1, ARO2, LIM1, LIM2,
API1, API2, ALK1, OLE1).

We refer to section 1.2.5 for more details.

A typical version of the model (trace metals or radionuclides are not
included) is given by 17 chemical species for a given size (1+2+5+1+8).
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Figure 1.1: Aerosol Dynamic.

1.1.2 Some processes

The evolution of size distribution and chemical composition is governed by
the following processes (see figure 1.1):

• nucleation:

The formation of smallest nanometric aerosols is given by the aggre-
gation of gaseous molecules leading to thermodynamically stable clus-
ters. In practice, we use two kinds of parameterizations for this pro-
cess: a first one for the binary mixture H2O-H2SO4 ([Kulmala et al., 1998]
or [Vehkamäki et al., 2002]), a second one for the ternary mixture
H2O-H2SO4-NH3 ([Napari et al., 2002]).

We refer to section 1.2.3.
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• coagulation:

The brownian coagulation of aerosols is related to brownian motion
(thermal motion). We refer to section 1.2.1 for the description of
coagulation kernels.

• condensation/évaporation or gas-particle conversion:

Some gas-phase species with low saturation vapor pressure may con-
densate on existing aerosols. Some condensed species in the aerosol
phase may also evaporate. These mass transfers are governed by the
gradient between the gas-phase concentration and the concentration
at the surface of aerosols. The surface concentration is supposed to
be at equilibrium with the aerosol mixture (“local” equilibrium).

The parameterizations for mass transfer and the computation of local
equilibrium are given in section 1.2.2.

A specific treatment is applied for organic species because gas-phase
mechanisms are usually devoted to photochemistry and do not repre-
sent Semi-Volatile Organic Species (SVOC). We refer to section 1.2.5
for the description of the parameterizations for SVOC.

• mass transfer for cloud droplets :

Part of the aerosol distribution is activated and leads to the formation
of cloud droplets in saturated thermodynamic conditions. The model
does not describe explicitely the activation of aerosols (there is no
microphysical model for cloud formation) and a parameterization is
used.

Mass transfer between activated aerosols and cloud droplets is de-
scribed in order to have a description of sulfate production (through
aqueous-phase chemistry in cloud droplets).

Following [Fahey, 2003, Fahey and Pandis, 2001], the parameteriza-
tion assumes that activation/evaporation is performed in a single
timestep for the activated part of the aerosol distribution. This al-
lows to take into account the impact of aqueous-phase chemistry on
the chemical composition of aerosols.

We refer to section 1.2.4.

• heterogeneous reactions:

The heterogeneous reactions at the surface of condensed matter (aerosols
and cloud or fog droplets) may have a significant impact for gas-
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phase photochemistry and aerosols . Following [Jacob, 2000], these
processes are usually described by the first-order reactions :

HO2
condensed matter−−−−−−−−−−−→ 0.5H2O2

NO2
condensed matter−−−−−−−−−−−→ 0.5HONO + 0.5HNO3

NO3
condensed matter−−−−−−−−−−−→ HNO3

N2O5
condensed matter−−−−−−−−−−−→ 2HNO3

The kinetic rates are detailed in section 1.2.6.

The heterogeneous reactions for HO2, NO2 and NO3 at surface of
cloud droplets are supposed to be already taken into account by the
diphasic aqueous-phase model (see below). They are therefore not
taken into account for cloud droplets.

1.1.3 The General Dynamic Equation for aerosols (GDE)

The evolution of size distributions and chemical compositions is given by
the so-called General Dynamic Equation for aerosols (GDE).

We use the following notations (the parameterizations are described in
the appropriate sections).

m0 is the dry mass for the smallest aerosol (given by nucleation).
J0(t) is the nucleation rate, in number of nucleated aerosols per second.
Ii(m, t) is the condensation/evaporation (c/e) rate of condensable species

X i in an aerosol of dry mass m, in unit of mass per unit of time.
The total rate of c/e in an aerosol of dry mass m is I0:

I0(m, t) =
ne∑

i=1

Ii(m, t) (1.4)

The coagulation kernel K(m1,m2) gives the coagulation between two aerosols
of dry mass, respectively m1 and m2, in unit of volume per unit of time.
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Number distribution

The equation for the number distribution is :

∂n

∂t
(m, t) = θ(m ≥ 2m0)

1
2

∫ m−m0

m0

K(m̃, m− m̃)n(m̃, t)n(m− m̃, t) dm̃

︸ ︷︷ ︸
coagulation gain

− n(m, t)
∫ ∞

m0

K(m, m̃)n(m̃, t) dm̃

︸ ︷︷ ︸
coagulation loss

− ∂(I0n)
∂m︸ ︷︷ ︸

c/e advection

+ δ(m,m0)J0(t)︸ ︷︷ ︸
nucleation

(1.5)

θ(A) is a dimensionless function equal to 1 if the condition A is met, 0
otherwise. δ is the Dirac function, given as the inverse of a mass unit.

Chemical composition

For the species labeled by i = 1, . . . , ne:

∂qi

∂t
(m, t) = θ(m ≥ 2m0)

∫ m−m0

m0

K(m̃,m− m̃)qi(m̃, t)n(m− m̃, t) dm̃

︸ ︷︷ ︸
coagulation gain

− qi(m, t)
∫ ∞

m0

K(m, m̃)n(m̃, t) dm̃

︸ ︷︷ ︸
coagulation loss

− ∂(I0qi)
∂m︸ ︷︷ ︸

c/e advection

+ (Iin)(m, t)︸ ︷︷ ︸
c/e mass transfer

+ δ(m,m0)mi(m0, t)J0(t)︸ ︷︷ ︸
nucleation

(1.6)

For condensation/evaporation, we distinguish an advection term (which
corresponds to a shift along the distribution) and a mass transfer term
(which corresponds to a mass transfer among the gas phase and aerosols).

1.2 The main parameterizations

1.2.1 Coagulation

In order to simplify the analytical expressions for coagulation kernels, we
use in this section the aerosol diameter dp as the size variable. The relation
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with the wet mass (the dry mass plus the mass of water in the aerosol) is
of course :

mwet = π
d2

p

6
ρp (1.7)

with ρp the aerosol density (computed as a function of the chemical com-
position or supposed to be fixed).

We write K12 the coagulation kernel between the aerosols of sizes dp1

and dp2 . For brownian coagulation, some regimes have to be distinguished.

Continuous regime

If dp1 and dp2 À λair:

K12 = 2π(D1 + D2)(dp1 + dp2) (1.8)

with D1 and D2 the diffusion coefficients in the air, respectively for aerosols
of diameters dp1 and dp2 :

Di =
kbT

3πµairdpi

(1.9)

with kb the Boltzmann constant and µair the air dynamic viscosity.

Free molecular regim

If dp1 and dp2 ¿ λair, the coagulation kernel is given by:

K12 =
π

4
(dp1 + dp2)

2(c̄2
1 + c̄2

2)
1
2 (1.10)

mi and c̄i stand respectively for the mass of aerosol i and the mean quadratic
velocity, given by:

c̄i =
(

8kbT

πmi

) 1
2

(1.11)

Transition regime

If dp1 and dp2 ∼ λair, the coagulation kernel of the continuous regim is
modified with a coefficient β ([Fuchs, 1964]) :

β =
dp1 + dp2

dp1 + dp2 + 2(g2
1 + g2

2)
1
2

+
8(D1 + D2)

(c̄2
1 + c̄2

2)
1
2 (dp1 + dp2)

(1.12)
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where

gi =
1

3dpi li

[
(dpi + li)3 − (d2

pi
+ l2i )

3
2

]
− dpi , li =

8Di

πc̄i
(1.13)

The diffusion coefficient in the air is also modified with:

Di → Di
5 + 4Kni + 6K2

ni
+ 18K3

ni

5−Kni + (8 + π)K2
ni

, Kni =
2λair

dpi

(1.14)

1.2.2 Condensation/evaporation

Mass flux

The mass flux Ii is given by:

Ii = 2πDg
i dpf(Kni , αi)︸ ︷︷ ︸

condensation kernel

(
cg
i − cs

i (dp, t)
)

(1.15)

Dg
i and cg

i are repsectively the diffusion coefficient in the air and the gas-
phase concentration of species Xi.

The concentration cs
i at the aerosol surface is supposed to be at local

thermodynamic equilibrium with the aerosol composition:

cs
i (dp, t) = η(dp) ceq

i (m1, . . . ,mne , RH, T ) (1.16)

η(dp) is related to the Kelvin effect (curvature effect) and is given by :

η(dp) = exp
(

4σvp

RgTdp

)
(1.17)

with σ the surface tension.
The function f , the Fuchs-Sutugin function, describes the non-continuous

effects ([Dahneke, 1983]). It depends on the Knudsen number of species Xi,
Kni , and on the accomodation coefficient αi :

f(Kni , αi) =
1 + Kni

1 + 2Kni(1 + Kni)/αi
, Kni =

2λi

dp
(1.18)

where λi is the air mean free path for gas-phase species Xi in the air.
Fo high values of Kni , f is near αi

2Kni
, which leads to the following

expression for the mass transfer rate in the free molecular regim :

Ii = αi
c̄g
i

4
πd2

p

(
ci − cs

i (dp)
)

(1.19)
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with c̄g
i the quadratic mean velocity for gas-phase species Xi, given by :

Dg
i =

λic̄
g
i

2
(1.20)

Some typical values of these parameters are given in table 1.1, with
temperature T = 300 K and pressure P = 1 atm.

gas-phase species c̄g
i (m.s−1) Dg

i (m2.s−1)
sulfate 254.58 1.07E-05

ammonium 611.24 2.17E-05
nitrate 317.51 1.47E-05
chloride 417.15 1.72E-05

Table 1.1: Some values of gas-phase diffusion coefficient and of quadratic
mean velocity for T = 300 K and P = 1 atm.

Local thermodynamic equilibrium

The key point is the computation of the local thermodynamic equilibrium,
ceq
i (m1, . . . , mne , RH, T ).

The current model version does not describe the mixing between inor-
ganics and organics. In practice, two independent equilibria are assumed.

The local equilibrium for inorganics is computed with the model ISOR-
ROPIA ([Nenes et al., 1998]). The local equilibrium for organics is given
by an adsorption law, following [Schell, 2000, Schell et al., 2001] (see sec-
tion 1.2.5).

The aerosol liquid water content is computed with the Zdanovskii-
Stokes-Robinson relation (ZSR) as a function of the inorganic species.

This assumption is a limitation of the current model because some
organic species may have an hydrophilic behaviour ([Griffin et al., 2002b,
Griffin et al., 2002a, Pun et al., 2002]).

Moreover, some specific corrections may be applied to the case of liquid
aerosols (limitation of the H+ flux). In the case of solid aerosols, a specific
computation is also performed ([Pilinis et al., 2000]).

1.2.3 Nucleation

For binary nucleation of sulfuric acid (H2SO4) and water, two parameter-
izations have been implemented: one from Kulmala [Kulmala et al., 1998]
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and one from Vehkamaki [Vehkamäki et al., 2002]. For ternary nucleation
of sulfuric acid, ammoniac (NH3) and water, the parameterization of Napari
([Napari et al., 2002]) is used.

The nucleated aerosols are assigned to the first mode (the “nuclei” mode
i) for MAM and to the first bin in SIREAM.

The nucleation diameter (of order 0.001µm) is also computed but usu-
ally not used.

The different parameterizations differ from each other with the compu-
tation of J , whose magnitude is much larger for ternary nucleation than
for binary nucleation.

In the following, cH2SO4
stands for the concentration in sulfuric acid (in

molecules/cm3).

Parameterization of Kulmala

In [Kulmala et al., 1998], J is given by :

J = exp(χ) (1.21)

with

χ = 25.1289.Nsulf − 4890.8
Nsulf

T
− 2.2479.δ.Nsulf .RH

− 1743.3
T

+ 7643.4
xal

T
− 1.9712

δ.xal

RH

(1.22)

and

Nsulf = ln
cH2SO4

(cH2SO4
)c

Na,c = exp(−14.5125 + 0.1335T − 10.5462RH + 1958.4
RH

T
)

xal = 1.2233− 0.0154
RA

RA + RH
+ 0.0102 ln(cH2SO4

)

− 0.0415 ln(Nwv) + 0.0016T

δ = 1 +
T − 273.15

273.15

(1.23)

Nwv is the concentration of water vapor and RA is the relative acidity.
(cH2SO4

)c is a critical concentration.
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Parameterization of Vehkamaki

The parameterization of Vehkamaki is a follow-up of the parameterization
of Kulmala. The molar fraction in sulfuric acid x∗ in the nucleated cluster
is computed as a function of temperature T , of relative humidity RH and
of gaseous concentration of sulfuric acid H2SO4 in cm−3 (equation (11) of
[Vehkamäki et al., 2002]):

x∗ = 0.740997− 0.00266379 T

−0.00349998 ln(cH2SO4
) + 0.0000504022 T ln(cH2SO4

)

+0.00201048 ln
(

RH

100

)
− 0.000183289 T ln

(
RH

100

)

+0.00157407
[
ln

(
RH

100

)]2

− 0.0000179059 T

[
ln

(
RH

100

)]2

+0.000184403
[
ln

(
RH

100

)]3

− 1.50345 10−6 T

[
ln

(
RH

100

)]3

.(1.24)

The nucleation rate J in cm−3s−1 and the total number of molecules in the
cluster Ntot are computed (equations (12) and (13) of [Vehkamäki et al., 2002])
with the following relations :

J = exp
{

a(T, x∗) + b(T, x∗) ln
(

RH

100

)

+c(T, x∗)
[
ln

(
RH

100

)]2

+ d(T, x∗)
[
ln

(
RH

100

)]3

+e(T, x∗) ln(cH2SO4
) + f(T, x∗) ln

(
RH

100

)
ln(cH2SO4

)

+g(T, x∗)
[
ln

(
RH

100

)]2

ln(cH2SO4
) + h(T, x∗)

[
ln(cH2SO4

)
]2

+i(T, x∗) ln
(

RH

100

) [
ln(cH2SO4

)
]2 + j(T, x∗)

[
ln(cH2SO4

)
]3

}
(1.25)
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Ntot = exp
{

A(T, x∗) + B(T, x∗) ln
(

RH

100

)

+C(T, x∗)
[
ln

(
RH

100

)]2

+ D(T, x∗)
[
ln

(
RH

100

)]3

+E(T, x∗) ln(cH2SO4
) + F (T, x∗) ln

(
RH

100

)
ln(cH2SO4

)

+G(T, x∗)
[
ln

(
RH

100

)]2

ln(cH2SO4
) + H(T, x∗)

[
ln(cH2SO4

)
]2

+I(T, x∗) ln
(

RH

100

) [
ln(cH2SO4

)
]2 + J(T, x∗)

[
ln(cH2SO4

)
]3

}
(1.26)

where the coefficients a(T, x∗) ... i(T, x∗) and A(T, x∗) ... J(T, x∗) are
given in [Vehkamäki et al., 2002]. Nucleation occurs only above a critical
concentration of sulfuric acid (cH2SO4

)c, that depends on relative humidity
and temperature through:

(cH2SO4
)c = exp

[
−279.243 + 117.344

RH

100

+
22700.9

T
− 1088.64

T

RH

100
+ 1.14436T − 0.0302331

RH

100
T

−0.00130254T 2 − 6.38697 log
(

RH

100

)
+ 854.98 log

(
RH

100

)
T

+0.00879662T log
(

RH

100

)]
(1.27)

Parameterization of Napari

The parameterization of Napari describes the ternary nucleation for a mix-
ture of water, sulfuric acid and ammoniac [Napari et al., 2002].

The nucleation rate J in cm−3s−1 also depends on ζ (the mixing ratio
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of NH3 in ppt), as a complementary parameter to T, RH and cH2SO4
:

ln J = −84.7551 +
f1(T )

ln cH2SO4

+ f2(T ) ln cH2SO4
+ f3(T ) ln2 cH2SO4

+ f4(T ) ln ζ

+f5(T ) ln2 ζ + f6(T )RH + f7(T ) lnRH + f8(T )
ln ζ

ln cH2SO4

+f9(T ) ln ζ ln cH2SO4
+ f10(T )RH ln cH2SO4

+ f11(T )
RH

ln cH2SO4

+f12(T )RH ln ζ + f13(T )
ln RH

ln cH2SO4

+ f14(T ) lnRH ln ζ

+f15(T )
ln2 ζ

ln cH2SO4

+ f16(T ) ln cH2SO4
ln2 ζ + f17(T ) ln2 cH2SO4

ln ζ

+f18(T )RH ln2 ζ + f19(T )
RH ln ζ

ln cH2SO4

+ f20(T ) ln2 cH2SO4
ln2 ζ (1.28)

The functions fi(T ) are third-order polynomial functions :

fi(T ) = ai0 + ai1T + ai2T
2 + ai3T

3. (1.29)

The coefficients aij are given in Table 1 of [Napari et al., 2002].
The number of nucleated particles n∗i for each species of the ternary

mixture is given by:

n∗H2SO4
= 38.1645 + 0.774106 lnJ + 0.00298879 ln2 J

−0.357605T − 0.00366358T ln J + 0.0008553T 2 (1.30)
n∗NH3

= 26.8982 + 0.682905 lnJ + 0.00357521 ln2 J

−0.265748T − 0.00341895T ln J + 0.000673454T 2.(1.31)

The limits of validity for this parameterization are typically T ∈ [240−
300] K, RH ∈ [0.05− 0.95], cH2SO4

∈ [104 − 109] cm−3, ζ ∈ [0.1− 100] ppt
and J ∈ [10−5 − 106] cm−3s−1.

1.2.4 Aqueous-phase chemistry

Parameterization

The description of aqueous-phase chemistry is a key point, especially for
sulfate production.
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The model is basically related to the chemical mechanism developed at
Carneggie Mellon University (CMU). Some parameterizations and some nu-
merical strategies also refer to ([Djouad et al., 2002, Sportisse and Djouad, 2003,
Djouad et al., 2003a, Djouad et al., 2003b]).

The microphysical processes that govern the evolution of cloud droplets
are not described and only parameterized. We assume that a cloud droplet
is formed and disappears instantaneously (during one numerical timestep).
The objective is indeed to take into account the impact of aqueous-phase
chemistry for the activated part of the aerosol distribution.

