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Preparing the Session

Extracting the archive creates a directory assimilation/ in polyphemus-sessions/, which
has also been created if necessary. Place the source Polyphemus-1.3 in polyphemus-sessions/

also.

Introduction

In Polyphemus, data assimilation algorithms are implemented as drivers independent from the
models. Actually each driver expects a few methods in the model interface. In the base driver,
used for forward simulations without assimilation, the main method (BaseDriver::Run, see
driver/BaseDriver.cxx) reads

/*** Initializations ***/

Model.Init();

OutputSaver.Init(Model);

/*** Time loop ***/

for (int i = 0; i < Model.GetNt(); i++)

{

if (option_display["show_iterations"])

cout << "Performing iteration #" << i << endl;

if (this->option_display["show_date"])

cout << "Current date: " <<

this->Model.GetCurrentDate().GetDate("%y-%m-%d %h:%i") << endl;

Model.InitStep();

OutputSaver.InitStep(Model);

Model.Forward();

OutputSaver.Save(Model);

}

The main calls are Model.Init() for initialization (reading configuration and memory
allocation), Model.InitStep() for initialization at each timestep (reading input data) and
Model.Forward (time integration over one timestep).

Now assume that observations are read in the driver and that a method allows to modify
model concentrations. In driver/OptimalInterpolationDriver.cxx, the following lines are
added in the main time loop:

// Retrieves observations.

this->ObsManager.SetDate(this->Model.GetCurrentDate());
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if (this->ObsManager.IsAvailable())

{

cout << "Performing optimal interpolation at date ["

<< this->Model.GetCurrentDate().GetDate("%y-%m-%d %h:%i")

<< "]...";

cout.flush();

this->Model.GetState(state_vector);

Analyze(state_vector);

this->Model.SetState(state_vector);

this->OutputSaver.SetGroup("analysis");

this->OutputSaver.Save(this->Model);

cout << " done." << endl;

}

The key methods are this->Model.GetState to retrieve the state vector in the model (con-
centrations, maybe emissions or whatsoever) and this->Model.SetState to replace the fore-
casted state with the analyzed state.

A few other methods in the model are required by the driver. Eulerian models
Castor and Polair3D do not have these methods in their base versions. Hence de-
rived versions of them (C++ inheritance) add the required methods. In directory
include/models/, Polair3DChemistry is derived into Polair3DChemistryAssimConc in
order to implement GetState, SetState, GetState ccl (adjoint variable), SetState ccl,
BackgroundErrorCovariance, ModelErrorCovariance and a few other methods.

All drivers are in directory driver/. They implement

• the optimal interpolation algorithm (Section 2),

• Kalman filters (ensemble – Section 3 – and RRSQRT – Section 5),

• 4D-Var assimilation (Section 4).

1 Test Case

1.1 Introduction

The test case is a simulation with RACM (72 chemical species, with ozone, O
3
, among targets)

over Europe from 1st July 2001 at 00:00 UT to 2nd July at 23:00 UT. There is enough data
to extend the simulation period up to 10 days. In order to speed up the computations, a very
coarse mesh is used: the horizontal resolution is 2◦ with 11 cells along latitude and 16 cells along
longitude, and there are 3 vertical levels (up to 1200 m). This is enough to reproduce the main
physical phenomena and to test the assimilation algorithms. The domain and its discretization
is shown in Figure 1.
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Figure 1: Horizontal discretization for the reference simulation. The circles show the loca-
tions of EMEP monitoring stations, and the disc shows the location of the monitoring station
Montandon.

1.2 Main Configuration File

The configuration files are in assimilation/config/. Move to this directory. All commands

should be launched from this directory. Open polair3d.cfg. It contains several sections:

• [domain];

• [data assimilation]: data assimilation parameters shared by all or several algorithms.

• [EnKF]: options for ensemble Kalman filter;

• [RRSQRT]: options for reduced rank square root Kalman filter;

• [4DVar]: options for variational assimilation;

• [optimizer]: options for the minimizer (in 4D-Var);

• [display], [options] and [data];

• [output]: note Configuration file is set to polair3d.cfg, hence output savers config-
uration is put in polair3d.cfg too;

• [state]: defines the state vector in the assimilation algorithm;

• [observation management]: path to observations description;

• [perturbation management]: path to perturbations description;

• [save]: typical output saver configuration;
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• sections [@save]: you can insert any section whose name is not expected by the code, and
the code will ignore it; here, sections [@save] are therefore skipped – rename them into
[save] in order to activate them;

• [adjoint]: options about adjoint management.

Further details are available primarily in Polyphemus user’s guide and in next sections.

1.3 Simulation and Observations

Launch the reference simulation and display an ozone map on 1st July at 10:00 UT. The com-
mand is ../../Polyphemus-1.3/driver/polair3d polair3d.cfg. You should get the map in
Figure 2. You may use getm and getd with config/disp.cfg.
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Figure 2: Ozone map of the reference simulation on 1st July at 10:00 UT.

