
Local scale

Polyphemus Training Session

27 March 2007

About

Purpose: Local scale simulations: advanced methods.

Author: Irène Korsakissok, Irene.korsakissok@cerea.enpc.fr

Polyphemus version: 2007-03-27

Location: http://www.enpc.fr/cerea/polyphemus/sessions.html

Contents

Introduction 2

1 Comparison to experiments: Prairie Grass 2
1.1 Description . 2
1.2 Data files . 3

1.2.1 Experiments data file . 3
1.2.2 Station coordinates file . 4
1.2.3 Experiments results file . 4

1.3 Creating configuration files . 5
1.4 Simulation and visualization . 5
1.5 Changing Sigma Parameterization . 7
1.6 Comparison to observations: statistical results . 9

2 Plume-in-Grid Model: application to Chernobyl 11
2.1 Description . 11
2.2 Chernobyl with Eulerian model . 11

2.2.1 Domain . 11
2.2.2 Preprocessing . 12
2.2.3 Simulation . 13

2.3 Chernobyl with Plume in Grid model . 14
2.3.1 Configuration files . 14

3 Water liquid content diagnosis: Noroxo case 16
3.1 Description . 16
3.2 Preprocessing . 17

3.2.1 Ground data . 17
3.2.2 Emissions . 17
3.2.3 Simulation . 17

1

3.2.4 Liquid water content diagnosis. 18
3.2.5 Simulation with Gaussian model. 19

Introduction

The aim of this training session is to use advanced methods related to local scale. The first part
consists in comparing results obtained with the Gaussian plume model to experiments, using
the Prairie Grass data. It allows to compare different parameterizations to compute standard
deviations, and to have a glimpse on the method used to do the full comparison. In the second
part, a simulation is run with a Plume in Grid model, that is, a Gaussian puff model embedded
into an Eulerian model. So this part will also allow the user to see how to run simulations with
an Eulerian model. Finally, the part about liquid water content diagnosis consists in running
simulations at local scale, both with an Eulerian model for local scale and with a Gaussian
plume model, and to use postprocessing program to diagnose the liquid water content in the
resulting concentration field.
All three parts are completely independant, so you may choose what is interesting for you,
depending on what your use of Polyphemus will be after the training session.

1 Comparison to experiments: Prairie Grass

1.1 Description

In this part, comparisons to the Prairie Grass experiments will be made. The Prairie Grass
experiment has become a standard database on which parameterizations have been fitted and
that has been used for many models evaluation. The experiment took place in O’Neil, Nebraska,
during summer 1956. The site was a flat terrain of short cut grass. A continuous plume of SO2
was released, without plume rise, near the ground (at 0.46m). Measurements where taken on
five arcs at 50, 100, 200, 400 and 800m from the source (see figure 1). There were nearly 70
trials. 43 of them will be tested here.

The aim of this part is, first, to have a glimpse of the different parameterizations for stan-
dard deviations and of their performances, and also to use some post-processing methods for
comparison to observations. It will also permit to see how to save concentrations at given points
instead of a whole domain, to make accurate comparisons.

The directory ∼/polyphemus-sessions/gaussian-advanced/prairie grass/ contains:

• A subdirectory config/ which holds all the configuration files used for the simulation.

• A subdirectory data/ which holds files containing all necessary information about Prairie
Grass experiment setup and observed concentrations.

• A subdirectory results/ to hold the simulation results. There are already the results for
all simulations and experiments:

results-briggs contains the simulation results with Briggs parameterization.

results-doury contains the simulation results with Doury parameterization.

results-similarity contains the simulation results with similarity theory parameteri-
zation.

2

534.4 534.6 534.8 535.0 535.2 535.4 535.6 535.8 536.0

Abscissa (kilometers)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
rd

in
a
te

 (
ki

lo
m

e
te

rs
)

+4.7044e3 Station positions

SOURCE
ARC050
ARC100
ARC200
ARC400
ARC800

Figure 1: Position of measurement stations in the prairie grass field.

results-exp contains the experimental results.

Note that each simulation results file is named sim-results-pg**.bin, where ** stands for
the experiment ID, which ranges between 1 and 70. As only 43 trials have been tested here,
not all IDs can be seen. The experiment ID is important because it can be used to check the
corresponding data in the data files.

1.2 Data files

All necessary information are written in three files. They are located in:
∼/polyphemus-sessions/gaussian-advanced/prairie grass/data.

1.2.1 Experiments data file

The file exp-data.txt contains data about experimental setup. Each line corresponds to one
experiment and contains the following information:

• Experiment ID number

• Experiment date (GMT) in format YYYMMDDHHMMSS.

• Source rate (mg·s−1).

• Stability class (A to F).