The following processes are modelized:

1. if the liquid water content is above a threshold (of magnitude 0.5
g/m3), the grid cell is supposed to contain a cloud and a part of the
aerosol distribution is activated.

In order to lower the computational boarden, we have chosen to mod-
elize the activated distribution as a monomodal distribution: the ac-
tivated diameter is dactiv = 0.7µm and the activated aerosols are
mapped to a monomodal distribution of median diameter 0.4 µm
and of variance 1.8 µm. The tests in [Fahey, 2003] illustrate the low
impact of the choice made for this distribution.

The cloud droplets have a fixed size with a default diameter dc =
20µm.

The chemical composition of the cloud droplet is then this of the
activated aerosols.

2. aqueous-phase chemistry and mass transfer between the gaseous phase
and the cloud droplet is then solved. Part of the mass transfer is
solved dynamically, part is supposed to have reached the Henry’s
equilibrium.

3. the cloud droplet distribution is then mapped to the initial aerosol
distribution.

Diphasic model

ca and cg stand for the concentrations in aqueous phase and in gas, re-
spectively. The diphasic model is then given by the following evolution
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system:

dcg

dt
= χg(cg) + kmt(

ca

HRT
− cg)

dca

dt
= χa(ca)− Lkmt(

ca

HRT
− cg)

(1.32)

where χg and χa are the reaction rates in gas phase and in aqueous phase,
respectively. H is the Henry’s constant, L is the liquid water content and
kmt is the parameterized coefficient for kinetic mass transfer.

The aqueous-phase model is described in [Strader et al., 1998]. It con-
tains 18 gas-phase species and 28 aqueous-phase species. Aqueous-phase
chemistry is modelized by a chemical mechanism of 99 chemical reactions
and 17 equilibria (for ionic dissociation). We refer to table 1.2.

We distinguish the following status for the species:

• the species to be dynamically solved (the evolution equations are
integrated along time);

• the species supposed to satisfy Henry’s equilibrium for mass transfer
(see below);

• the species for which the diphasic process are supposed not to modify
the concentrations (the concentrations are kept constant);

• the species that are supposed to satisfy a Quasi Steady State As-
sumption (QSSA) and whose concentrations can be neglected;

• the gaseous species that are supposed to be dissolved.

Metal ions

4 metal ions are taken into account: Fe3+, Mn2+, Na+ and Ca2+. The
first three ions are computed as a fraction of “salt” in the activated aerosol
(from Na), the last one is computed as a fraction of crustal content (MD).

Mass transfer

Mass transfer for the 17 species in gas phase is given by the following
parameteization:

1
kmt

=
r2
c

3Dg
+

4rc

3c̄gα
(1.33)
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Aqueous phase Status Gas phase Status
S(IV) dynamic SO2 dynamic
S[VI) dynamic H2SO4 dissoute
N(III) equilibrium HNO2 equilibrium
N(V) dynamic HNO3 dissolved
CO2 equilibrium CO2 constant
H2O2 dynamic H2O2 dynamic
HCHO dynamic HCHO dynamic
HCOOH dynamic HCOOH dynamic
NO constant NO constant
NO2 constant NO2 constant
O3 constant O3 constant
PAN constant PAN constant
HCl dynamic HCl dissolved
OH QSSA OH QSSA
HO2 QSSA HO2 QSSA
NO3 QSSA NO3 QSSA
NH3 dynamic NH3 dynamic
CH3O2 constant CH3O2 constant
ClOH – QSSA
SO –

4 QSSA
SO –

5 QSSA
HSO –

5 dynamic
HMSA dynamic
CO –

3 QSSA
Na+ constant
Fe3+ constant
Mn2+ constant
Ca2+ constant

Table 1.2: Status for the species of the diphasic model
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For each species, Dg is the diffusion coefficient in the gas phase, c̄g is the
thermal velocity and α is the accomodation coefficient. rc is the radius of
the cloud droplet. A part of mass transfer is very fast and an equilibrium
is quickly reached (see for instance [Djouad et al., 2003b]):

ca = HRT cg (1.34)

Computation of pH

The reversible reactions of ionic dissociation are supposed to be at equilib-
rium (they are very fast). The Henry’s constants are then replaced by the
so-called Henry’s effective constants, as a function of H+ concentration.

If the species XH (typically HNO2) is at Henry’s equilibrium and par-
ticipates in the reaction of ionic dissociation

XH −−⇀↽−− X− + H+

we have the following relations:

[XH] = (HRT)[(XH)g] ,
[X−][H+]

[XH]
= K (1.35)

where K is the equilibrium constant. With the constraint of mass conser-
vation [XH] + [(XH)g] = [Σ] (initial mass), one gets:

[XH] =
[H+][Σ]

[H+] + K
, [X−] =

K[Σ]
[H+] + K

(1.36)

The computation of H+ is made with the electroneutrality relation written
as :

felectroneutrality(H+) = 0 (1.37)

This nonlinear algebraic equation is solved with the bisection method. If
no convergence occurs, we take a default value pH = 4.16.

Numerics for the diphasic equations

We use a splitting method, the gas-phase chemistry (given by χg) be-
ing solved elsewhere (in the gas-phase module of the Chemistry-Transport
Model). The other terms are solved with an appropriate numerical scheme:
DVODE or ROS2 (following [Djouad et al., 2002]).

23



1.2.5 Formation of the Semi Volatile Organic Compounds

Principle

The oxydation of COV lead to species that have more and more complicated
chemical functions, high polarizations and lower saturation vapor pressure,
the Semi Volatile Organic Compounds (SVOC).

The current version of the aerosol models MAM and SIREAM use a
“two-products” formulation. The gas-phase chemical mechanism RACM
has been extended by adding SVOC as products in some oxydation reac-
tions on the basis of the SORGAM model ([Schell et al., 2001, Schell, 2000]).

Gas-phase reactions

Two products (among 8 classes of SVOC) have been added to some reac-
tions of oxydation by OH, O3 and NO3 (table 1.3).

VOC product P1 product P2

Aromatic ARO1 ARO2

α-Apinen API1 API2
Limonen LIM1 LIM2

Alken ALK1

Oléfin OLE1

Table 1.3: Classes of SVOC added to RACM.

A reaction under the form

COV + Ox −−→ P

where Ox is OH, O3 or NO3 has been modified to

COV + Ox −−→ P + α1P1 + α2P2

with P1 and P2 stand for some SVOC.
The set of modified reactions is given in table 1.4.

Partition

Let nOM be the number of organic species in the aerosol mixture (this
includes primary and secondary species).
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COV Ox ”Double product”
HC8 OH 0.048 ALK1

OLT OH 0.008 OLE1

OLI OH 0.008 OLE1

API OH 0.006384 API1 + 0.054948 API2
LIM OH 0.037164 LIM1 + 0.056316 LIM2

TOL OH 0.039 ARO1 + 0.108 ARO2

XYL OH 0.039 ARO1 + 0.108 ARO2

CSL OH 0.039 ARO1 + 0.108 ARO2

CSL NO3 0.039 ARO1 + 0.108 ARO2

OLT NO3 0.008 OLE1

OLI NO3 0.008 OLE1

OLT O3 0.008 OLE1

OLI O3 0.008 OLE1

API O3 0.021588 API1 + 0.185811 API2
LIM O3 0.125673 LIM1 + 0.190437 LIM2

Table 1.4: Modifications of RACM. The chemical species are detailed in
[Stockwell et al., 1997].

We assume that the organic species constitute an ideal mixture. We
have therefore for species i:

(qi)g = γi (xi)a qsat
i (1.38)

where qsat
i is the saturation mass concentration of species i in a pure mix-

ture, (xi)a is the molar fraction of species i in the organic mixture and γi

is the activity coefficient of species i in the organic mixture (supposed to
be 1 by default).

(xi)a is computed through:

(xi)a =

(qi)a

Mi
qOM

MOM

=

(qi)a

Mi
j=nOM∑

j=1

(qj)a

Mj
+

(qPOA)a

MPOA

(1.39)

with qOM the total concentration of organic matter (primary and sec-
ondary) in aerosols. The molar mass Mi of component i is expressed in
µg/mol (in the same unit as the mass concentrations qi); MOM is the aver-

25



age molar mass for organic matter in µg/mol. POA stands for the primary
organic matter, supposed not to evaporate.

qsat
i is computed from the saturation vapor pressure as:

qsat
i =

Mi

RT
psat

i (1.40)

A similar way to proceed is to define the partitioning coefficient Ki (in
m3/µg) as:

Ki =
(qi)a

qOM (qi)g
(1.41)

Ki can be computed from the thermodynamical conditions and the satura-
tion vapor pressure through:

Ki =
RT

psat
i γi(MOM )

(1.42)

The saturation vapor pressure psat
i (T ) is given by the Clausius-Clapeyron

law:

psat
i (T ) = psat

i (298K) exp
(
−∆Hvap

R
(
1
T
− 1

298
)
)

(1.43)

with ∆Hvap the vaporization enthalpy. Some data are reported in Table
1.5.

Species psat
i (298K) [Pa] ∆Hvap [J/mol] Molar mass [g/mol]

ARO1 5.710−5 1560. 150.
ARO2 1.610−3 1560. 150.
ALK1 5.010−6 1560. 140.
OLE1 5.010−6 1560. 140.
API1 4.010−6 1560. 184.
API2 1.710−4 1560. 184.
LIM1 2.510−5 1560. 200.
LIM2 1.210−4 1560. 200.

Table 1.5: Data used for the SVOC.

Computing the themodynamical equilibria

Local equilibrium The mass concentration of a gas at local equilibrium
with the aerosol mixture is given by equation (1.38).
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Global equilibrium The global equilibrium between a gas and the aerosol
mixture is given by equation (1.38) and mass conservation:

j=nOM∑

j=1

(qj)a + (qj)a = (qj)tot (1.44)

with (qj)tot the total mass concentration (for both phases) to be partitioned.
This leads, through equation (1.39), to a system of nOM algrebraic

equations of second degree under the form:

−ai ((qi)a)
2 + bi(qi)a + ci = 0 (1.45)

The coefficients depend on concentrations {(qj)a}j 6=i through:

ai =
1

Mi
, bi =

qsat
i

Mi
− Σi , ci = qsat

i Σi (1.46)

with Σi =
j=nOM∑

j=1,j 6=i

(qj)a

Mj
+

(qPOA)a

MPOA
.

The resulting system is solved by an iterative approach with a fixed
point algorithm. Each equation of second degree is solved in an exact way:
the only positive root is computed for each equation (1.45).

1.2.6 Heterogeneous reactions

The reactions at the surface of condensed matter (aerosols or fog and cloud
droplets) may have a significant impact for tropospheric chemistry, espe-
cially for ozone. Following Jacob ([Jacob, 2000]), these processes are usually
parameterized as first-order reactions:

HO2
condensed matter−−−−−−−−−−−→ 0.5H2O2 (R 1)

NO2
condensed matter−−−−−−−−−−−→ 0.5HONO + 0.5HNO3 (R 2)

NO3
condensed matter−−−−−−−−−−−→ HNO3 (R 3)

N2O5
condensed matter−−−−−−−−−−−→ 2HNO3 (R 4)

As explained above, for cloud droplets, only the heterogeneous reaction
for N2O5 is taken into account.
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Kinetic rates for heterogeneous reactions

The first-order kinetic rate is computed for gas-phase species Xi with:

ki =
(

a

Dg
i

+
4

c̄g
i γ

)−1

Sa (1.47)

a is the particle radius, Dg
i the molecular diffusion coefficient in the air,

c̄g
i the thermal velocity in the air, γ the reaction probability and Sa the

available surface for condensed matter per air volume.
γ strongly depends on the chemical composition and on the aerosol size.

The parameterizations advocated in [Jacob, 2000] have a focus on ozone.
We have therefore decided to keep the variation ranges for these parameters
in order to evaluate the resulting uncertainties (tableau 1.6).

Default value variation range
γHO2

0.2 [0.1-1]
γNO2

10−4 [10−6-10−3]
γNO3

10−3 [2.10−4-10−2]
γN2O5

0.03 [0.1-1]

Table 1.6: Default values and variation ranges for γ (heterogeneous reac-
tions).

The initial recommended value of γNO3
(0.1, in [Jacob, 2000]), lead to

too high values of nitrate inside aerosols. After discussion with D.Jacob
and members of his team, we have decided to take the value γNO3

= 0.03.

Coupling to the gas-phase mechanism

In the host Chemistry-Transport Model Polair3D, we have chosen to cou-
ple these reactions to the gas-phase chemical mechanism. One motivation is
the numerical stability (tests not reported here). The kinetic rates are then
computed with a function of the AtmoData library on the basis on the
computed size distribution for aerosols. The cloud droplets are supposed
to have a constant diameter dc = 20 µm. Tests in [Fahey, 2003] indicate
that the results are not sensitive to this value.
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Chapter 2

The SIze REsolved Aerosol
Model (SIREAM)

Summary:
In this chapter we describe the size resolved aerosol model SIREAM.

We particularly focus on the condensation/evaporation process.

2.1 Some remarks for the size-resolved model

In the sequel we only deal with aerosol dynamics, i.e. with nucleation,
condensation/evaporation and coagulation processes. Other processes are
modelized and computed in the host 3D model.

Let us first focus on some model characteristics before entering into the
numerical resolution :

• distinction between external and internal composition;

• dry mass logarithmic scale description;

• aerosol specific mass computation with respect to its composition;

• ion hydronium H+ flux limitation for condensation/evaporation;

• dry aerosol thermodynamics.

2.1.1 Model Formulation

External composition, internal composition

One may distinguish between
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• the external composition composed of chemical components {Xi}i=1,ne ,
each of these refer to one family of chemical species, gathering all
physical and chemical states the component may take in the con-
densed phase (liquid, solid or ionic).

• the internal composition composed of chemical components {Xint
ij }j

which gives the distribution of each Xi between its various chemical
and physical states.

We note nc the total number of chemical species in one aerosol (dis-
solved, ionic or solid).

GDE equations for external composition

Let us recall the GDE equations applied to external composition:

• Aerosol number distribution :

∂n

∂t
(m, t) =

1
2

∫ m−m0

m0

K(u, m− u)n(u, t)n(m− u, t) du

− n(m, t)
∫ ∞

m0

K(m, u)n(u, t) du− ∂(I0n)
∂m

(2.1)

• Aerosol mass distribution of each external component Xi :

∂qi

∂t
(m, t) =

∫ m−m0

m0

K(u,m− u)qi(u, t)n(m− u, t) du

− qi(m, t)
∫ ∞

m0

K(m,u)n(u, t) du

− ∂(I0qi)
∂m

+ Ii(m1, . . . , mnc , t)n(m, t)

(2.2)

• Gaseous concentration in semi-volatile component Xi :

∂cg
i

∂t
= −mi(m0, t)J0(t)−

∫ ∞

m0

(Iin)(m, t) dm (2.3)

• Mass conservation in Xi :
∫ ∞

m0

qi(m, t) dm + cg
i , Ki (2.4)
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• Limit conditions at m0 :

(I0n)(m0, t) = J0(t) , (I0qi)(m0, t) = mi(m0, t)J0(t) (2.5)

where Ki is the total mass of Xi in the whole gas/aerosol system.
As the internal chemistry conserves total mass in Xi, it does not appear

in GDE equations.

Internal composition

The internal composition is determined by thermodynamic equilibrium,
solved by ISORROPIA ([Nenes et al., 1998]) model for inorganic phase
and SORGAM ([Schell et al., 2001]) for organic phase.

Water processing

Due to its relative abundance in the atmosphere, water reaches equilibrium
between gas and aerosol phases faster than any other component, IH2O ' 0.

Then water is not solved by one equation (2.4) but through thermody-
namic resolution (ZSR relation).

Consequently the aerosol mass m now refers to its dry mass. In the
same way the c/e growth rate I0 no longer takes into account the water
mass transfer.

2.1.2 Logarithmic scale

In order to reduce the wide range of magnitudes for the size distribution
and to better represent small aerosols, the logarithm x = lnm of dry
aerosol mass m is used instead of m ([Wexler et al., 1994, Meng et al., 1998,
Gaydos et al., 2003]).

The number and mass densities with respect to x are respectively de-
fined by (we keep the same notations for new densities for the sake of
clarity):

n(x, t) dx , n(m, t) dm , qi(x, t) dx , qi(m, t) dm (2.6)

They are linked to the previous densities through:

n(x, t) = mn(m, t) , qi(x, t) = mqi(m, t) (2.7)

The number density n(x, t) is usually expressed in #aerosols.m−3 and mass
densities qi(x, t) in µg.m−3.

The GDE equations become :
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• Aerosol number distribution :

∂n

∂t
(x, t) =

∫ x̃

x0

K(y, z)n(y, t)n(z, t) dy

− n(x, t)
∫ ∞

x0

K(x, y)n(y, t) dy − ∂(H0n)
∂x

(2.8)

• Aerosol mass distribution of each external component Xi :

∂qi

∂t
(x, t) =

∫ x̃

x0

K(y, z)[qi(y, t)n(z, t) + n(y, t)qi(z, t)] dy

− qi(x, t)
∫ ∞

x0

K(x, y)n(y, t) dy − ∂(H0qi)
∂x

+ (Iin)(x, t)

(2.9)

• Gaseous concentration in semi-volatile component Xi :

dcg
i

dt
(t) = −mi(x0, t)J0(t)−

∫ ∞

x0

(Iin)(x, t) dx (2.10)

• Mass conservation in Xi :

cg
i (t) +

∫ ∞

x0

qi(x, t) dx = Ki (2.11)

• Limit conditions at x0 = lnm0 :

(H0n)(x0, t) = J0(t) , (H0qi)(x0, t) = mi(x0, t)J0(t) (2.12)

where H0, expressed in s−1, refers to the logarithmic growth rate :

H0 =
I0

m
(2.13)

In the sequel we will use the logarithmic formulation.

2.1.3 Aerosol specific mass

Parameterizations of coagulation and condensation/evaporation process ex-
plicitely depend on the aerosol “real” diameter dp. But only its internal
mass composition (m1, . . . ,mnc) is known. It is then necessary to provide
a closure scheme for the aerosol diameter.
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Most of 3D models use a constant specific aerosol mass ρp ([Wexler et al., 1994,
Pilinis and Seinfeld, 1988]) supposed to satisfy:

ρp

πd3
p

6
=

nc∑

i=1

mi (2.14)

Moreover, pure species specific masses may sensitively differ between or-
ganic, inorganic or inert species. That is why the organic and inorganic
phases are sometimes distinguished ([Pilinis et al., 2000]) :

πd3
p

6
= Vinorg + Vorg , Vinorg =

1

ρinorg
p

∑

iinorg

mi , Vorg =
1

ρorg
p

∑

iorg

mi (2.15)

We use here a more rigorous way to compute the aerosol volume, also used
in [Jacobson, 2002], based on the internal composition.