Comparison with observations is performed with AtmoPy. The file config/score.py shows
an example. Launch run -i score in a IPython shell (launched in assimilation/config/.

Browse score.py. In this program, the main variables are

• sim3d: concentration field (same as sim3d = getd("disp.cfg"));

• sim: list (indexed by 87 monitoring stations) of hourly simulated concentrations at moni-
toring stations – sim[i] is therefore a vector of simulated concentrations at station #i;

• obs: list (indexed by 87 monitoring stations) of hourly measured concentrations at moni-
toring stations – obs has the same structure as sim;

• rmse: root mean square error as function of time (hours).

Compute the root mean square error (RMSE) over the whole simulation period (two days)
using ensemble.collect. Help about ensemble.collect may be found in AtmoPy documenta-
tion (http://cerea.enpc.fr/polyphemus/doc/atmopy/index.html, module ensemble.combine)
or in IPython with command help ensemble.collect.
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Display observations and simulated concentrations at Montandon, France. Use sim and obs

in which Montandon is the first station and command atmopy.display.plot. You should
get Figure 3. Note that Montandon is in cell (j = 6, i = 8). We chose not to interpolate
concentrations at the station; hence concentrations at Montandon are the same as concentrations
in cell (6, 8).
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Figure 3: Ozone concentrations at Montandon (EMEP station in France).

2 Optimal Interpolation

2.1 Introduction

Optimal interpolation (OI) improves the state vector c each time a new vector o of observations
is available:

c = cb + PHT (HPHT + R)−1(o − Hcb) (1)

where cb is the background value of the state vector, H is the observation operator that maps
the state vector to the observation space, R is the covariance matrix of observation errors and
P is the covariance matrix of background error.

In this session, hourly ozone measurements from the EMEP network are assimilated.

The implementation of the algorithm may be found in
../../Polyphemus-1.3/driver/OptimalInterpolationDriver.cxx.

From a technical point of view, data assimilation involves (1) a model with the suit-
able interface, (2) an observation manager, (3) a driver that gathers both and implements
the assimilation algorithm. The model here derives from Polair3DChemistry and is called
Polair3DChemistryAssimConc. This derived model implements a few additional methods
needed for data assimilation with concentrations as state variable. The observation man-
ager may be GroundObservationManager or SimObservationManager. In this session, only
GroundObservationManager is used.
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Consequently, in ../../Polyphemus-1.3/driver/polair3d-oi.cpp, the driver is declared
this way:

OptimalInterpolationDriver<real, ClassModel,

BaseOutputSaver<real, ClassModel>,

GroundObservationManager<real> >

Driver(argv[1]);

2.2 Configuration

The covariance matrix of background error is either diagonal or in Balgovind form. In the latter
option, the error covariance between two points depends on the distance r between these two
points:

f(r) =
(

1 +
r

L

)

exp
(

−
r

L

)

v (2)

where L is a characteristic length (Balgovind scale background) and v is a variance
(Background error variance). In the configuration, section [data assimilation] describes
error statistics. Refer to the user’s guide about Polair3DChemistryAssimConc for further de-
tails.

The configuration of Polair3DChemistryAssimConc includes the section [state] which de-
scribes the state variables for the assimilation procedure.

The observation manager GroundObservationManager is configured in observation.cfg.

2.3 Experiment

It is advocated to save the results of the reference simulation, otherwise they will
be replaced with the new results (in directory results/). For instance, execute cp

../results/O3.bin ../results/save/O3-ref.bin. Later, you may reload the results with
run score ../results/save/O3-ref.bin.

Launch the assimilation experiment. The command is
../../Polyphemus-1.3/driver/polair3d-oi polair3d.cfg. Estimate the performances
of the new simulation. In IPython, launch the command run score.

In polair3d.cfg, rename the first two sections [@save] into [save]. This will add the saver
unit of type domain assimilation and domain prediction (entry Type) which saves analyzed
and predicted concentrations and their dates. Display the analyzed and predicted concentrations.

In order to check the algorithm behavior, assimilate only observations from Montandon.
Since Montandon is the first station, we select it if you set Nstation to 1 in observation.cfg.
Compare two simulations with Montandon observations solely assimilated and with different
Balgovind parameters.

3 Ensemble Kalman Filter

3.1 Introduction

Ensemble Kalman filter (EnKF) differs with optimal interpolation in that the error covariance
matrix is flow-dependent and approximated by ensemble statistics. The model applies to the
r−member ensemble {ci, i = 1, . . . , r}, and produces forecast {cf

i , i = 1, . . . , r}. Whenever
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observations are available, each ensemble member c
f
i is updated according to the OI formula

(1). The statistics of the updated ensemble {ca
i , i = 1, . . . , r} gives the estimation of model

status conditioned to observations. The forecast error covariance matrix P f is approximated by

P f =
1

r − 1

r∑

i=1

(

c
f
i − c̄f

) (

c
f
i − c̄f

)T

(3)

where c̄f is the ensemble mean. After the update, the estimated error covariance matrix P a is
approximated by

P a =
1

r − 1

r∑

i=1

(ca
i − c̄a) (ca

i − c̄a)T (4)

The implementation of the algorithm may be found in
../../Polyphemus-1.3/driver/EnKFDriver.cxx.