• Wind speed (m·s−1).

• Wind angle (◦ from east).

3

This looks like:

Number of experiments: 44

Experiment Date Source rate Stability c Wind speed Wind angle

Experiment 7 19560710200000 89900.0 B 4.19 82.0

Experiment 8 19560710230000 91100.0 C 4.85 86.0

Experiment 9 19560711160000 92000.0 C 6.88 66.0

The file exp-data-sim.txt contains more meteorological data, needed to compute standard
deviations with similarity theory.

1.2.2 Station coordinates file

The file station coord.txt contains the coordinates of all measurement stations. A station
is identified first by the arc it belongs to: ”ARC050” for the arc which is 50 meters from the
source, then ”ARC100”, ”ARC200”, ”ARC400” and ”ARC800”. Then, by the station number
along this arc. Each arc contains 91 stations, except the 800 m arc which contains 181 points.
All station coordinates are listed in the station coordinates file, one station per line. Each line
contains the station coordinates (z, then y, then x) in meters. The first 91 correspond to the
stations at the 50 meters arc, and so on. This looks like:

1.5 4704427.0 535150.0

1.5 4704428.7 535150.0

1.5 4704430.5 535150.1

First line corresponds to station ”ARC050 1”, the second to station ”ARC050 2” and so on.

1.2.3 Experiments results file

The file exp-results.txt contains measured concentrations. Each experiment corresponds to
a section. Inside this section, concentrations are listed for all stations. This looks like:

[Experiment 7]

ARC050 1 0.000

ARC050 2 0.000

ARC050 3 0.001

[Experiment 8]

ARC050 1 0.000

ARC050 2 0.002

4

ARC050 3 0.002

1.3 Creating configuration files

The aim of this part is to run the Prairie Grass experiment of ID 24. Of course, there is a script
to launch automatically all 43 simulations, but the aim here is to provide an example.

The directory ∼/polyphemus-sessions/gaussian-advanced/prairie grass/config/config-base

contains all configuration files, where information specific to each experiment have been replaced
by a string. For example, in plume.cfg, the simulation starting date has been replace by %date.
It has to be replaced by the date of the experiment.

First, copy all configuration files that are currently in config/config-base in the directory
config. Then, replace all data in form %string by the corresponding value for experiment
24. You also have to change the saver file, in order to save concentrations at the list of points
corresponding to the stations instead of saving all the domain.

For information about how to modify a saver configuration file to save a list of points, see
Polyphemus user’s Guide, part Drivers/Output savers/SaverUnitPoint.

1.4 Simulation and visualization

Now, run the simulation with Briggs parameterization. Use get diff float to compare your
results file with the one contained in subdirectory results-briggs and make sure you have ob-
tained the same results.

Note that the size of your file corresponds to Nt × Npoint where Npoint is the number of
points where concentrations have been saved. This corresponds to the total number of stations,
that is, 599.

Visualize concentration profiles at different arcs and to compare it to experimental results.
To do that, launch IPython and import the modules needed to display the results.

As the concentration field is not a 4D field, getd does not work. You have to use the com-
mand fromfile(filename, ’type’) which allows you to import data contained in a binary file
named ”filename” into an array. Data type is ’d’ for double, ’f’ for float, and ’i’ for int.

Create an array named ”concentration sim” which holds the concentrations from your simu-
lation. Do the same to create an array ”concentration exp” with the experimental results. Check
the shape of your arrays. Note that experimental data are in double precision.

>> concentration_sim=fromfile("sim-results-pg24.bin", ’f’)

>> concentration_sim.shape

(599,)

5

To plot concentrations, use the command plot. To plot concentrations on each arc, you have
to use only the corresponding part of the concentration array: plot(concentration sim[i:j])

where i is the index of the first arc station and j is the index of the first station on next arc.
This command will display values of concentration sim from index i to index j-1.

Display concentrations for the first arc, for simulation and experiments. Add a legend. You
should obtain figure 2.

>> plot(concentration_sim[0:91], ’g-’)

>> plot(concentration_exp[0:91], ’b+’)

>> legend(["simulation", "experiments"])

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160
simulation
experiments

Figure 2: Concentration profile for Prairie Grass experiment 24, 50 meters from source.

Display profiles for the other arcs.

6

1.5 Changing Sigma Parameterization

There are three parameterizations currently available to compute the standard deviations:

• Briggs parameterization

• Doury parameterization

• parameterization based on similarity theory

Two of them (Briggs and Doury) are based on a discrete description of the boundary layer,
and they only need a few meteorological data. The third is a more advanced parameteriza-
tion based on similarity theory, that is, on a description of the boundary layer with Monin-
Obukhov length, friction velocity and boundary layer height. Hence, it can be more pre-
cise but it is necessary to have more meteorological input data. In Polyphemus, the file
∼/polyphemus-sessions/Polyphemus-1.1/include/models/BriggsFormula.hxx contains all
functions to compute standard deviations in different cases. Hence, if another parameterization
has to be added, it can be easily done by adding one or more functions in this file, and by
modifying the model (GaussianPlume or GaussianPuff) to call the corresponding function.