The aerosol volume may be splitted between its solid and liquid part :

πd3
p

6
= Vliq + Vsol (2.16)

As each solid represents one single phase (from a chemical point of view)
the total solid aerosol volume is the sum of each solid volume :

Vsol =
∑

is

mis

ρ∗is
(2.17)

where ρ∗is represents the specific mass of pure component Xis .
The liquid aerosol phase is a concentrated mixing of inorganic species,

whose volume is a non linear function of its inorganic internal composition:

Vliq =
∑

il

Vilnil (2.18)

where Vil is the partial molar volume of ionic or dissolved species Xil and nil

is the molar quantity in Xil . Due to some molecular processes wihthin the
mixture (e.g. volume exclusion), the partial molar volume is a complicated
function of internal composition itself.

Nevertheless this latter does not widely change with respect to internal
composition so that it can be approximated by :

Vil '
Mi

ρ∗il
(2.19)

where Mi and ρ∗il respectively denote the molar mass of Xi and specific
mass of a pure liquid solution of Xi.

The table 2.1 gathers specific masses for pure components.
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Xi ρi Xi ρ∗i
EC 2.25 NH4Cl 1.53

MD(Si) 2.33 NaNO3 2.26
Na 0.97 NaHSO4 2.74

H2SO4 1.84 Na2SO4 2.7
HNO3 1.5 NH4NO3 1.725
HCl 1.15 NH4HSO4 1.78
NH3 0.91 (NH4)2SO4 1.77
H2O 1.0 (NH4)3H(SO4)2 1.77
NaCl 2.165 SOA 1.3

Table 2.1: Specific mass for some pure component (in g.cm−3).

2.1.4 Hydronium ion flux limitation during condensation/e-
vaporation

When aerosols are in liquid state, the condensation of one acid component
may free hydronium ions and that of a basic component may catch hydro-
nium ions. Thus the condensation/evaporation process may have an effect
on the aerosol pH. The hydronium ion flux induced by c/e is the following
one :

JH+ = 2JH2SO4
+ JHCl + JHNO3

− JNH3
(2.20)

with Ji the molar flux in species Xi. The pH evolution due to c/e can
be very stiff and cause instabilities, due to the very small quantity nH+ of
hydronium ions inside the aerosol. The hydronium ion flux is then limited
to a given fraction A of the hydronium ions quantity ([Pilinis et al., 2000])
:

|JH+ | ≤ AnH+ (2.21)

where A is usually taken arbitrarily between 0.01 and 0.1. A is a numerical
parameter which has no physical meaning and does not influence the final
state of c/e. It just modifies the numerical path to reach this state. This
can be illustrated in figure 2.1: the flux limitation comes to project the
initial state to the line of slope +A.

We now detail how this limitation is achieved. The mass transfer rate
for inorganic species Xi (H2SO4, HNO3, HCl and NH3) is:

Ii = ai(ci − ηceq
i ) , ai =

2πDidpf(Kni , αi)
Mi

(2.22)
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+A

−A

equilibrium point

Ii

mi

(0,0)

initial point

Figure 2.1: Limitation of flux

The gas equilibrium concentration of sulfate is usually neglected: ceq
H2SO4

=
0.

The flux limitation (2.21) comes to inequality :

|2aH2SO4
cg
H2SO4

+ aHNO3
(cg

HNO3
− ηceq

HNO3
)

+ aHCl(c
g
HCl − ηceq

HCl)− aNH3
(cg

NH3
− ηceq

NH3
)| ≤ AnH+

(2.23)

When this condition is not met, we introduce a correcting factor Q such
that:

2aH2SO4
cg
H2SO4

+ aHNO3
(cg

HNO3
− ηceq

HNO3
Q) + aHCl(c

g
HCl − ηceq

HClQ)

− aNH3
(cg

NH3
− ηceq

NH3
/Q) = (−1)pAnH+

(2.24)

where p equals 1 if the hydronium flux is positive, 0 otherwise.
Equality (2.24) leads to a second order equation in Q :

αQ2 + βQ− γ = 0 (2.25)

with

α = η(aHNO3
ceq
HNO3

+ aHClc
eq
HCl)

β = (−1)pAnH+ − 2aH2SO4
cg
H2SO4

− aHNO3
cg
HNO3

− aHClc
g
HCl + aNH3

cg
NH3

γ = ηaNH3
ceq
NH3

(2.26)

Several cases may appear:
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• if ceq
HNO3

> 0 and ceq
HCl > 0, then α > 0 :

– if ceq
NH3

> 0 :

Q =
−β +

√
β2 + 4αγ

2α
(2.27)

– if ceq
NH3

= 0 equation (2.25) is reduced to αQ + β = 0 :

∗ if β ≥ 0 :
Q = 1 (2.28)

∗ if β < 0 :

Q =
−β

α
(2.29)

• if ceq
HNO3

= 0 and ceq
HCl = 0, equation (2.25) reduces to βQ− γ = 0 :

– if ceq
NH3

= 0 then γ = 0 :
Q = 1 (2.30)

– if ceq
NH3

> 0 then x = 0 :

∗ if β > 0 :
Q =

γ

β
(2.31)

∗ if β ≤ 0 :
Q = 1 (2.32)

It can be shown that cases for which Q = 1 are naturally limited by con-
densation process.

2.1.5 Equilibrium concentrations for solid aerosols

When the aerosols become solid, fluxes of inorganic species are governed
by gas/solid reactions at the aerosol surface :

(NH4NO3)s −−⇀↽−− (NH3)g + (HNO3)g (R 5)

(NH4Cl)s −−⇀↽−− (NH3)g + (HCl)g (R 6)

(NaCl)s + (HNO3)g −−⇀↽−− (NaNO3)s + (HCl)g (R 7)
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The equilibrium constants are :

K1 = ceq
NH3

ceq
HNO3

, K2 = ceq
NH3

ceq
HCl , K3 =

ceq
HCl

ceq
HNO3

(2.33)

In this case, thermodynamic models are not efficient to find gas equilibrium
concentrations ceq

i for inorganic species Xi. Consider for example a pure
NH4NO3 solid aerosol, the only thermodynamic equation is then :

K1 = ceq
NH3

ceq
HNO3

(2.34)

for which there exists an infinity of solutions (ceq
NH3

, ceq
HNO3

).
Various approaches have been developed to remedy this indecisiveness

([Jacobson et al., 1996],[Wexler and Seinfeld, 1990, Meng and Seinfeld, 1996]).
We present in the sequel the one we use ([Pilinis et al., 2000]).

The ISORROPIA model is used to determine which solid species are
present in the aerosol. If one solid species is present then its gas/solid
surface reaction may be active :

• (R 5) if NH4NO3 exists or if K1 < cg
NH3

cg
HNO3

;

• (R 6) if NH4Cl exists or if K2 < cg
NH3

cg
HCl;

• (R 7) if NaCl and NaNO3 are presents, or if NaNO3 is present and
K3 < cg

HCl/cg
HNO3

, or if NaCl is present and K3 > cg
HCl/cg

HNO3
.

Furthermore, when the aerosol is solid, the inorganic fluxes are con-
strained by electroneutrality, which brings another equation :

2JH2SO4
+ JHCl + JHNO3

= JNH3
(2.35)

that enables to close the system.
When the gaseous sulfate condenses onto aerosols, one has first to take

into account the following reactions:

(NaCl)s + (H2SO4)g −−→ (Na2SO4)s + 2 (HCl)g (R 8)

(NaNO3)s + (H2SO4)g −−→ (Na2SO4)s + 2 (HNO3)g (R 9)

2 (NH4NO3)s + (H2SO4)g −−→ ((NH4)2SO4)s + 2 (HNO3)g (R 10)
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2 (NH4Cl)s + (H2SO4)g −−→ ((NH4)2SO4)s + (HCl)g (R 11)

which are not equilibrium reactions due to the high sulfate reactivity.
Three cases have to be distinguished :

1. if NaCl or NH4Cl are presents, then JHNO3
= JNH3

= 0 and JHCl =
−2JH2SO4

from electroneutrality (2.35);

2. if NaNO3 or NH4NO3 exist, then JHCL = JNH3
= 0 and JHNO3

=
−2JH2SO4

from (2.35);

3. if none of solids NaCl, NH4Cl, NaNO3 and NH4NO3 are present then
JHCl = JHNO3

= 0 and only the gaseous sulfate and ammonia may
condense. The gas equilibrium concentration for ammonia ceq

NH3
sat-

isfies the electroneutrality condition 2JH2SO4
= JNH3

. Nevertheless in
this last case, the electroneutrality condition may not be met as sul-
fate can only condense, and there may have not enough gas ammonia
to equilibrate the sulfate flux. This happens if

2JH2SO4
≤ 2πDNH3

dpf(Kn, α)
cg
NH3

MNH3

(2.36)

The electroneutrality is no longer met and ceq
NH3

is set to zero.

2.2 Numerical simulation

2.2.1 Numerical approach

Several numerical algorithms have been tested ([Debry, 2004]). Our final
choice has been oriented toward methods that ensure stability and low CPU
cost.

Here are the main characteristics of our numerical strategy based on :

• a splitting approach for coagulation and condensation/evaporation;

• size-binning methods which remains stable even with a few discretiza-
tion points, on the contrary to spectral methods;

• a lagrangian treatment of condensation/evaporation in order to avoid
numerical diffusion with eulerian schemes due to the small number of
discretization points in 3D models.
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Treatment of each physical process

The nucleation process is not a numerical issue and is solved simultaneously
with condensation/evaporation. The splitting sequence goes from the slow-
est process to the fastest one (first coagulation and then condensation/evaporation-
nucleation).

Discretization of the aerosol distribution

The aerosol mass distribution is discretized in ns bins [xj , xj+1], for which
integrated quantities are defined :

N j(t) =
∫ xj+1

xj

n(x, t) dx , i = 1, . . . , ne , Qj
i =

∫ xj+1

xj

qi(x, t) dx (2.37)

2.2.2 Coagulation

Coagulation is solved by the so-called size binning method. Equations (2.8)
and (2.9) are integrated over each bin, giving:

dNk

dt
(t) =

1
2

k∑

j1=1

k∑

j2=1

fk
j1j2Kj1j2N

j1N j2 −Nk
ns∑

j=1

KkjN
j

i = 1, . . . , ne ,
dQk

i

dt
(t) =

k∑

j1=1

k∑

j2=1

fk
j1j2Kj1j2Q

j1
i N j2 −Qk

i

ns∑

j=1

KkjN
j

(2.38)

Kj1j2 is an approximation of the coagulation kernel between bins j1 and j2.

Closure scheme for partition coefficients

These latest equations make appear partition coefficients fk
j1j2

that takes
into account the fact that coagulation between 2 bins may recover one or
more sections. Then fk

j1j2
represents the fraction of aerosol coagulations

between bins j1 and j2 which fall into bin k. As these coefficients only
depend on the choosen size discretization they can be computed once for
all.

There are several ways to compute these coefficients depending on the
assumed shape of continuous densities inside each bin (closure scheme).
According to numerical tests ([Debry, 2004]) we choose a closure scheme
similar to [Fernàndez-Dı̀az et al., 2000].
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Time integration

The system (2.38) can be rewritten as an evolution equation :
dy

dt
= f(y, t) , yT = (N1, . . . , Nns , Q1

1, . . . , Q
ns
1 , . . . , Q1

ne
, . . . , Qns

ne
) (2.39)

As coagulation is not a stiff process, we solve it by a second order explicit
scheme ETR (with a timestep ∆t):

ỹt+1 = yt +∆tf(yt, t) , yt+1 = yt +
∆t

2

(
f(yt, t)+f(ỹt+1, t+∆t)

)
(2.40)

The time step ∆t is adjusted as follows :

∆tnew = ∆told

√
εr|yt+1|2

|ỹt+1 − yt+1|2 (2.41)

where εr is a user parameter, usually included between 0.5 and 0.01. The
higher εr is , the faster ∆t increases.

2.2.3 Condensation/evaporation-nucleation

A lagrangian approach is used for condensation/evaporation-nucleation.
Equations obtained through this approach are solved by an implicit time
solver.

Let us first introduce the characteristic curves that motivate the la-
grangian approach.

Characteristic curves

The characteristic curves are the trajectories of aerosols within the size
spectrum due to condensation/evaporation. We note x̄j(t) the logarithmic
size of one aerosol at time t whose initial value corresponds to point xj of
the fixed size discretization. The time evolution of x̄j(t) is given by the
characteristic curve equation :

dx̄j

dt
(t) = H0(x̄j , t) , x̄j(0) = xj (2.42)

One crucial issue is to ensure that the characteristic curves do not cross
themselves. When this occurs, one has (figure 2.2):

∃ j1, j2 , tc > 0 such that m̄j1(0) 6= m̄j2(0) and m̄j1(tc) = m̄j2(tc) (2.43)

If this happens the following lagrangian bins formulation is no more
valid. In real cases we have no proof that this does not happen ([Debry, 2004]),
even we have not met such situation up to now.
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Figure 2.2: Crossing of characteristic curves

Lagrangian bins formulation

Provided that the characteristic curves do not cross, we can define inte-
grated quantities N j and Qj

i for each lagrangian bin [x̄j , x̄j+1] :

N j(t) =
∫ x̄j+1

x̄j

n(x, t) dx , Qj
i =

∫ x̄j+1

x̄j

qi(x, t) dx (2.44)

If at time t the characteristic curves j and j + 1 cross, these quantities are
not more defined.

Mass conservation (2.11) can be easily written under the form :

i = 1, . . . , ne , cg
i (t) +

ns∑

j=1

Qj
i (t) = Ki (2.45)

The time derivation of integrated quantities (2.44) leads to equations

dN j

dt
= 0 ,

dQj
i

dt
= N j Ĩj

i (2.46)

with

m̃j
i =

Qj
i

N j
(2.47)

and Ĩj
i is an approximation of the mass transfer rate Ii for species Xi in bin

j. This formulation has the advantage of conserving the aerosol number
concentration N j .
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For the nucleation process, the first bound x1 is assumed to be the
nucleation size, so that the lagrangian bound x̄1 no longer checks (2.42)
but rather

dx̄1

dt
= j(t) , x̄1(0) = x1 (2.48)

where j(t) is the growth law of the first bound due to nucleation.
The equations for the first lagangian bin have to be written under the

form :

dN1

dt
= J0(t) ,

dQ1
i

dt
= N1Ĩ1

i + mi(x1, t)J0(t) (2.49)

where [m1(x1, t), . . . , mne(x1, t)] is the chemical composition of newly nu-
cleated aerosols, also given by the nucleation process.

The lagrangian bin formulation then consists in solving equations (2.42),
(2.46) and (2.49). The next section is devoted to the numerical treatment.

Interpolation of lagrangian boundaries

One also needs to solve the characteristic curves equations in order to know
the boundary of each bin :

j = 1, . . . , ns + 1 ,
dx̄j

dt
= H0(x̄j , t) , x̄j = ln(m̄j) (2.50)

Notice that the c/e equations for boundaries are similar to those for inte-
grated quantities. For j = 1, . . . , ns and x̃j = ln(m̃j):

dx̃j

dt
= H̃j

0 , H̃j
0 =

Ĩj
0

m̃j
, (2.51)

In practice we avoid solving boundary equations and interpolate boundaries
from integrated quantities.

One first idea ([Koo and Pandis, 2003]) consists in performing the geo-
metric mean of two adjacent bins. For k = 2, . . . , ns:

m̄k(t) =
√

m̃k−1(t)m̃k(t) (2.52)

The outer boundaries m̄1(t) and m̄ns+1(t) may be extrapolated as follows :

m̄1(t) =
(m̃1)2

m̄1
, m̄ns+1(t) =

(m̃ns)2

m̄ns
(2.53)
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This alogrithm would have a physical meaning if equations (2.50) and (2.51)
were conserving formula (2.52), which is not the case. We have therefore
developed another algorithm.

The key point is to note that equations (2.50) and (2.51) are similar,
and therefore that x̃j and x̄j evolve in the same proportions (figure 2.3).
This proportion can be assessed by αj(t) :

x

x̄j(t)

time t = 0

time t > 0

bin j − 1 bin j

1− α α
xj

x̃j−1(0) x̃j(0) x̃j−1(t) x̃j(t)

∆x̃j

∆x̃j−1

Figure 2.3: Boundary interpolation

j ≥ 2 , αj(t) =
x̄j(t)− x̃j−1(t)
x̃j(t)− x̃j−1(t)

(2.54)

which is only known at initial time :

j ≥ 2 , αj(0) =
xj − x̃j−1(0)

x̃j(0)− x̃j−1(0)
(2.55)

The time integration over [0, t] of equations (2.50) and (2.51) gives :

j ≥ 1 , x̄j(t) = xj + ∆x̄j , ∆x̄j =
∫ t

0
Hj

0(t′) dt′

j ≥ 1 , x̃j(t) = x̃j(0) + ∆x̃j , ∆x̃j =
∫ t

0
H̃j

0(t′) dt′
(2.56)

The variation of each boundary x̄j is then interpolated by these of its two
adjacent bins x̃j−1 and x̃j :

j ≥ 1 , ∆x̄j ' (1− αj(0))∆x̃j−1 + αj(0)∆x̃j (2.57)

At last we assume that αj remains constant, equal to its initial value. In
the same way outer boundaries can be extrapolated.

In the sequel we will use this algorithm.
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Redistribution on a fixed size grid

Using a lagrangian approach for condensation/evaporation implies to redis-
tribute (or project) numerical and mass concentrations onto the fixed size
grid of 3D model.

Les us note N and (Qi)ne
i=1 the integrated quantities of one lagrangian

bin after condensation/evaporation. We assume that this lagrangian bin is
covered by two adjacent fixed sections labeled by 1 and 2.

The redistribution algorithm must be conservative for the mass distri-
bution of species i = 1, . . . , ne:

Qi = Q1
i + Q2

i (2.58)

Two algorithms have been developed: the first algorithm ensures that the
number is conserved (N = N1 +N2) while the second one ensures that the
average mass is conserved (Q/N).