3.2 Configuration

The configurations for Polair3DChemistryAssimConc and GroundObservationManager are sim-
ilar to those of OI. In polair3d.cfg, the ensemble number r can be modified in section [EnKF].
The observations in the update formula can be perturbed to preserve consistent statistics.

The ensemble is generated by perturbation of fields defined in perturbation.cfg.

3.3 Experiment

The experiment settings are similar to those of OI. Launch the assimilation experiment.
The command is ../../Polyphemus-1.3/driver/polair3d-enkf polair3d.cfg. In IPython,
launch the command run score to estimate the performances of the new simulation.

In polair3d.cfg, rename the third section [@save] into [save]. This will add the saver
unit of type domain ensemble which saves ensemble forecast during assimilation. Program
load ensemble.py is provided to load ensemble date. Browse the program. The main vari-
able is ens; it stores concentrations of all ensemble members. Display concentrations of
all members at Montandon. Analyze the spatial distribution of uncertainties. You may use
atmopy.stat.spatial distribution (refer to user’s guide).

Try with other fields perturbations. Evaluate the impact of the random-generator seed.

4 4D-Var

4.1 Introduction

In 4DVar, the optimal initial condition is obtained by minimizing a cost function,

J(c) =
1

2
(c − cb)T B−1(c − cb)

︸ ︷︷ ︸

Jb

+
1

2

N∑

t=0

Jot

︷ ︸︸ ︷

(ot − Ht(ct))
T

R−1

t (ot − Ht(ct))

︸ ︷︷ ︸

Jo

(5)

under the constraint ct = M0→t(c) = Mt−1→t . . . M0→1c – where Mt−1→t denotes integrations of
the underlying chemistry-transport model. The gradient is calculated with the adjoint model.
Based on the optimal initial condition, the assimilated concentrations are simulated from time
step 0 to N . Further integrations (after time step N) provide a subsequent forecast. Note that
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in this version, only diagonal B is supported. The implementation of the algorithm may be
found in FourDimVarDriver.cxx.

4.2 Configuration and Experiments

The configuration and experiment setting are similar to those of EnKF. The tuning parameters
for 4DVar can be adjusted in polair3d.cfg. Launch the assimilation experiment. The command
is ../../Polyphemus-1.3/driver/polair3d-4dvar polair3d.cfg. In IPython, launch the
command run score to estimate the performances of the new simulation. Display concentrations
at Montandon.

Add the second model layer in the state vector and compare with previous results.

5 Reduced-Rank Kalman Filter

5.1 Introduction

Reduced-rank square root Kalman filter (RRSQRT) uses a low-rank representation LLT of
error covariances matrix P . L = [l1, . . . , lq] is the mode matrix whose columns (modes) are the
dominant directions of the forecast error. The modes can also be interpreted as bases for how
the true states might differ from mean state. The evolution of a mode can thus be approximated
by the differences of the forecasts based on the mean state and its perturbation by this mode,
that is,

lit = Mt−1→t(c̄t−1 + lit−1) − Mt−1→t(c̄t−1) (6)

where t−1, t are consecutive time index. Note that in extended Kalman filter, the forecast error
covariance matrix is calculated by

LtL
T
t = Pt = MPt−1M

T + Qt−1 =

[

MLt−1 Q
1

2

t−1

] [

MLt−1 Q
1

2

t−1

]T

(7)

where M is the tangent linear model of Mt−1→t, Q
1

2

t−1
is the square root of model error covariance

matrix. We do not use tangent linear model, but employ formula (6) to simulate MLt−1. Q
1

2

t−1

is obtained by perturbing fields as in the EnKF implementation. The update formula for the
mode matrix can be sketched as La

t = LtΠ. where Π is the square root of I − KH, I is the
identity matrix, K is the Kalman gain calculated from Lt, and H is the linearized observation
operator. Implementation details can be found in ../../Polyphemus-1.3/RRSQRTDriver.cxx.

5.2 Configuration and Experiment

The configuration and experiment setting are similar to those of EnKF. The tuning parameters
for RRSQRT can be adjusted in polair3d.cfg (section (RRSQRT]. Launch the assimilation ex-
periment. The command is ../../Polyphemus-1.3/driver/polair3d-rrsqrt polair3d.cfg.
In IPython, launch the command run score to estimate the performances of the new simulation.

6 Optional Questions

Try to use the drivers AdjointDriver and GradientDriver.
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In the previous questions, the assimilation is performed over the first day and prediction
occurs the second day. Assimilate over the first two days and predict for the third day. Compare
with results where assimilation is performed only over the second day.
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