1. If x̄lo and x̄hi are the lagrangian bin boundaries after condensation/e-
vaporation, the redistribution is performed as follows :

N1 =
x̄1

hi − x̄lo

x̄hi − x̄lo
N , i = 1, . . . , ne , Q1

i =
x̄1

hi − x̄lo

x̄hi − x̄lo
Q

N2 =
x̄hi − x̄2

lo

x̄hi − x̄lo
N , i = 1, . . . , ne , Q2

i =
x̄hi − x̄2

lo

x̄hi − x̄lo
Q

(2.59)

Nevertheless the average mass of aerosols in each section (Q/N) may
not be conserved by this algorithm.

2. Another way to proceed consists in making the average mass con-
served :

Q = m̃N , Q1 = m̃1N1 , Q2 = m̃2N2 (2.60)

which leads to

N1 =
1− m̃

m̃2

1− m̃1

m̃2

N , i = 1, . . . , ne , Q1
i =

m̃2

m̃ − 1
m̃2

m̃1 − 1
Qi

N2 =
1− m̃

m̃1

1− m̃2

m̃1

N , i = 1, . . . , ne , Q1
i =

1− m̃1

m̃

1− m̃1

m̃2

Qi

(2.61)

Both schemes are available in SIREAM.
In the next section we detail the various numerical strategies to solve

condensation/evaporation, which is by far the most challenging point in
aerosol simulation.
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2.3 Condensation/evaporation processing

Mass conservation (2.45) leads to a closed system from lagrangian equations
(2.46) :

dQj
i

dt
= aj

i

(
Ki −

ns∑

k=1

Qj
i − ηj (ceq

i )j

)
(2.62)

with

aj
i = 2πDid

j
pN

jf(Kj
ni

, αi) , ηj = e

4σvp

RgTd
j
p (2.63)

We re-write this system in a general form :

dx

dt
= f(x, t) , x = (Q1

1, . . . , Q
1
ne︸ ︷︷ ︸

size 1

, . . . , Qns
1 , . . . , Qns

ne︸ ︷︷ ︸
size ns

)T (2.64)

with nx = ne × ns the dimension of vector x.

2.3.1 Dynamic resolution

Let t0, . . . , tn, tn+1 . . . be the discretization times. The nth time step is
defined by :

∆tn = tn+1 − tn (2.65)

We note xn the numerical approximation of vector x at time tn.
Aerosol thermodynamics needs to be computed for each bin at every

calls of function f , so that we choose implicit algorithms in order to mini-
mize the number of calls to function f ([Debry, 2004]).

Rosenbrock implicit scheme

The second order Rosenbrock scheme ([Rosenbrock, 1963]) (ROS2) is ap-
plied to the system (2.64) :

xn+1 = xn +
∆tn
2

(3k1 + k2) (2.66)

where k1 and k2 are respectively given by :

[I − γ∆tnJ(f)]k1 = f(xn, tn)
[I − γ∆tnJ(f)]k2 = f(x̃n+1, tn+1)− 2k1

(2.67)

with
x̃n+1 = xn + ∆tnk1 , γ = 1 +

1√
2

(2.68)
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This scheme needs the Jacobian computation.
The time step is adjusted according to the difference between x̃n+1 and

xn+1 an approximation of x(tn+1) :

∆tn+1 ' ∆tn

√
εr|xn+1|2

|xn+1 − x̃n+1|2 (2.69)

The εr parameter represents the maximum error accepted by the user.

Jacobian computation

The ROS2 scheme needs the Jacobian of function f which is one matrix
of size nx × nx defined by :

k = 1, . . . , nx , l = 1, . . . , nx , J(f)kl =
∂fk

∂xl
(2.70)

where fk is the kth element of function f and xl the lth element of x.
Let us note k = (i−1)ns + j and l = (i′−1)ns + j′ where labels i and i′

denote the semi-volatile species, and labels j et j′ refer to aerosol size bins.
The Jacobian (kl)th element may then be written as

∂fk

∂xl
=

∂Ij
i

∂Qj′
i′

(2.71)

The derivation of fk may be split into one linear part, due to mass
conservation, and one non-linear part due to coefficient aj

i , to Kelvin effect
ηj , and above all to gas equilibrium concentration (ceq

i )j .
The linear part is analytically derived :

(
∂fk

∂xl

)

lin

= −aj
iN

j′ , (djj′)i (2.72)

The non-linear part has to be differentiated by numerical methods, like
finite difference method :

(
∂fk

∂xl

)

non-lin

=
fk(. . . , xl(1 + εjac), . . . )− fk(. . . , xl, . . . )

xlεjac
(2.73)

where εjac is generaly close to 10−8. During the numerical computation,
the linear part is arbitrarily kept constant to avoid derive it twice.

A default option is to approximate the Jacobian matrix by its diagonal.
The motivation is of course to reduce the CPU time.
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2.3.2 Hybrid resolution

Solving the system (2.64), even with an implicit scheme, can be expensive
in CPU time. In order to lower the stiffness, hybrid methods for con-
densation/evaporation have been developed ([Capaldo et al., 2000]). The
method consists in partitioning the concentration vector x between its fast
evolving part, xr, and its slow evolving part xl. The system (2.64) now
becomes :

dxl

dt
= f l(xl, xr, t) , f r(xl, xr, t) = 0 (2.74)

The second equation directly gives an expression of the fast part as a func-
tion of the slow part :

f r(xl, xr, t) = 0 =⇒ xr(t) = g(xl(t), t) (2.75)

The time evolution of the slow part is now governed by the following equa-
tion :

dxl

dt
= f l

(
xl, g(xl(t), t), t

)
(2.76)

As xl gathers aerosol species and sizes which have a slow c/e characteristic
time, siffness is substantially reduced.

The issue is now to determine whether aerosol sizes and species are
“slow” or “fast”.

Cutting diameter

The spectral study ([Debry and Sportisse, 2005]) of system (2.64) indicates
how to compute a cutting diameter dc between “slow” and “fast” species/-
sizes, such that the partitioning consists in cutting into two parts the aerosol
distribution: the smallest bins are at equilibrium while the coarsest ones
are governed by kinetic mass transfer.

The cutting diameter can be computed by QSSA criteria, defined by :

QSSAj
i =

cg
i − ηj

i (c
eq
i )j

cg
i + ηj

i (c
eq
i )j

(2.77)

for a given chemical species Xi and one aerosol size j. The more this ratio
close to unity, the more the species and the size are at equilibrium.

In practice all bins j for which (QSSAj
i )

ne
i=1 are greater than one user

parameter εQSSA (close to unity) will be considered as fast and solved
by an equilibrium equation. In the sequel we write jc the cutting bin
corresponding to the cutting diameter. Bin jc is the largest fast bin and
bin jc + 1 is the smallest slow bin.
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Thermodynamic equilibrium

The fast species and sizes satisfy (2.75) written under the form:

1 ≤ i ≤ ne , 1 ≤ k ≤ jc , K̃i −
jc∑

j=1

Qj
i − ηk

i ceq
i (Qk

1, . . . , Q
k
ne

) = 0 (2.78)

K̃i is the total mass of species Xi for fast bins:

1 ≤ i ≤ ne , K̃i = Ki −
ns∑

j=jc+1

Qj
i (2.79)

This system represents the thermodynamic equilibrium between gas and
fast aerosols bins.

In the sequel we present several numerical methods to solve this so-
called size-resolved equilibrium which cannot be solved directly by current
thermodynamic models such as ISORROPIA.

Bulk equilibrium

The bulk equilibrium approach, developed in [Pandis et al., 1993], consists
in merging all fast bins j ≤ jc into one bin, referred as the “bulk” aerosol
phase :

1 ≤ i ≤ ne , Bi =
jc∑

j=1

Qj
i (2.80)

The thermodynamic model ISORROPIA is then applied to the “bulk”
aerosol phase (Bi)ne

i=1 and one gets equilibrium “bulk” concentrations (Beq
i )ne

i=1.
The variation from initial to final “bulk” concentrations has then to be

redistributed among fast bins 1 ≤ k ≤ jc for species 1 ≤ i ≤ ne:

(Qk
i )

eq = Qk
i + fk

i (Beq
i −Bi) , fk

i =
ak

i N
k

∑jc

j=1 aj
iN

j
(2.81)

This redistribution scheme is taken from [Pandis et al., 1993] and is exact
provided that the aerosol composition is uniform over fast bins and that
the variation of the aerosol diameter can be neglected for fast bins.
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Size resolved equilibrium

The former method does not solve size-resolved equilibrium. We propose
here two size-resolved algorithms :

1. The fixed point algorithm ([Jacobson et al., 1996]).

The thermodynamic model is applied sequentially for all fast aerosol
bins until concentrations reach a stable value.

Let us detail one iteration of the process. The thermodynamic model
is applied to fast bins from the slowest one (j = jc) to the fastest one
(j = 1). Equilibrium of bin j = jc reads :

1 ≤ i ≤ ne , Kjc

i = Qjc

i + cg
i (2.82)

Equilibrium concentrations (Qjc

i )eq and (ceq
i )jc are obtained for re-

spectively bin j = jc and gas phase. Gas equilibrium concentrations
are then used for next bin :

1 ≤ i ≤ ne , Kjc−1
i = Qjc−1

i + (ceq
i )jc (2.83)

The kth step consists in solving

1 ≤ i ≤ ne , Kk
i = Qk

i + (ceq
i )k+1 (2.84)

Final gas concentrations (ceq
i )1 are re-used in next iteration.

2. The minimization algorithm.

The resolution of (2.75) is equivalent to finding the minimum of func-
tional F defined by :

F (xr) =
1
2

nr
x∑

j=1

[(f r)j ]2 (2.85)

where nr
x is the size of fast species vector xr. The minimum of F

can be computed with well-known minimization algorithms, such as
BFGS ([H. Byrd and Zhu, 1995]).

2.3.3 Some results

A detailed study of various aproaches may be found in [Debry and Sportisse, 2005].
Figure 2.4 illustates the dependence of the c/e characteristic timescales

with respect to aerosol sizes. A linearized analysis and the computation
of Jacobian eigenvalues confirm the wide range covered by the timescales
(figure 2.5).

Figure 2.6 compares various hybrid methods tested in [Debry and Sportisse, 2005].
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Figure 2.4: Distribution of the c/e characteristic timescales as a function
of aerosol sizes.
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Chapter 3

The Modal Aerosol Model
(MAM)

Summary:
This chapter aims at presenting the modal model MAM. We also in-

vestigate the main difficulty related to modal models, that is to say mode
merging and mode splitting.

3.1 Description of the modal model

MAM is described in more details in [Sartelet et al., 2005] and [Sartelet, 2004].

3.1.1 The modal distribution

The particulate matter (PM) distribution is represented by three modes in
the fine range (nucleation i, Aitken j, and accumulation k), and one mode
in the coarse range (c). Each of these modes correspond to a distinct range
of particle diameters d:

• d < 0.01µm for the nucleation mode,

• 0.01µm < d < 0.1µm for the Aitken mode,

• 0.1µm < d < 2.5µm for the accumulation mode,

• d > 2.5µm for the coarse mode.

Each of the four modes is made of sulfate, nitrate, ammonium, chloride,
sodium, mineral dust, carbon, and water. A recent version also includes
SOA in a way similar to SIREAM.
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The aerosol distribution is described for example by the number distri-
bution

n(dp, t) = ni(dp, t) + nj(dp, t) + nk(dp, t) + nc(dp, t) (3.1)

where ni is the log-normal distribution for mode i, nj for mode j, nk for
mode k, nc for mode c, and dp is the ”dry” particle diameter. For l = i, j, k, c

nl(dp) =
Nl√

2π ln(σl) dl

exp[−1
2
(
ln2(dp/dl)

ln2(σl)
)] (3.2)

where Nl is the total number of particles within mode l, dl is the ”dry”
median diameter and σl is the standard deviation. The moment of order h
of the distribution is defined as

M l
h =

∫ ∞

−∞
dh

p nl(dp) d(dp) = Nl dh
l exp(

h2

2
ln2 σl). (3.3)

The modal distribution is known once the three parameters N , dg and
σg are.

For each mode, PM dynamic equations are solved for three moments,
i.e. moments of order 0 (M0), of order 3 (M3), and of order 6 (M6), from
which the three parameters may be computed as follows:

N = M0 (3.4)

dg = (
M4

3

M6M3
0

)
1
6 (3.5)

σg = exp(

√
1
9

ln(
M0M6

M2
3

)). (3.6)

M3 relates to the total volume of particles per volume of air V as follows
M0 = N and M3 = 6

πV . Third moments are computed for each chemical
species in order to follow the chemical composition of particles in each mode
with time.

Note that in the formulation (3.2), particles are modeled as ”dry” par-
ticles, i.e. the particle liquid water content is not taken into account.

However, because coagulation and condensation processes do act on wet
particles rather than on dry particles, wet particles need to be considered
when computing coagulation and condensation kernels. Wet particles are
assumed to follow a log normal distribution of mean wet diameters dw

l .
For each mode, the particle liquid content lwc is deduced from particle
concentrations using the thermodynamic model ISORROPIA.
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The wet mean diameter is computed from the dry mean diameter dl

by assuming that number concentrations and standard deviations are un-
changed by considering wet or dry particles. Finally,

dw
l = dl

(
Mw

3

M3

)2/3

, (3.7)

where M3 and Mw
3 are respectively the dry and wet moments.

3.1.2 The different processes

Coagulation

The evolution equation of a moment of order h due to coagulation processes
may be expressed as

(
∂Mh

∂t

)

coag

=

1
2

∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dw

p1
, dw

p2
)n(dp1)n(dp2)d(dp1)d(dp2)

−1
2

∫ ∞

0

∫ ∞

0

(
dh

p1
+ dh

p2

)
β(dw

p1
, dw

p2
)n(dp1)n(dp2)d(dp1)d(dp2) (3.8)

The expression of the coagulation kernel β may be found in [Fuchs, 1964].

The evolution equations of the moments of each mode i, j, k and c are
obtained by substituting n(dp, t) = ni(dp, t)+nj(dp, t)+nk(dp, t)+nc(dp, t)
into equation (3.8), and by assuming that:

• when particles from the same mode collide (intra-modal coagulation)
the agglomerated particle stays in that mode ([Whitby and McMurry, 1997]),

• when particles from two different modes collide (inter-modal coagu-
lation) the agglomerated particle is assigned to the mode with the
larger mean size.
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This leads to the following set of equations:

(
∂Mhi

∂t

)

coag

=

1
2

∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dp1 , dp2) ni(dp1)ni(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) ni(dp1)ni(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) ni(dp1)nj(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) ni(dp1)nk(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) ni(dp1)nc(dp2) d(dp1)d(dp2) (3.9)

(
∂Mhj

∂t

)

coag

=

1
2

∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dp1 , dp2) nj(dp1)nj(dp2) d(dp1)d(dp2)

+
∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dp1 , dp2) ni(dp1)nj(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) ni(dp1)nj(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) nj(dp1)nj(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) nj(dp1)nk(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) nj(dp1)nc(dp2) d(dp1)d(dp2) (3.10)
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(
∂Mhk

∂t

)

coag

=

1
2

∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dp1 , dp2) nk(dp1)nk(dp2) d(dp1)d(dp2)

+
∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dp1 , dp2) ni(dp1)nk(dp2) d(dp1)d(dp2)

+
∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dp1 , dp2) nj(dp1)nk(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) ni(dp1)nk(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) nj(dp1)nk(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) nk(dp1)nk(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) nk(dp1)nc(dp2) d(dp1)d(dp2) (3.11)

(
∂Mhc

∂t

)

coag

=

1
2

∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dp1 , dp2) nc(dp1)nc(dp2) d(dp1)d(dp2)

+
∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dp1 , dp2) ni(dp1)nc(dp2) d(dp1)d(dp2)

+
∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dp1 , dp2) nj(dp1)nc(dp2) d(dp1)d(dp2)

+
∫ ∞

0

∫ ∞

0

(
d3

p1
+ d3

p2

)h/3
β(dp1 , dp2) nk(dp1)nc(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) ni(dp1)nc(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) nj(dp1)nc(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) nk(dp1)nc(dp2) d(dp1)d(dp2)

−
∫ ∞

0

∫ ∞

0
dh

p1
β(dp1 , dp2) nc(dp1)nc(dp2) d(dp1)d(dp2) (3.12)

Coagulation does not differentiate chemical species. However, because
modes i, j, k and c have different chemical compositions, chemical compo-
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sitions of modes j, k and c are modified by coagulation. These changes are
identified by assuming that volume is conserved during coagulation, and by
considering the provenance of volume which is added to mode j, k or c by
coagulation.

For numerical optimization and in order to identify changes in chemical
compositions in modes j, k and c by coagulation, the equations (3.9), (3.10),
(3.11) and (3.12)) are rewritten as

(
∂M0i

∂t
)coag = 0.5 I0,0

i,i − I0,0
i,j − I0,0

i,k − I0,0
i,c

(
∂M0j

∂t
)coag = 0.5 I0,0

j,j − I0,0
j,k − I0,0

j,c

(
∂M0k

∂t
)coag = 0.5 I0,0

k,k − I0,0
k,c

(
∂M0c

∂t
)coag = 0.5 I0,0

c,c

(
∂M cs

3i

∂t
)coag = −F cs

i I3,0
i,j − F cs

i I3,0
i,k − F cs

i I3,0
i,c

(
∂M cs

3j

∂t
)coag = F cs

i I3,0
i,j − F cs

j I3,0
j,k − F cs

j I3,0
j,c

(
∂M cs

3k

∂t
)coag = F cs

i I3,0
i,k + F cs

j I3,0
j,k − F cs

k I3,0
k,c

(
∂M cs

3c

∂t
)coag = F cs

i I3,0
i,c + F cs

j I3,0
j,c + F cs

k I3,0
k,c

(
∂M6i

∂t
)coag = I3,3

i,i − I6,0
i,j − I6,0

i,k − I6,0
i,c

(
∂M6j

∂t
)coag = I6,0

i,j + I3,3
j,j + 2 I3,3

i,j − I6,0
j,k − I6,0

j,c

(
∂M6k

∂t
)coag = I6,0

i,k + I6,0
j,k + 2 I3,3

i,k + 2 I3,3
j,k + I3,3

k,k − I6,0
k,c

(
∂M6c

∂t
)coag = I6,0

i,c + I6,0
j,c + I6,0

k,c + 2I3,3
i,c + 2I3,3

j,c + 2I3,3
k,c + I3,3

c,c (3.13)

where cs denotes chemical species, F cs
l denotes the volume proportion of

chemical species in mode l (l = i, j, k)

F cs
l =

M cs
3,l∑

cs M cs
3,l

(3.14)

and

Ia,b
i,j =

∫ ∞

0

∫ ∞

0
da

p1
db

p2
β(dw

p1
, dw

p2
) ni(dp1)nj(dp2) d(dp1)d(dp2). (3.15)
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Integrals (3.15) are computed by Gauss-Hermite quadrature as follows

Ia,b
i,j = Ka,b

i,j

Ng∑

q=1

wq fj(xq)
Ng∑

p=1

wp fi(xp, xq) (3.16)

where Ng is the number of quadrature points, xp and wp (p = 1, Ng) are
the abscissas and weights of the Gauss-Hermite quadrature,

Ka,b
i,j =

NiNj

π
da

i d
b
j

fj(xq) = exp
(
b
√

2 ln(σj) xq

)

fi(xp, xq) = exp
(
a
√

2 ln(σi) xp

)
β(dw

p , dw
q ) (3.17)

with Ni and Nj the number of aerosols in modes i and j, and di and dj the
mean diameters of modes i and j respectively. The ”quadrature” diameters
are

dp = di exp
(√

2 ln(σi) xp

)
and dq = dj exp

(√
2 ln(σj) xq

)
, (3.18)

and the corresponding wet diameters dw
p and dw

q are

dw
p = dp

(
Mw

3,i/M3,i

)2/3 and dw
q = dq

(
Mw

3,j/M3,j

)2/3 (3.19)

Integrals of the evolution equations are computed by Gauss-Hermite quadra-
ture of order four. The simulation results have been shown to be insensitive
to the use of higher order quadratures.

Condensation/evaporation

For condensation/evaporation processes, mass transfer between the PM
and gas phases relaxes the system toward thermodynamic equilibrium. The
time rate of change of a moment of order h due to condensation/evaporation
of species s may be expressed as

∂Mhs

∂t
=

2h

π

∫ ∞

0
dh−3

p Is
v(dw

p , t) n(dp, t)d(dp). (3.20)

where dp is the dry diameter of a particle, Is
v(dw

p , t) is the rate of change of
total volume of a particle of wet diameter dw

p as a result of condensation/e-
vaporation of a species s. It is written, as Dahneke (1983):

Is
v(dw

p , t) = 2πDs dw
p f(Kn,αs) (cs − ceq

s η (dw
l , cs)) , (3.21)
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with cs the concentration of species s in the bulk gas phase, ceq
s the con-

centration at the surface of particles, Ds the diffusivity of species s in air,
Kn = 2 λ/dw

p the Knudsen number, λ the mean free path in air, f(Kn,αs)
a correction factor for non-continuum effects and imperfect accommodation
(Dahneke 1983), αs the accommodation coefficient, and η the Kelvin effect
correction coefficient

η (dw
l , cs) = exp

(
4σmcs

RTdw
p ρp

)
(3.22)

where σ is the particle surface tension, ρp is the particle density, T is
the temperature, R is the universal gas constant, mcs is the molar weight
of species cs and dw

l is the mean wet diameter of mode l for which the
condensation rate is computed.

The thermodynamic model ISORROPIA with the metastable option
is used to determine the liquid water content of the PM and the surface
concentrations for each mode of the distribution when the particles are
liquid.

If the liquid water content is zero, i.e. if particles are solid, then surface
concentrations are computed according to [Pilinis et al., 2000]. Although
the accommodation coefficient should depend on particle composition and
diameter, it is commonly assumed to be constant.

As for coagulation, the condensation rate equations are integrated by
fourth order Gauss-Hermite quadrature. For numerical stability, surface
concentrations are corrected by limiting the flux of hydrogen ion, as for the
size-resolved model.

If thermodynamic equilibrium is assumed then thermodynamic equilib-
rium is computed by the method of CMAQ v4.3. The partitioning between
the PM and gas phases is first computed using ISORROPIA. Then a weight-
ing scheme is used to redistribute total PM equilibrium concentrations be-
tween the fine and coarse modes, depending on the initial concentrations
in each mode. Equation (3.20) is only used to compute the condensation
rate of species of low volatility such as sulfate.

Nucleation

New particles created by homogeneous nucleation are assigned to the nu-
cleation mode i, and are assumed to mix instantaneously with existing par-
ticles in that mode. For sulfuric acid–water binary nucleation, two parame-
terizations are implemented in MAM: that of Kulmala ([Kulmala et al., 1998])
and the recently revised parameterization of Vehkamaki ([Vehkamäki et al., 2002]).
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Sulfuric acid-ammonia-water ternary nucleation is also modeled in MAM,
with the parameterization of Napari ([Napari et al., 2002]). The rate of
change of moments due to nucleation may be written as

(
∂Mh

∂t

)

nuc

= Jdh
g0

. exp (
h2

2
ln2 σg0) (3.23)

where J is the nucleation rate, dg0 is the mean diameter and σg0 the stan-
dard deviation of aerosols that nucleate The different parameterisations
differ mostly in the computation of J .

Because the Kulmala parameterization only predicts the nucleation
rate, dg0 and σg0 must be specified (di = 0.001µm and σi= 1.05 by de-
fault).

In the Vehkamaki and the Napari parameterizations, σg0 must also be
specified. If the mean diameter of the cluster is chosen to be computed
by the Vehkamaki parameterisation rather than being fixed as in other
parameterisations, the time derivative of the third order moment is obtained
from the volume of the critical cluster

(
∂MNH3

3

∂t

)

nuc

=
6
π

J Ntot,NH3

mNH3

Navog ρNH3(
∂MH2SO4

3

∂t

)

nuc

=
6
π

J Ntot,H2SO4

x∗mH2SO4

Navog ρH2SO4

(
∂M3

∂t

)

nuc

=

(
∂MNH3

3

∂t

)

nuc

+

(
∂MH2SO4

3

∂t

)

nuc

(3.24)

where x∗ is the mole fraction of sulfuric acid in the critical cluster formed
by nucleation (exists only in the Vehkamaki parameterization), Ntot,NH3

and Ntot,H2SO4 are the total numbers of molecules of NH3 and H2SO4 in
the critical cluster, mNH3 and mH2SO4 are the molar weights of NH3 and
H2SO4 and Navog is the Avogadro number.

The mean diameter dg0 is computed from the nucleation rate, the time
derivative of the third order moment, and the standard deviation

dg0 =




(
∂M3
∂t

)
nuc

J
exp

(
−9

2
ln2 σg0

)


1/3

(3.25)

The derivative of the sixth order moment is then computed by equation
(3.23).
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3.1.3 Numerical schemes

Two numerical schemes may be used in MAM: a simple explicit trapezoidal
rule of order 2 (ETR), or EBI (Euler Backward Iterative).

Note that operator splitting between processes is not applied but all
processes are solved simultaneously.

ETR

By noting Mn
h the moment of order h at time tn, the time-stepping dis-

cretization may be written as

Mn+1
h = Mn

h +
∆t

2
[F (Mn

h ) + F (M∗
h)] with M∗

h = Mn
h + ∆t F (Mn

h )(3.26)

where F (Mh) represents the time derivative of Mh due to coagulation,
condensation and nucleation processes. After each iteration, the time step
is adjusted as follows

∆t = ∆t
∆0

∆1
with ∆1 =

∣∣∣∣∣

∣∣∣∣∣
Mn+1

h −M∗
h

M∗
h

∣∣∣∣∣

∣∣∣∣∣
2

(3.27)

and ∆0 is the desired accuracy (0.01 by default).

EBI

By noting Mn
h the moment of order h at time tn, the time-stepping dis-

cretization may be written as

M̃0 = Mn
h and M̃∗ = Mn

h (3.28)

M̃∗ =
F+

(
M̃∗

)
∆t + M̃0

1 +
F−(M̃∗)∆t

M̃∗

(3.29)

Mn+1
h = M̃∗ (3.30)

where F+(Mh) represents the positive part of the time derivative of Mh

due to coagulation, condensation and nucleation processes, and F−(Mh)
the negative part. The step described in (3.29) is repeated a number Nit
of times, where Nit is the number of iterations of the EBI scheme, usually
chosen equal to 3.
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After the last iteration, the time step is adjusted as follows

∆t = ∆t
∆0

∆1
with ∆1 =

∣∣∣∣∣

∣∣∣∣∣
M̃∗ − M̃∗,0

M̃∗,0

∣∣∣∣∣

∣∣∣∣∣
2

(3.31)

where M̃∗,0 is the value of M̃∗ at the previous iteration and ∆0 is the desired
accuracy (0.01 by default).

3.2 Mode merging and mode splitting

3.2.1 Mode merging

Mode merging schemes are often used with modal models in 3-D simula-
tions. Merging between two modes is required to force modes to be of
distinct size ranges throughout the simulations.

In the merging scheme of [Binkowski and Roselle, 2003], if two modes
l and l + 1 overlap, then mode l is partially merged into mode l + 1. The
fraction of mode l to be merged into mode l + 1 is computed for each
moment by integrating the moment distribution for diameters larger than
a threshold diameter. This threshold diameter is chosen as the diameter
where the number distributions of the two modes overlap.

In the dynamic mode merger of [Whitby et al., 2002], two modes that
are in proximity to each other are completely merged, and modes are con-
tinually remapped into mode indices (e.g. i, j, k, c) that correspond to
their ”home position” in size space.

If two modes satisfy given proximity criteria, the fraction to be merged
is computed from the flux of one of the moment distribution across a bound-
ary, which corresponds to the geometric average of the mean diameter of
the two modes. This fraction is modified depending on how far each mode
is from its home position.

In MAM, mode merging can be applied in a way similar to the one of
[Pirjola et al., 2003], which is based on the merging of [Binkowski and Roselle, 2003],
i.e. by defining lower and upper boundary diameters for each mode.

Let us write bl the lower boundary diameter for mode l + 1 and the
upper boundary diameter for mode l, with l = i, j, k and l + 1 = j, k, c.
Typical values for the boundary diameters of the mass distribution are
bmi = 0.01µm, bmj = 0.1µm and bmk

= 2.5µm. The diameter of the
lognormal number distribution bl is related to the diameter of the lognormal
mass distribution bml

(l = i, j, k) as follows

bl = bml
exp

(−3σ2
)

(3.32)
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Mode merging between two modes is applied when bl < 2σldl, i.e. when the
boundary diameter is in the 95% confidence interval of the mean diameter
of the mode dl. To quantify the transfer of particles of diameters greater
than bl, fractions to be transferred are computed from the complementary
error function

Fh = 0.5erfc(xh) (3.33)

with

xh = x0 − h ln σl√
2

and x0 =
ln (bl/dl)√

2 ln σl

(3.34)

The moments of order h after transfer (M̃hl+1
and M̃hl

) are computed from
the moments of order h before transfer (Mhl+1

and Mhl
) as follow

M̃hl+1
= Mhl+1

+ Fh Mhl

M̃hl
= (1− Fh) Mhl

. (3.35)

In MAM, mode merging can be chosen to be applied or not depending
on the user’s choice. Mode splitting, which is now detailed, can also be
applied, instead of mode merging in the present version.

3.2.2 Mode splitting

When the combined effect of nucleation and condensation and the effect of
coagulation are of same order of magnitude but act in opposite direction,
a mode may split into two modes.

This is particularly likely to happen for the nucleation mode i during
high nucleation episodes. Although this splitting is usually not reproduced
by modal models ([Pirjola et al., 1999], [Landgrebe and Pratsinis, 1990]),
good results are obtained by applying a ”splitting scheme”.

The splitting scheme used in MAM represents the splitting of mode i
by partially splitting modes i into mode j with a merging scheme, as now
detailed.

After each iteration in time, splitting of mode i is applied when the two
following criteria are satisfied:

• when the characteristic time scale of coagulation is smaller than the
characteristic time of coagulation, condensation, and nucleation com-
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bined, i.e.

Min




M0,i∣∣∣∣
∂M0,i

∂t

∣∣∣
coag

∣∣∣∣
,

M3,i∣∣∣∣
∂M3,i

∂t

∣∣∣
coag

∣∣∣∣
,

M6,i∣∣∣∣
∂M6,i

∂t

∣∣∣
coag

∣∣∣∣


 <

Min


 M0,i∣∣∣∂M0,i

∂t

∣∣∣
,

M3,i∣∣∣∂M3,i

∂t

∣∣∣
,

M6,i∣∣∣∂M6,i

∂t

∣∣∣


 (3.36)

where ∂Mh,i

∂t

∣∣∣
coag

represents the time derivative of the moment of order

h due to coagulation, and ∂Mh,i

∂t the time derivative due to coagula-
tion, condensation, and nucleation;

• when the characteristic time scale of condensation/nucleation is smaller
than the characteristic time of coagulation, condensation, and nucle-
ation combined, i.e.

Min




M0,i∣∣∣∣
∂M0,i

∂t

∣∣∣
cd+nl

∣∣∣∣
,

M3,i∣∣∣∣
∂M3,i

∂t

∣∣∣
cd+nl

∣∣∣∣
,

M6,i∣∣∣∣
∂M6,i

∂t

∣∣∣
cd+nl

∣∣∣∣


 <

Min


 M0,i∣∣∣∂M0,i

∂t

∣∣∣
,

M3,i∣∣∣∂M3,i

∂t

∣∣∣
,

M6,i∣∣∣∂M6,i

∂t

∣∣∣


 (3.37)

where ∂Mh,i

∂t

∣∣∣
cd+nl

represents the time derivative of the moment of

order h due to condensation and nucleation.

The splitting scheme is applied when the characteristic time of all processes
combined is larger than either the characteristic time of coagulation alone
or that of condensation/nucleation. This happens when coagulation and
the effects of condensation/nucleation are of same order of magnitude but
of opposite strength.

The merging scheme used to do the splitting by merging modes i and
j is based on that of [Binkowski and Roselle, 2003], which correspond to
equations (3.33), (3.34) and (3.35), except for the calculation of the bound-
ary diameter bi.

Because the splitting scheme aims at reproducing the splitting of mode
i when it occurs due to the simultaneous occurrence of strong nucleation/-
condensation and coagulation, the threshold diameter for mode merging is
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chosen independently of mode j. The threshold diameter is chosen depend-
ing on the mean evolution of the mode i, as follows.

When the evolution of mode i due to coagulation opposes the evolution
due to condensation/nucleation, modal models have difficulties in repre-
senting the mean evolution of the mode. These two opposite evolutions are
measured respectively by acoag and acl+nl where

acoag =

∂M3,i

∂t

∣∣∣
coag

∂M3,i

∂t

, acd+nl =

∂M3,i

∂t

∣∣∣
cd+nl

∂M3,i

∂t

. (3.38)

Note that acoag and acd+nl have opposite signs but similar amplitudes when
mode splitting occurs.

The threshold diameter bi for mode splitting is chosen as the harmonic
mean of |acoag| times dcoag and of |acd+nl| times dcd+nl, where dcoag is the
mean diameter that mode i would have if it was subject to coagulation only
and dcd+nl is the mean diameter that mode i would have if it was subject
to condensation/nucleation only.

These diameters are determined after taking a tentative time step with
forward Euler scheme, taking into account only coagulation for dcoag and
only condensation/nucleation for dcd+nl.
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Chapter 4

Coupling to a
Chemistry-Transport Model
and 3D parameterisations

Abstract:
The aim of this chapter is to present the coupling to a ”host” Chemistry-

Transport Model, Polair3D. It is however possible to use another one. Ad-
ditional parameterizations are necessary in the tridimensional framework.
These parameterizations concern processes like emissions (anthropogenic
and natural) or scavenging and dry deposition (figure 4.1). These param-
eterization have been developed in the framework of the parameterizations
library AtmoData of the modeling system Polyphemus.

4.1 Coupling to a 3D model

4.1.1 Interface

The interface is very easy and consists in labelling or pointing the gaseous
chemical species (for condensation/evaporation processes).

4.1.2 Parameterization for aerosol liquid water content

The aerosol wet diameter is used in every 0D aerosol process, particu-
larly coagulation, condensation/evaporation and dry deposition. In princi-
ple, this wet diameter should be computed through aerosol thermodynamic
equilibrium, that determines among other species its liquid water content.
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Figure 4.1: Atmospheric dispersion of aerosols.

Computing the wet diameter is essentially computing thermodynamic,
solved with the model ISORROPIA ([Nenes et al., 1998]) for the inorganic
phase. In the case of condensation/evaporation, computing thermodynamic
is justified because this process governs the evaporation through Henry’s
laws. Whereas for processes like coagulation or wet deposition, it is more
convenient to use a more approximative formula, with a lower computa-
tional burden.

We now present a parameterization for computing the wet diameter
from the dry one. It is optimized by comparisons to results obtained with
ISORROPIA.

Gerber’s Formula

The Gerber’s formula ([Gerber, 1985a]) is a parameterization of the wet
diameter, function of the dry diameter for different aerosol types:
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rw =
[

C1(rd)C2

C3(rd)C4 − log RH
+ (rd)3

] 1
3

(4.1)

where rw and rd are respectively the wet and dry aerosol diameters (in
centimeter). RH is the atmospheric relative humidity ( between 0 and 1).
The coefficients C1, C2, C3 and C4 depend on the aerosol type and the
original values proposed by Gerber are given in table 4.1.2.

aerosol type C1 C2 C3 C4

sea salt 0.7674 3.079 2.573× 10−11 −1.424
urban 0.3926 3.101 4.190× 10−11 −1.404
rural 0.2789 3.115 5.415× 10−11 −1.399

(NH4)2SO4 0.4809 3.082 3.110× 10−11 −1.428

Table 4.1: Original coefficients for Gerber’s formula

C3 depends on temperature through the Kelvin effect:

C3(T ) = C3[1 + 0.004(298− T )] (4.2)

Comparison with ISORROPIA

In this section, the Gerber’s formula is evaluated with respect to the model
ISORROPIA for different types of coefficients.

The test protocol is described below. N aerosols are generated with a
random diameter and chemical composition, as well as a temperature value
T and a relative humidity RH for each aerosol. Bounds for each parameter
are given in table 4.1.2.

Parameter minimum maximum
Wet diameter ([µm]) 0.01 10.0

RH ([]) 0.2 0.95
T ([K]) 260.0 310.0

Table 4.2: Bounds for random parameters.

Once the databasis is built, the dry diameter Ddry is computed for each
aerosol with the formula:

π(Ddry)3

6
=

nc∑

i=1

niv
∗
i , v∗i '

Mi

ρ∗i
(4.3)
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where nc is the number of inorganic compounds, (n1, . . . , nnc) is the aerosol
molar chemical composition, and v∗i is the partial molar volume of compo-
nent Xi, approximated by the rate between its molar mass and its volumic
mass at pure state.

The wet diameter Dger is computed with Gerber’s fomula from the dry
diameter. The wet diameter from ISORROPIA, Diso, is computed directly
by adding the liquid water content to the dry diameter.

Statistical indicators (given in annexe) like RMSE, MNBE and MNGE
are then evaluated on these database, with N equal to 106. As the random
generation of the databasis could result to a bias, the evaluation is reiter-
ated on different databases. Table 4.1.2 presents the obtained mean values
and standard deviation.

sea salt urban
RMSE 0.24739± 5.077 10−4 0.47163± 4.593 10−4

MNBE −0.02842± 3.829 10−5 −0.11753± 3.961 10−5

MNGE 0.06318± 2.483 10−5 0.12079± 3.814 10−5

rural (NH4)2SO4

RMSE 0.60729± 5.890 10−4 0.34787± 3.408 10−4

MNBE −0.14557± 4.319 10−5 −0.08477± 3.724 10−5

MNGE 0.14656± 4.256 10−5 0.09396± 3.236 10−5

Table 4.3: Differences between Gerber’s formula and ISORROPIA for the
different coefficient types.

Negative values for MNBE indicate that Gerber’s formula often drift to
under-evaluation of the wet diameter in comparison to the wet diameter ob-
tained with ISORROPIA. The values for MNGE show that the difference
between Gerber’s and ISORROPIA diameter is located at the second non-
zero decimale. The lowest RMSE is obtained for coefficient corresponding
to sea salt.

Optimisation of coefficients

The previous comparison indicates that some coefficients give results very
closed to the model ISORROPIA. We now try to determine the coefficients
that minimize this model error.

In addition to the four coefficients of the formula (4.1), we also choose
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to change the coefficient 0.004 of (4.2), written as C5.

C3(T ) = C3[1 + C5(298− T )] (4.4)

Minimizing the MNBE would not make sense because of error compen-
sations. Minimizing the RMSE would result to neglect small diameters.
Minimizing the MNGE is not possible because it is not differentiable ev-
erywhere.

Then we choose to minimize the following function:

F [(Cj)51] =
N∑

i=1

(
Dger[Di

dry, (Cj)51]−Di
iso

Di
iso

)2

(4.5)

The process of minimisation is done with the BFGS solver ([H. Byrd and Zhu, 1995]).
It uses the gradient of F:

j = 1, . . . , 5 , Gj =
∂F

∂Cj
(4.6)

that we calculate by finite differences:

j = 1, . . . , 5 , Gj =
F (.., Cj(1 + ε), ..)− F (.., Cj(1− ε), ..)

2Cjε
+ o(ε2) (4.7)

where ε is of magnitude 10−9.
The minimisation process needs an initial value for each coefficient and

eventually a range of variation. Minimisation results could be sensitive to
the initial value, leading to local or global minima. Then we choose for
initial value the harmonic mean of the different cases from table 4.1.2.

initial value minimum maximum
C1 0.4483 0.01 2.0
C2 3.094 1.0 5.0
C3 3.671 10−11 10−13 10−10

C4 −1.414 −3.0 −0.1
C5 0.004 0.001 0.1

Table 4.4: Initial values for Gerber’s coefficients.

We arbitrarily fix a variation range for each coefficient. In practice, if
the optimisation does not reach the bounds of each range, the optimisation
process is supposed to have reached convergence.
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C1 0.49893± 6.277 10−4

C2 3.02618± 1.966 10−4

C3 5.37221 10−13 ± 9.495 10−13

C4 −1.37105± 8.291 10−4

C5 3.94246 10−4 ± 5.052 10−5

Table 4.5: Optimized Gerber’s coefficient.

The minimisation is done on several databases. Table 4.1.2 presents the
average of the obtained coefficients.

The variability of coefficients is admissible except for C3, that remains
difficult to optimize, due certainly to its difference of magnitude with the
other coefficients.

We compare Gerber’s formula with the model ISORROPIA in the
same way as previously, on several databases, with the optimized coeffi-
cients. Table 4.1.2 collects for these coefficients the errors RMSE, MNBE
and MNGE with respect to ISORROPIA.

RMSE 0.24602± 4.894 10−4

MNBE −6.67689 10−3 ± 4.041 10−5

MNGE 5.56975 10−2 ± 2.155 10−5

Table 4.6: Differences between Gerber’s formula and ISORROPIA for the
optimized coefficients.

By comparison between this table and the table 4.1.2, we confirm that
optimised coefficient minimize the different errors. In the next section, we
wish to confirm this result on a real 3D simulation case.

3D tests

If optimized coefficients agree more with the model ISORROPIA, we ex-
pect that they minimize the distance between a 3D simulation with ISOR-
ROPIA and a 3D simulation with Gerber’s formula.

We run a reference simulation with ISORROPIA and then 2 simula-
tions with Gerber’s formula: one with the initial values of the optimization
for coefficients (see table 4.1.2) and the other one with the optimized co-
efficients (see table 4.1.2). These two simulations are respectively called
“initial Gerber” and “optimized Gerber”.
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The common features of the 3 simulations are the following ones:

• 3D dispersion model Polair3D : all 3D processes are taken into
account.

• Aerosol model SIREAM : 10 sections, all 0D aerosol processes are
taken into account, condensation/evaporation solved by bulk equilib-
rium. Uniform initial conditions are taken from [Putaud et al., 2003],
and boundary conditions are taken from Gocart simulations.

• Aqueous model VSRM.

• Period: 14 days in April 2001.

• European domain (mesh of 65× 33× 5 cells).

Tables 4.1.2 and 4.1.2 collect the errors for different gaseous and aerosol
species for simulations “initial Gerber” and “optimized Gerber”.

We note that the error decreases between “initial Gerber” and “opti-
mized Gerber” for particulate species PNO3, PNH4, PHCL and PNA and
also for PM10 and PM2.5. The maximum RMSE is reached for ozone in
both cases, but decreases also. In the same way the maximum MNGE is
reached for HONO in both case, and is slightly lower for the simulation
“optimized Gerber”.

The use of Gerber’s formula has also lowered the CPU time by 32% with
respect to the reference simulation without bringing important differences,
the MNGE always remaining below 1.

On that basis, the default computation of wet diameters is performed
with the optimized Gerber’s formula. Computation though resolution of
internal equilibrium remains possible.

4.2 Parametrizations

4.2.1 Gravitational sedimentation

Gravitational sedimentation is taken into account as an additional term
for vertical advection of particles. The vertical velocity for an advected
particle is then w − vg, with vg the velocity of gravitational sedimentation
that depends on particle size.

An approximation is given by the Stokes velocity, given in equation
(4.23). Rigorously, we should take into account the deviation from Stokes
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Species RMSE MNGE MNBE
CVALK1 0.0001128 0.0111500 0.0041904
CVAPI1 0.0000065 0.0047525 −0.0024908
CVAPI2 0.0005171 0.0067592 −0.0049581
CVAR01 0.0002440 0.0085380 0.0051602
CVAR02 0.0021814 0.0067359 0.0033807
CVLIM1 0.0001294 0.0073089 −0.0053657
CVLIM2 0.0005582 0.0072172 −0.0055425
CVOLE1 0.0000245 0.0037832 0.0014609

H2O2 0.0695234 0.0537246 −0.0496363
HCL 0.0446078 0.0105519 −0.0037380

HNO3 0.0813974 0.0490655 −0.0169447
HONO 0.1813701 0.1729995 −0.1395780
NH3 0.0629281 0.0239098 0.0193505
NO 0.0342040 0.0196585 0.0143971
NO2 0.4581412 0.0482401 0.0456124
O3 1.0713284 0.0104498 0.0097836

PALK1 0.0012316 0.0120245 0.0048411
PAPI1 0.0001862 0.0039705 −0.0028347
PAPI2 0.0011430 0.0087640 −0.0072792
PARO1 0.0009937 0.0099366 0.0043780
PARO2 0.0013510 0.0091574 0.0013531
PBC 0.0005904 0.0005632 0.0000109

PHCL 0.0364257 0.0083213 0.0031255
PLIM1 0.0012921 0.0086615 −0.0076212
PLIM2 0.0017170 0.0094920 −0.0082921
PM10 0.3924960 0.0072821 −0.0063617
PM2.5 0.3924960 0.0072821 −0.0063617
PMD 0.0214279 0.0007612 −0.0001252
PNA 0.0161749 0.0031767 −0.0012851
PNH4 0.0777295 0.0118042 −0.0094591
PNO3 0.3098293 0.0223167 −0.0198306
POLE1 0.0001750 0.0038701 0.0021444
PPOA 0.0007257 0.0005738 0.0000499
PSO4 0.0222568 0.0062173 0.0014639
SO2 0.0118966 0.0015191 −0.0006176

Table 4.7: Errors between reference simulation and “initial Gerber”.
CVALK1 indicates the species ALK1 in gaseous phase, PALK1 the same
species in aerosols.
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Species RMSE MNGE MNBE
CVALK1 0.0000691 0.0135077 −0.0124369
CVAPI1 0.0000074 0.0050740 0.0046254
CVAPI2 0.0002936 0.0063263 0.0060503
CVAR01 0.0000711 0.0040808 −0.0006418
CVAR02 0.0009306 0.0038374 −0.0022457
CVLIM1 0.0000849 0.0069516 0.0066459
CVLIM2 0.0003095 0.0066153 0.0063517
CVOLE1 0.0000064 0.0034172 0.0022576

H2O2 0.0717403 0.0392091 0.0384572
HCL 0.0535698 0.0102179 0.0051862

HNO3 0.0466438 0.0660728 0.0526271
HONO 0.0679391 0.1289918 0.1129869
NH3 0.0232839 0.0110572 −0.0042806
NO 0.0138132 0.0168023 0.0051062
NO2 0.1877896 0.0256472 −0.0159620
O3 0.8502031 0.0088896 −0.0088575

PALK1 0.0015438 0.0164914 −0.0156368
PAPI1 0.0001590 0.0030812 0.0021719
PAPI2 0.0005620 0.0064373 0.0041842
PARO1 0.0004095 0.0052702 −0.0029053
PARO2 0.0006686 0.0061650 −0.0039032
PBC 0.0006693 0.0006209 0.0001041

PHCL 0.0364835 0.0079541 0.0000685
PLIM1 0.0006132 0.0060709 0.0046627
PLIM2 0.0008053 0.0066787 0.0045557
PM10 0.1477357 0.0031404 0.0009712
PM2.5 0.1477357 0.0031404 0.0009712
PMD 0.0103096 0.0006052 0.0000393
PNA 0.0194669 0.0027428 0.0006729
PNH4 0.0258893 0.0053421 0.0009581
PNO3 0.1205261 0.0122194 0.0085498
POLE1 0.0001298 0.0024552 −0.0003908
PPOA 0.0007059 0.0006252 0.0000256
PSO4 0.0233696 0.0083624 −0.0078290
SO2 0.0138640 0.0018535 0.0018026

Table 4.8: Errors between reference simulation and “optimized Gerber”.
CVALK1 indicates the species ALK1 in gaseous phase, PALK1 the same
species in aerosols.
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formula for non submicronic particles. This leads to solve the following
non-linear system with respect to the sedimentation velocity:

vg =

√
4g dp Cc ρp

3Cdvg ρair
(4.8)

with g the gravity constant, dp the particle diameter, ρp its density and
ρair the air density. The Cunningham coefficient Cc is given by (4.24) and
the drag coefficient Cd is a function of the particle Reynolds number and
then of the gravitational velocity (expression is not detailed here).

The resolution of this algebraic equation is done with a Newton algo-
rithm.

4.2.2 Below-cloud wet scavenging

In this section, the rain intensity p0 i given in mm/h. Moreover, the aerosol
radius (for a monodisperse distribution) is rp, given in µm.

Dr (in meters) is the diameter of a rain droplet (eventually in a poly-
disperse distribution or as a representative diameter for a population which
is assumed monodisperse). The aerosol diameter is dp (also in meters).

Theorical model

We quote here the theorical modeling of the scavenging coefficient for the
washout process (below-cloud scavenging), that corresponds to the scav-
enging of aerosols by falling raindrops.

A key point is the representation of the raindrops distribution and of
the falling velocity.

Droplet distribution The raindrops distribution is usually described by
a Gamma distribution with 4 parameters:

nr(Dr) = α0 Dα
r exp(−β Dγ

r ) (4.9)

The two classic cases correspond to the Marshall-Palmer (α = 0; γ = 1)
and to the Khrigian-Mazin (α = 2, γ = 1) distribution.

The diameter ranges for the raindrops given by these parameterizations
are function of the rain intensity in table 4.9.

We point out that in [Mircea et al., 2000], lognormal distributions are
used, on the basis of measures.
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Table 4.9: Typical ranges for raindrops diameter given by the Marshall-
Palmer and Khrigian-Mazin distributions, from [Mircea and Stefan, 1998].
For a [a/b − .] diameter range, a refers to the the value of the Marshall-
Palmer distribution, b the value for Khrigian-Mazin.

Rain type p0 (mm/h) Dr range (mm)
weak [1-5] [0/0.001-0.1]

moderate [5-100] [0/0.01-1]
intense [100-500] [0/0.1-10]

Representative diameter There exit numerous parameterizations for
the representative diameter, in order to treat only one monodisperse pop-
ulation of raindrops:

1. In [Pruppacher and Klett, 1998] (page 34):

Dr = 0.976× 10−3 p0
0.21 (4.10)

2. From a Marshall-Palmer distribution:

Dr = 0.243 10−3 p0
0.21 (4.11)

3. In a similar way to the previous parameterization ([Andronache, 2004]):

Dr = 0.24364 10−3 p0
0.214 (4.12)

4. In [Loosmore and Cederwall, 2004]:

Dr = 0.97 10−3 p0
0.158 (4.13)

5. In [Mircea et al., 2000], parameterizations from measures taken in es-
tern Meditarranea give:

Dr = [0.63− 0.72] 10−3 p0.23
0 (4.14)

to compare with the first and the fourth equations.

6. At last, in [Underwood, 2001] (page 35), it is quoted that the original
article of Slinn recommands:

Dr = 0.7 10−3 p0.25
0 (4.15)
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Figure 4.2: Evolution of the representative diameter with respect to the
rain intensity, for some parameterizations. The order (LDr) is coherent
with this of the references.

Globally, we have:

Dr = [0.2431− 0.97] 10−3 D[0.158−0.25]
r (4.16)

The comparison of the fourth first parameterizations is given in the figure
4.2. We notice the high dispersion of the results: it is useally quoted that
the Marshall-Palmer distribution overestimate the small droplets number,
that leads to overestimate the collision efficiencies and then the scavenging.

Falling velocity Several parameterizations give an expression for the
falling velocity Udrop (in m.s−1) function of diameter:

1. Kessler’s parameterization ([Andronache, 2003], page 143, and [Mircea and Stefan, 1998],
table 2):

Udrop = 130
√

Dr (4.17)

2. The parameterization cited in [Seinfeld, 1985] (page 632):

Udrop = 9.58

[
1− exp

(
−

(
Dr

0.171× 10−2

)1.147
)]

(4.18)
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Figure 4.3: Evolution of the falling velocity with respect to the rain inten-
sity, for several parameterizations for velocity. The representative diameter
is computed with LDr = 1. The order (LUdrop) is consistent with this of
the references.

3. The parameterization given in [Seinfeld and Pandis, 1998] or in [Mircea et al., 2000]
that uses the droplet final velocity (to be computed by an algorithm
because outside the domain of the Stokes formula).

4. The parameterization in [Andronache, 2004]:

Udrop = 3.778 103 D0.67
r (4.19)

5. At last, in [Loosmore and Cederwall, 2004]:

Udrop = 4.854Dr exp(−195 10−3Dr) (4.20)

D is in meter in all these formulas. Comparisons are given in figure 4.3
with the parameterization LDr = 1 for the representative diameter.

Expression for the scavenging coefficient

Monodisperse case The volume dragged by a raindrop with a diameter
Dr is given by the following expression:

π

4
Dr

2 Udrop(Dr) (4.21)
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The collision volume or effective volume, that is to say the volume where
the contact is efficient for one time unit, takes also into account the aerosol
diameter dp and its falling velocity ugrav (in m.s−1):

π

4
(Dr + dp)

2 (Udrop(Dr)− ugrav(dp)) (4.22)

where the gravitational sedimentation velocity ugrav is given by the Stokes
formula:

ugrav =
dp

2 (ρp − ρair) g Cc

18µair
(4.23)

with ρp (in kg.m−3) the particle volumic mass, µair the air dynamic viscos-
ity (in Pa.s), g the gravity (in m.s−2) and Cc the corrective Cunningham
factor, meaning that slidings appear for small particles (' 1µm). If we do
not want to use tabulated values for Cc, the following expression could be
used [Seinfeld and Pandis, 1998]:

Cc = 1 +
2λair

dp

(
1.257 + 0.4 exp

(
−0.55

dp

λair

))
(4.24)

with the free mean path for air λair (in m):

λair =
2µair

P

(
8

π Rair T

)−1/2

(4.25)

Rair is the ideal gas constant for air (in J.K−1.kg−1) and T is the temper-
ature (in K).

This representation implies that every particle in the effective volume
is captured and then neglect the effects of the air movement resulting from
the fall of the raindrop which alters the particles trajectory. This effect
is parametrised by a collision efficiency E(Dr, dp), defined as the fraction
of particles with diameter dp, in the collision volume of a droplet with
diameter Dr, that are efficiency collected:

π

4
(Dr + dp)

2 (Udrop(Dr)− ugrav(dp))E(Dr, dp) (4.26)

Simplifications Two classical approximations allow to simplify the pre-
vious expression:

- Udrop(Dr) À ugrav(dp)

- (Dr + dp)2 ' D2
r
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p0 en mm/h
1 10 50

Dr en cm
0.0976 0.158 0.222

dp en µm

0.1 Udrop = 3.92 5.74 7.10
(Cc = 2.85) ugrav = 8.4× 10−7 8.4× 10−7 8.4× 10−7

1 Udrop = 3.92 5.74 7.10
(Cc = 1.164) ugrav = 3.4× 10−5 3.4× 10−5 3.4× 10−5

10 Udrop = 3.92 5.74 7.10
(Cc = 1.016) ugrav = 3.0× 10−3 3.0× 10−3 3.0× 10−3

Table 4.10: Computation of representative diameters and falling velocities.

For ρp = 1 g/cm3, g = 9.81 m.s−2 and µair ' 1.72 × 10−1 Pa.s, we obtain
for exemple the values in table 4.10 for Dr and Udrop, which allows to verify
the approximations.

If Nr is the total droplet density (in m−3), assumed monodisperse, we
finally have:

Λ(dp) =
π

4
Dr

2 Udrop(Dr) E(Dr, dp) Nr (4.27)

By definition, the rain intensity p0 may be written as:

p0 =
∫

0

∞π

6
D3

r Udrop(Dr) nr(Dr) dDr

that is to say for the monodisperse case:

p0 =
π

6
Dr

3 Udrop(Dr) Nr (4.28)

We finally have the classical expression:

Λ(dp) =
3
2

E(Dr, dp) p0

Dr
(4.29)

where p0 is in ISU (m/s).

Polydisperse case This frame may be applied to polydisperse popula-
tions of aerosol and droplets. Let us write respectively np(dp) and nr(Dr)
(in m−3.m−1) the number distribution for aerosols and for raindrops.
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The number of particles with a diameter in the range [dp, dp + ddp]
collected in a time unit by raidrops is given by:

np(dp) ddp

∫

0

∞π

4
(Dr + dp)2 (Udrop(Dr)− ugrav(dp))E(Dr, dp) nr(Dr) dDr

(4.30)
On the basis of approximations, we directly obtain for the scavenging

rate of the particles with diameter dp,
dnp(dp)

dt
= −Λ(dp)np(dp):

Λ(dp) =
∫

0

∞π

4
Dr

2 Udrop(Dr) E(Dr, dp) nr(Dr) dDr (4.31)

Parameterization of the collision efficiency

A keypoint of the parameterization is the parameterization of the collision
efficiency, defined as the ratio between the number of collisions between
water droplets and particles, and the number of particles in the covered
geometric volume.

E is equal to 1 if all particles are effectively captured but in practice
E ¿ 1. Measures shows that a collision results almost everytime in capture,
collisions are then rare.

It is necessary to take into account different phenomena to explain the
possible capture of a particle:

• brownian diffusion might place a particle on a droplet trajectory.

The hypothesis concerning the equivalence collision/capture and the
fact that brownian diffusion is more important for fine particles jus-
tifies that this process is in favour of the capture of small particles.

• Another phenomenon that privileges capture of bigger particles is
inertia. It could provoke collision by preventing particles to follow
streamlines around droplets. The last phenomenon is interception
that results from the contact of a particle following a streamline
around the droplet because of its size. The considerations about
inertia and interception could not be strictly dissociated from con-
siderations about particle density. Inertia actually concerns heavy
particles and interception big ones.

Globally, these two processes explain that scavenging is important for
small aerosols (typically diameter less than 0.01 µm) through brownian
diffusion and for the big aerosols (typically diameter higher than 2 µm)
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through inertia. Aerosols with intermediate diameters form what is usually
referred as the Greenfield Gap or scavenging gap, in the range [0.01; 2]µm,
and are weakly scavenged.

Note that experimentally, this scavenging default is less evident than
predicted by theory (see below the neglected effets).

The expression proposed in [Seinfeld and Pandis, 1998] after a dimen-
sional analysis and application of Buckingham’s theorem gives E as a func-
tion of five adimensioned numbers:

• Reynolds number of raindrop

Re =
Dr Udrop

2νair
(4.32)

where νair = µair/ρair is the air kinematic viscosity (in m2/s).

• Schmidt number of the captured particle:

Sc =
νair

DB
(4.33)

with DB the brownian diffusivity coefficient of the particle (in m2.s−1):

DB =
k T

3π µair dp
Cc (4.34)

where k is the Boltzmann’s constant (in J.K−1).

• Stokes number of the captured particle:

St = 2τ
Udrop − ugrav

Dr
(4.35)

with τ a characteristic relaxation time taken equal to ugrav/g, that is
to say:

τ =
(ρp − ρair) d2

p Cc

18µair
(4.36)

• the ratios between diameters (φ) and viscosities (ω):

φ =
dp

Dr
, ω =

µw

µair
(4.37)

with µw the viscosity of water.
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Figure 4.4: Contributions to the collision efficiency E(Dr, dp) for Dr =
0.1mm

The formula for E is then given by:

E =
4

ReSc

(
1 + 0.4Re1/2 Sc1/3 + 0.16 Re1/2 Sc1/2

)
+

4φ
(
ω−1 + [1 + 2Re1/2] φ

)
+

(
St− S∗

St− S∗ + 2/3

)3/2 (
ρp

ρw

)1/2 (4.38)

with the critical Schmidt number S?:

S∗ =
1.2 + 1/12 ln(1 + Re)

1 + ln(1 + Re)
(4.39)

The three terms respectively correspond to the terms of brownian dif-
fusion, interception and impaction. The distribution E(Dr, dp) is given for
a raindrop Dr = 0.1mm in figure 4.4.

The dependency of efficiency to the raindrop diameter is given in figure
4.5. The efficiency increases when diameter decreases. The amplitude of
the differences has to be compared to the spread of representative diameters
in figure 4.2.

Efficiency of scavenging a polydisperse aerosol population In [Mircea et al., 2000],
the polydisperse nature of aerosols and rain distribution are taken into
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Figure 4.5: Collision efficiencies E(Dr, dp) for Dr = 0.1mm, 0.5mm, 1mm
et 2mm.

account with lognormal distributions of aerosols. A parameterization is
proposed for Λ :

Λ = a + b p0 (4.40)

(a, b) vary following the type of the chosen aerosol distribution (rural, ur-
ban, marine): a ∈ [1.5810−2 − 1.98] and b ∈ [2.1710−3 − 3.19 10−1] (maxi-
mal values correspond to the urban case, and minimal values to the marine
case). It has to be noticed that:

1. The scavenging of a polydisperse aerosol population is greater of at
least one order of magnitude than the scavenging of a monodisperse
population;

2. the choice of the raindrop distribution is not very sensitive;

3. the scavenging in urban environment is greater of one order of mag-
nitude than the scavenging in “remote” environment”.

Notice that this affine parameterization is not classical (see below).

Justification of laws Λ = ApB
0 In [Mircea and Stefan, 1998], a review

of the different distribution laws for raindrops is given, with for instance
Γ distributions or the Marshall-Palmer distribution. It is notably demon-
strated that for a Γ distribution, if the collision efficiency is supposed to
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be a constant, then the scavenging coefficient integrated over the whole
distribution follows the law:

Λ ' Ap0
B (4.41)

with B depending of the coefficients of the Γ law and the parameterization
of the falling velocity (supposed to be parameterized as Udrop(Dr) = uDα

r ).
All calculations done, discerning the three rain types already presented

(table 4.9), the parameterisation becomes:

Λ '





[0.753− 0.875]E p
[0.78−0.86]
0 for violent rain

[1.91− 1.95]E p
[0.78−0.86]
0 for moderate rain

[20.56− 26.67] E p
[0.78−0.86]
0 for weak rain

(4.42)

with Λ in h−1 and E the collision efficiency supposed to be a constant. By
taking a value of the order of E ' 0.1, we obtain for minimum value for
violent rain Λ ' 2 10−5 p0.8

0 (in s−1) and for maximum value for weak rain
Λ ' 7.4 10−4 p0.8

0 (in s−1).

A similar approach is carried on in [Andronache, 2003] with an adapta-
tion of a model Λ = ApB

0 on the basis of polydisperse models for raindrops
(Marshall-Palmer) and the aerosol population. The results are given in
tables 4.11 and 4.12.

It is easy to obtain similar results that justify that type of parameter-
ization. Notice that with the variation range obtained for Dr in (4.16),
we directly have with Λ = 1.5E × p0/Dr and by taking into account the
conversion factor 10−3/3600 for p0:

Λ ' [0.43− 1.71] 10−3E p
[0.75−0.842]
0 (4.43)

For efficiencies E ∈ [0.1− 1], we obtain:

Λ ' [4.3 10−5 − 1.71 10−3] p[0.75−0.842]
0 (4.44)

4.2.3 Wet scavenging of aerosols: in-cloud

When they fall, raindrops aggregate cloud droplets, and suspended gas
and aerosols. This is the wet scavenging phenomenon. Inside a cloud,
pollutants (gas and particles) are almost absorbed by cloud droplets, so
that wet scavenging is reduced to their aggregation by raindrops.
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Table 4.11: Parameterizations obtained by adjustment on a theoretical
polydisperse model for rain and aerosols [Andronache, 2003]. Case with a
coarse fraction (more than 10 µm).

A B reference Aerosol
6.67 10−5 0.7 [Andronache, 2003] Urban
1.28 10−4 0.7 id. Remote Continental
1.39 10−4 0.7 id. Marine
1.28 10−4 0.7 id. Rural
1.89 10−4 0.7 id. Free Tropo.
9.44 10−5 0.7 id. Polar
2.44 10−4 0.7 id. Desert
2.22 10−4 0.7 id. Marine
8.33 10−5 0.7 id. Marine
1.94 10−4 0.7 id. Sand
1.00 10−4 [0.67-0.76] id. Exp.data
3.50 10−4 0.78 id. In-cloud

Table 4.12: Parameterizations obtained by adjustment on a theoretical
polydisperse model for rain and aerosols [Andronache, 2003]. Case of a
submicronic distribution.

A B reference aerosol type
2.33 10−7 0.59 [Sparmacher et al., 1993] Exp. (dp = 0.23)
3.14 10−7 0.60 id. Exp. (dp = 0.46)
2.56 10−7 0.94 id. Exp. (dp = 0.98)
1.72 10−7 0.61 id. Exp. (dp = 2.16)
6.90 10−6 0.92 [Julya, 1999] Exp. (radionuclides)
[2.36 10−7 − 1.4 10−6] [0.59-0.61] [Andronache, 2003] Marine
[2.78 10−8 − 3.89 10−8] 0.59 id. Marine
2.36 10−7 0.59 id. Alpes
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Giving a concentration of pollutant c, its evolution due to wet scaveng-
ing in clouds is governed by the equation:

∂c

∂t
(x, y, z, t) = −Λ(x, y, z)c(x, y, z, t) (4.45)

where Λ is the wet scavenging coefficient, expressed in seconds, and its
expression depends on the collision process between cloud and rain droplets.
For this reason it does not depend on the considered pollutant.

The integration of this equation between the initial (t0) and final (t1)
times is done analytically:

c(x, y, z, t1) = c(x, y, z, t0) exp[−Λ(x, y, z)(t1 − t0)] (4.46)

Below we present the two parameterizations used in Polair3D : one
is from the model CAMx ([ENVIRON, 2005]), and the other one from the
Multiscale Air Quality (CMAQ) ([Roselle and Binkowski, 1999]).

1. Parameterization from CAMx:

The volume covered by a falling raindrop per time unit is equal to:

V =
π

4
(Dr + dc)2Udrop (4.47)

where

• Dr the raindrop diameter, in meters, is given by the empirical
law ([Scott, 1978]) :

Dr = 9.0× 10−4p0.21
0 (4.48)

p0 is the precipitation rate (in mm/hr).

• dc is the diameter of cloud droplets, in meters.

• Udrop is the falling velocity of raindrops, in m.s−1, given by the
empirical law ([Scott, 1978]) :

Udrop = 3100 Dr (4.49)

The wet scavenging coefficient in clouds can be put under the form:

Λ = E
π

4
(dc + Dr)2UdropNr (4.50)

where
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• Nr is the numerical concentration (#.m−3) of raindrops, that
could be computed from the precipitation rate:

Nr =
2.8× 10−7p0

π(Dr)3Udrop/6
(4.51)

The number 2.8 × 10−7 takes into account the conversion of p0

from mm/hr in m/s.
• E represents the probability that a cloud droplet on the trajec-

tory of a raindrop is actually aggregated. The air fluxes created
by the fall of the raindrop decrease this probability to 0.9.

We generally admit that the diameter of a cloud droplet can be ne-
glected as compared to a raindrop diameter:

dc ¿ Dr =⇒ Λ =
π

4
(Dr)2UdropNr (4.52)

By replacing Nr by its expression (4.51) we obtain:

Λ = 4.2× 10−7 E p0

Dr
(4.53)

With E ' 0.9 and Dr given by (4.48), one gets :

Λ = 4.2× 10−4p0.79
0 (4.54)

2. Parameterization from CMAQ:

In this parameterization, the expression for the scavenging coefficient
is:

Λ = −1− e
− τcld

τwashout

τcld
(4.55)

where

• τcld, expressed in seconds, is equal to the 3D timestep of the
dispersion model if the cloud size exceeds the mesh dimensions,
and is equal to 1 hour otherwise,

• τwashout represents the time required for the volume of water to
precipitate to the ground.

τwashout =
WT ∆zcld

ρH2Op0
(4.56)

∆zcld is the cloud depth, WT is the liquid water content of the
cloud (kg/m3), and ρH2O the liquid water density.
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Figure 4.6: Washout.

Figure 4.6 illustrates the formula (4.56).

Let us justify equation (4.56). Giving a cloud volume V , the total
mass of water contained in the cloud is equal to WT V (kg). That
represents a water volume WT V/ρH2O. The duration τwashout, re-
quired for that volume to precipitate to the ground, depends on the
precipitation rate p0 (m.s−1) :

WT V

ρH2O
= τwashoutp0S (4.57)

where S is the surface at ground covered by the cloud. Assume that
the cloud volume is approximatively the product of this surface by
the cloud depth, we get:

V ' S∆zcld =⇒ WT ∆zcld

ρH2O
= τwashoutp0 (4.58)

4.2.4 Wet scavenging of a fog

In the case of a fog, diagnosed as a cloud whose first level is at ground, the
wet scavenging is parametrised following [Fahey, 2003] with a scavenging
coefficient given by:

Λ =
0.014L1.67 + 0.009L1.08d0

L ∗Hfog
(4.59)
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with L the average liquid water content and Hfog the height of the fog
column.

4.2.5 Dry deposition

Dry deposition is applied as a boundary condition for diffusion:

Kz∇c · n = E − vdepc (4.60)

with Kz the vertical turbulent fluxes, E the surfacic emission and vdep the
deposition velocity. n is the unit vector upward oriented.

Here, we do not take into account the resuspension terms.

Theoretical model for dry deposition velocity

The dry deposition velocity is expressed for particles as a function of the
dynamical and surface resistances:

vd = vg +
1

Ra + Rs
(4.61)

Resistance parameterizations to the deposition for particles are inspired
from those proposed by [Zhang et al., 2001].

Sedimentation velocity It expresses the conjugated effects of gravita-
tional settling and friction on a particle in the non excited air. The param-
eterization of the sedimentation velocity used here is limited to the Stokes
velocity.

Aerodynamic resistance The expression for aerodynamic resistance
used for particles is similar to the one used for gases.

Surface resistance The surface resistance Rs takes into account several
phenomena traducing the captation ability of the surface with respect to
particles:

Rs =
1

3u∗(EB + EIM + EINT )R1
(4.62)

with:

• u∗, the friction velocity (in m.s−1).

91



• EB represents the part of contact particle/surface induced by the
brownian diffusion. The tendency of this phenomenon is to equalize
the particle concentrations between reference height and surface.

EB =
νair

DB

−γ
(4.63)

with γ a parameter of the model [Zhang et al., 2001].

• EIM is the impact coefficient and traduces the deposition directly due
to the particles inertia:

EIM =
(

St

α + St

)2

(4.64)

with α a parameter of the model [Zhang et al., 2001] and St the
Stokes number defined in function of the terrain type:

St =

{
ugrav

u∗
g A for “rough” surfaces

ugrav
u∗2

g νair
for “smooth” surfaces

(4.65)

A is a parameter of the model called “characteristic radius of recep-
tors” (in m).

• EINT is the interception coefficient of the particles by the surface:

EINT =
1
2

(
dp

A

)2

(4.66)

.

• R1 is the corrector coefficient for the rebound and describes the pos-
sible rebound of a particle on the surface:

R1 = exp
(
−
√

St
)

(4.67)

with St the Stokes number defined above.

4.2.6 Wet scavenging for gases

For the gaseous phase, the wet below-cloud scavenging is parametrised by
Lwet(ci) = −Λi ci with ci the concentration of the chemical species i. The
coefficient Λi is detailed in [Sportisse and Du Bois, 2002].
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A specific point related to multiphase modeling corresponds to the esti-
mation of the raindrop pH for the computation of Henry law’s coefficients.

During the below-cloud scavenging, equilibrium concentrations of sol-
uble gaseous species can be significantly affected by the ions dissociation
during the dissolution in water. To take this ionisation process into ac-
count, effective Henry coefficients are computed giving the raindrops pH
for the following species: SO2, NH3, HNO3, HNO2, HCl.

pH is computed in the aqueous module. If this one is not called, pH is
taken constant and equal to 4, 16.

The dissociation of SO2 in water gives

SO2 + H2O
K1−−⇀↽−− H+ + HSO−

3

HSO−
3

K2−−⇀↽−− H+ + SO2−
3

with Ki the equilibrium constants.
The Henry’s effective coefficient for SO2 is

H∗
SO2

= HSO2

(
1 +

K1

[H+]
+

K1K2

[H+]2

)
(4.68)

The absorption of NH3 in water gives:

NH3 + H2O
K3−−⇀↽−− NH+

4 + OH−

The Henry’s effective coefficient for NH3 is

H∗
NH3

= HNH3

[
H+

] K3

Kw
(4.69)

After dissolution,

HNO3

K4−−⇀↽−− NO−
3 + H+

The Henry’s effective coefficient for HNO3 is

H∗
HNO3

= HHNO3

(
1 +

K4

[H+]

)
(4.70)

After dissolution,

HNO2

K5−−⇀↽−− NO−
2 + H+
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The Henry’s effective coefficient for HNO2 is

H∗
HNO2

= HHNO2

(
1 +

K5

[H+]

)
(4.71)

After dissolution,

HCl
K6−−⇀↽−− Cl− + H+

The Henry’s effective coefficient for HCl is

H∗
HCl = HHCl

(
1 +

K6

[H+]

)
(4.72)

The values of equilibrium constants K1 to K6 and their variations with
temperature are detailed in [Pruppacher and Klett, 1998] (page 749).

4.2.7 Emissions

Anthropogenic emissions

The data for emission of primary aerosols are usually given in total masses.
For example, the EMEP european emission inventory provides yearly quan-
tities for PM2.5 and PM10 (particles with diameter respectively less than
2.5 µm and 10 µm) or PM coarse (particles with diameter between 2.5 and
10 µm).

As our model needs a more precise information as input, these brute
data have to be temporally, chemically and granulometrically speciated. In
the EMEP report [Simpson et al., 2003], a parameterization for chemical
and granulometric speciation is given for PM2.5 and PM coarse.

• The PM coarse fraction is attributed to mineral dust.

• The PM2.5 fraction is first chemically speciated in three species: min-
eral dust (MD), primary organics aerosols (POA) and black carbon
(BC) by source sector or SNAP code (see table 4.13). Then each
species is distributed over two modes, the Aitken and the accumula-
tion modes (see table 4.14).

Finally, it remains to redistribute the quantities over the size discreti-
sation of the aerosol model. For the size-resolved model SIREAM, approx-
imation is made that each bin belongs to one mode, then the emissions
are equally reparted over each bin of the mode. Sensitivity tests show
that redistribution of emissions along the size distribution has not a great
influence as compared to other parameters.
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Source sector POA BC MD
S1: Power generation 33 33 33
S2: Non-industrial combustion 50 20 30
S3: Industrial combustion 33 33 33
S4: Production processes 0 20 80
S5: Extraction and distribution of fossil fuel 40 50 10
S6: Solvent and other product use 40 20 40
S7: Road transport 40 20 40
S8: Other mobile sources and machinery 40 20 40
S9: Waste treatment and disposal 10 60 30
S10: Agriculture 70 0 30

Table 4.13: Chemical speciation of primary PM emissions (in %).

Mode POA BC MD
Aitken: between 0.02 µm and 0.1 µm 15 15 0

Accumulation: between 0.1 µm and 2.5 µm 85 85 100

Table 4.14: Granulometric speciation of primary PM emissions (in %).

Sea-salt

Sea-salt aerosols are believed to be generated mostly by the evaporation of
sea spray produced by bursting bubbles during whitecap formations due to
surface wind.

Rate of sea-salt generation Two mechanisms are considered: indirect
generation by bubbles and direct generation by spumes. Following the Mon-
ahan parameterization ([Monahan et al., 1986] and [Gong and L.A., 1997]),
these two mechanisms may be modelled by the density functions dF0/dr
(indirect generation) and dF1/dr (direct generation) respectively

dF0

dr
= 1.373 U3.41

10 r−3
(
1 + 0.057 r1.05

)
101.19 e−B2

(4.73)

dF1

dr
=





0 r < 10 µm

8.60 10−6 e2.08 U10 r−2
10 µm ≤ r ≤ 75 µm

4.83 10−2 e2.08 U10 r−4
75 µm ≤ r ≤ 100 µm

8.60 106 e2.08 U10 r−8
r ≥ 100µm

(4.74)
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where r is the wet droplet radius and U10 is the wind velocity at 10m level
and B = (0.38− log r) /0.65.

The total density function

dF

dr
=

dF0

dr
+

dF1

dr
(4.75)

corresponds to the rate of sea-salt droplet generation per unit area of sea
surface, per increment of wet droplet radius (in particles m−2 s−1µm−1).

According to [Monahan et al., 1986] and [Gong and L.A., 1997], the pa-
rameterization of dF0/dr is valid only for radius in the range 0.8− 10µm.
Because, according to [Gong and L.A., 1997], dF1/dr generates too much
big sea-salt particles at high wind speeds compared to observations, it is
not taken into account here and only dF0/dr is considered. For radius
smaller than 0.8µm, the parameterization of [Martensson et al., 2003] may
be used, as done in [Foltescu et al., 2005], or a modified version of the Mon-
ahan parameterization ([Gong, 2003]). For radius larger than 10µm, the
parameterization of [Smith and Harrison, 1998], which models both direct
and indirect generation, may be used.

Generalisation The rate dF/dr80, given by the Monahan parameteriza-
tion, corresponds to a wet radius r80 at 80% humidity. The parameteriza-
tion needs to be generalised to relative humidities ranging between 0 and
100%, or to be expressed in terms of dry radius.

[Zhang et al., 2005] provides a generalisation of the Monahan param-
eterization to RH ranging between 45% and 99% based on the labora-
tory measurements of sea-salt particles by [Tang et al., 1997]. However,
[Lewis and Schwartz, 2006] shows that the generalisation of Zhang may not
be valid for seawater of salinity other than 35.

According to [Lewis and Schwartz, 2006], the wet radius r80 at 80%
humidity is related to the dry radius rd within about 1% as follows

r80 ≈ 2 rd. (4.76)

This relation can be checked using the empirical formula of [Gerber, 1985b]

r80 =

(
C1 rC2

d

C3 rC4
d − log 0.80

+ r3
d

)1/3

(4.77)

where rd and r80 are in centimeters, and for sea-salt aerosols C1 = 0.7674,
C2 = 3.079, C3 = 2.573 10−11 [1 + 0.004 (298− T )], where T is the temper-
ature in Kelvins, and C4 = −1.424. As shown in figure 4.7, the ratio r80/rd

varies between 1.97 and 2.1 in the size range of interest.
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Figure 4.7: Ratio of the wet diameter at 80% relative humidity over the
dry diameter (r80/rd) for dry diameters between 0.01µm and 10µm (the
wet diameter is computed using the Gerber formula).

By approximating r80 ≈ 2 rd, the rate of sea-salt generation, dF/drd,
may be deduced from the rate dF/dr80, given by the Monahan parameter-
ization for a wet radius r80, by

dF

drd
= C80

dF

dr80
(4.78)

with C80 = 2.
The dry rate of sea-salt generation for mass dFM/drd may be obtained

from the rate of sea-salt generation for number dF/drd

dFM

drd
=

dF

drd

4π

3
ρp r3 (4.79)

where the density of dry sea salt is taken equal to 2.165gcm−3 following
[Lewis and Schwartz, 2006] and [Seinfeld and Pandis, 1998].

Integration In Polair3D, because we work with the dry rather than the
wet aerosol distribution, the bounds of the different bins of the emitted
distribution are dry radius. Let us denote rd,i and rd,i+1 the bound radius
of the bin i of the dry aerosol distribution.
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The emitted mass of sea salt Ess between rd,i and rd,i+1 is computed
by integrating equation (4.79)

Ess =
∫ rd,i+1

rd,i

dFM

dr
dr =

4π

3
ρP

∫ rd,i+1

rd,i

r3
d

dF

drd
drd (4.80)

To integrate (4.80), the integral is written as function of dr80 = C80drd

Ess =
4π ρP

3 C3
80

∫ r80,i+1

r80,i

r3
80

dF

dr80
dr80 (4.81)

where r80,i = C80 rd,i and r80,i+1 = C80 rd,i+1.
The numerical integration between r80,i and r80,i+1 is done using the

Simpson’s rule. The interval [r80,i, r80,i+1] is first refined with 2N+1 points
aj (j = 0, ..., 2N) such that

aj = r80,i + (r80,i+1 − r80,i)
j

2N
.

The integral of equation (4.81) is then computed as
∫ r80,i+1

r80,i

r3
80

dF

dr80
dr =

h

3

(
a3

0

dF

dr80
(a0) + 4 a3

1

dF

dr80
(a1) + 2 a3

2

dF

dr80
(a2)+

4 a3
3

dF

dr80
(a3) + 2 a3

4

dF

dr80
(a4) + ... +

4 a3
2N−1

dF

dr80
(a2N−1) + a3

2N

dF

dr80
(a2N )

)
(4.82)

Finally, the dry mass of emitted sodium, chloride and sulfate by sea-salt
are computed as

ENa = Ess xNa

ECL = Ess xCl

ESO4 = Ess xSO4 (4.83)

where xNa, xCl and xSO4 are the mass fraction of sodium, chloride and sul-
fate in sea-salt, as given by [Zhang et al., 2005] and page 444 of [Seinfeld and Pandis, 1998]
(xNa = 30.61%, xCl = 55.14% and xSO4 = 7.68%).
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Conclusion and future works

This report has presented the development of two aerosol models, SIREAM
and MAM. Both models are based on state-of-the-science parameteriza-
tions and numerical algorithms. One novelty is that both models gather
the same parameterizations through the AtmoData library and only differ
by the discretization of aerosol distributions (sire-resolved approach versus
modal approach).

Many specific points have also been investigated:

• For parameterizations:

– parameterization and reduction of aqueous-phase chemistry;

– limitation in H+ c/e flux;

– parameterization of the aerosol wet diameter with optimized co-
efficients of a Gerber’s formula;

– parameterization of sea-salt emissions with effects of relative hu-
midity;

– benchmark of scavenging parameterizations;

– below-cloud scavenging of gas-phase species with pH effects;

– ...

• For numerics:

– numerical algorithms for aqueous-phase chemistry;

– modal merging and splitting for modal models;

– use of a fourth mode for modal models;

– hybrid algorithms for condensation/evaporation;

– new closure algorithms for lagrangian methods of c/e (redistri-
bution onto a fixed grid and interpolation);

– numerical time integration methods;

– ...

These models have been hosted by the 3D Chemistry-Transport Model
Polair3D. Model-to-data comparisons have been performed at regional
and continental scales ([Fahey et al., 2005, Hayami and al, 2006, Sartelet et al., 2006]).

A comprehensive sensitivity analysis with respect to many uncertain pa-
rameters and numerical algorithms has also been performed ([Sartelet and al, 2006,
Sartelet and Hayami, 2005, Tombette et al., 2005]).
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The models are developed under a Gnu/GPL licence and are download-
able from the website http://www.enpc.fr/cerea/polyphemus.

There are still many points to investigate.
The modeling of SVOC is a weakness of both models. An update of the

SOA module is planned.
Dry deposition does not take into account codeposition effects for NH3

and SO2. A new parameterization for dry deposition has to be developed.
Following previous works led with the Polyphemus system, studies

devoted to data assimilation of aerosols are also planned in near future.
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Appendix A

Update of the AtmoData
library

The following functions related to aerosol modeling have been added to the
AtmoData library ([Mallet and Sportisse, 2005]).

1. COMPUTE DYNAMIC VISCOSITY

This function computes the dynamic air viscosity with the Sutherland
law.

Inputs:

T : temperature [K].

Outputs:

µair: dynamic air viscosity ([kg/m/s]).

2. COMPUTE CC

This function computes the correction Cunningham factor for a par-
ticle of diameter dp.

Reference: Equation (4.24).

Inputs:

(dp)wet: wet aerosol diameter ([m]).
λair: air free mean path ([m]).

Outputs:

Cunningham factor ([]).
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3. COMPUTE VSTOKES

This subroutine computes the Stokes settling velocity for a particle.

Reference: Equation (4.23).

Inputs:

(dp)wet: wet aerosol diameter ([µm]).
ρp: aerosol density ([kg.m−3])
Cunningham factor ([]).
µair: dynamic air viscosity ([kg/m/s]).

Outputs:

vStokes: Stokes settling velocity ([m/s]).

4. COMPUTE CD

This function computes the drag coefficent as a function of the particle
Reynolds number.

Inputs:

Rep : particle Reynolds Number.

Outputs:

CD : drag coefficient ([]).

5. COMPUTE AIR FREE MEAN PATH

This function computes the free mean path for air molecules on the
basis of thermodynamic variables. It also returns dynamic viscosity.

Reference: Equation (4.25).

Inputs:

T : temperature [K]
P : pressure ([Pa]).

Outputs:

λair: air free mean path ([µm]).
µair: dynamic air viscosity ([kg/m/s]).

6. COMPUTE GRAVITATIONAL SETTLING

This routine computes the gravitational settling velocity. It also com-
putes the mean air free path.

Reference: Equation (4.8).
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Inputs:

I Stokes: a flag equal to 0 if the Stokes velocity is computed, 1 oth-
erwise.
T : temperature ([K]).
P : pressure ([Pa]).
ρp: aerosol density ([kg.m−3]).
(dp)wet: wet aerosol diameter ([m]).

Outputs:

vg: gravitational settling velocity ([m/s]).
λair: air free mean path ([m]).

7. COMPUTE BIDISPERSE COAGULATION KERNEL

This subroutine computes coagulation kernels for bidispersed aerosols.

Reference: section 1.2.1.

Inputs:

T : temperature [K]
λair: air free mean path ([µm]).
dp1: diameter of the first coagulating particle ([µm]).
dp2: diameter of the second coagulating particle ([µm]).
mp1: mass of the first coagulating particle ([µg]).
mp2: mass of the second coagulating particle ([µg]).

Outputs:

K12 : coagulation kernel ([m3.s−1]).

8. COMPUTE COLLISION INTEGRAL

This routine computes the collision integral for gas-phase diffusion,
based on Lennard-Jones potential. It is a dimensionless function of
temperature and is tabulated in (Hirschelder, 1954).

Inputs:

kbT/ε12: with kb the Boltzmann constant, T the temperature, and
ε12 the Lennard-Jones molecular interaction parameter.

Outputs:

Ω: collision integral.

9. COMPUTE CONDENSATION COEFFFICIENT
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This subroutine computes the condensation/evaporation kernel for
one given semivolatile species. There are three regimes according to
the Knudsen number.

Reference: Equation (1.15).

Inputs:

Dg: gas phase diffusion coefficient ([m2.s−1]).
c̄: quadratic mean velocity ([m.s−1]).
α: gas-phase accomodation coefficient ([]).
(dp)wet: wet aerosol diameter ([µm]).

Outputs:

Condensation/evaporation kernel coefficient ([m3.s−1]).

10. COMPUTE GAS DIFFUSIVITY

This subroutine computes the gas-phase diffusion coefficients for a set
of species.

Inputs:

N : number of gases.
P : pressure ([Pa]).
T : temperature ([K]).
{σi}i=1,N : aerosol fixed surface tension ([N.m−1]).
{σi}i=1,N : collision factor.
{Mi}i=1,N : molar mass ([µg.mol−1]).

Outputs:

{Di
g}i=1,N : gas-phase diffusivity ([m2.s−1]).

11. COMPUTE GERBER

This routine computes the wet aerosol diameter as a function of the
kind of aerosols, its dry diameter, temperature and humidity accord-
ing to a Gerber’s formula with optimized parameters (fitted to ISOR-
ROPIA computations).

Reference: Equation (4.1).

Inputs:

RH: relative humidity ([%]).
T : temperature ([K]).
(dp)dry: dry aerosol diameter ([µm]).
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Outputs:

(dp)wet: wet aerosol diameter ([µm]).

12. COMPUTE KELVIN COEFFICIENT

This subroutine computes the correction factor due to Kelvin effect
for a set of N given species. The factor is limited.

Reference: Equation (1.17).

Inputs:

N : number of species.
{Mi}i=1,N : molar mass ([µg.mol−1]).
(dp)wet: wet aerosol diameter ([µm]).
{σi}i=1,N : aerosol fixed surface tension ([N.m−1]).
T : temperature ([K]).
ρp: aerosol density ([µg.m−3]).

Outputs:

η: Kelvin coefficient ([]).

13. COMPUTE QUADRATIC MEAN VELOCITY

This subroutine computes the quadratic mean molecular velocity for
a set of N volatile species.

Reference: Equation (1.11).

Inputs:

N : number of species.
T : temperature ([K]).
{Mi}i=1,N : molar mass ([µg.mol−1]).

Outputs:

{c̄i}i=1,N : quadratic mean velocity ([m.s−1]).

14. COMPUTE RELATIVE HUMIDITY

This routine computes the relative humidity.

Inputs:

T : temperature ([K]).
P : pressure ([Pa]).
qs : specific humidity ((mwater/(mwater + mdryair)).

Outputs:
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RH: relative humidity ([0-1]).

15. COMPUTE SOA SATURATION CONCENTRATION

This subroutine computes the saturation concentration for a set of
SVOCs at a given temperature. The reference temperature is 298 K.

Reference: Equations (1.43) and (1.40).

Inputs:

N : number of species.
{psat

i (298K)}i=1,N : saturation vapor pressure at 298 K ([Pa]).
{(∆Hvap)i}i=1,N : enthalpy of vaporisation ([J.mol−1]).
{Mi}i=1,N : molar mass ([µg.mol−1]).
T : temperature ([K]).

Outputs:

{qsat
i }i=1,N : saturation concentration at T ([µg.m−3]).

16. COMPUTE BINARY NUCLEATION KERNEL

This subroutine computes the binary nucleation rate H2SO4-H2O on
the basis of the parameterization [Vehkamäki et al., 2002].

Reference: section 1.2.3.

Inputs:

RH : relative humidity ([0-1]).
T : temperature ([K]).
[H2SO4]: gas H2SO4 concentration ([molec.cm−3]).

Outputs:

J0 : nucleation rate ([part.cm−3.s−1]).
nnucl : number of molecules in the critical cluster size ([]).
x? : molar fraction of H2SO4 in the nucleated aerosol ([]).
(dp)nucl : nucleation diameter ([nm]).

17. COMPUTE TERNARY NUCLEATION

This subroutine computes a ternary nucleation rate on the basis of
the parameterization proposed in [Napari et al., 2002] for the H2SO4-
NH3-H2O system.

Reference: section 1.2.3.

Inputs:
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RH : relative humidity ([0-1]).
T : temperature ([K]).
[H2SO4]: gas H2SO4 concentration ([molec.cm−3]).
[NH3]: gas NH3 concentration ([ppt]).

Outputs:

J0 : nucleation rate ([part.cm−3.s−1]).
nH2SO4

: number of H2SO4 molecules in the critical cluster size ([]).
nNH3

: number of NH3 molecules in the critical cluster size ([]).
(dp)nucl : nucleation diameter ([nm]).
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