Briggs parameterization is based on stability classes. There are two sets of formulae: one for
rural environment and the other for urban environment. As this set of formulae has been fitted
on Prairie Grass experiment, it gives very good results. Here is an example of the functions you
can see in file BriggsFormula.hxx to compute σy with Briggs parameterization in rural cases.

//! Computes horizontal diffusion parameter over rural area.

/*! It uses Briggs’ dispersion parameterizations for open country with

Pasquill stability classes.

\param distance distance downwind of the source (m).

\param stability Pasquill stability classes in [0, 5].

\return The horizontal plume-dispersion parameter (m).

*/

template<class T>

T ComputeRuralPlumeHorizontalSigma(T distance, int stability)

{

if (stability == 0)

return 0.22 * distance / sqrt(1. + 1.e-4 * distance);

else if (stability == 1)

return 0.16 * distance / sqrt(1. + 1.e-4 * distance);

else if (stability == 2)

return 0.11 * distance / sqrt(1. + 1.e-4 * distance);

else if (stability == 3)

return 0.08 * distance / sqrt(1. + 1.e-4 * distance);

else if (stability == 4)

return 0.06 * distance / sqrt(1. + 1.e-4 * distance);

else if (stability == 5)

return 0.04 * distance / sqrt(1. + 1.e-4 * distance);

else

throw string("Stability index should be in [0, 5], but ")

7

+ to_str(stability) + " was provided.";

}

Doury parameterization does not even need stability classes. Indeed, there are only two
cases, low diffusion and normal diffusion, based on wind speed and whether it is night or day.
This parameterization was implemented by CEA for radioactive species. It does not compare
very well with Prairie Grass experiment. Here is the function to compute σy with Doury pa-
rameterization in cases of normal diffusion.

//! Computes horizontal diffusion parameter for situations of normal diffusion.

/*! It uses Doury’s dispersion parameterizations.

\param t transfert time from source (s).

\return The horizontal plume-dispersion parameter (m).

*/

template<class T>

T ComputeDouryNormalPlumeHorizontalSigma(T t)

{

if (t >= 0. && t < 240.)

return pow(0.405 * t, 0.859);

if (t >= 240. && t < 97000.)

return pow(0.135 * t, 1.130);

if (t >= 97000. && t < 508000.)

return pow(0.463 * t, 1.000);

if (t >= 508000. && t < 1300000.)

return pow(6.5 * t, 0.824);

else

return pow(2.e+05 * t, 0.5);

}

The parameterization based on similarity theory needs the following parameters:

• Boundary layer height (m)

• Friction velocity (m s−1)

• Convective velocity (m s−1)

• Monin-Obukhov length (m)

• Coriolis parameter (s−1)

These information can either be provided by measurements or extracted from Eulerian meteo-
rological fields. You can read the file BriggsFormula.cxx to see how standard deviations are
computed.

Now, rerun the experiment with each parameterization. While using similarity theory, the
meteorological data file must be plume-meteo-sim.dat-24. It is contained in the directory

8

∼/polyphemus-sessions/gaussian-advanced/prairie grass/config/plume-meteo-similarity.
Display profiles for different parameterizations. Figure 3 provides an example of what you should
obtain for the first arc.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

similarity theory
doury
briggs
experiments

Figure 3: Concentration profile for Prairie Grass experiment 24, 50 meters from source: com-
parison between different sigma parameterizations.

1.6 Comparison to observations: statistical results

We now want to compare simulations and observations for all 43 experiments. A way that is
often used to do so is to compare centrelines, that is, maximum concentrations on each arc. It
is divided by the source rate for each experiment:

centreline[i, j] = max
arcj

(concentration[i])/rate[i]

for experiment i and arc j; i ranges from 0 to 43 and j from 0 to 4.

First, you have to load all centrelines into an array of shape Nexp×Narc where Nexp is the
number of experiments, and Narc is the number of arcs. Run the python script write results.py

to do so. It will load simulation results with Briggs formula and experimental results:

>> run write_results.py

Experiment 7

Getting simulation and experimental results...

Concentration on arc ARC050

Concentration on arc ARC100

Concentration on arc ARC200

Concentration on arc ARC400

Concentration on arc ARC800

Experiment 8

Getting simulation and experimental results...

Concentration on arc ARC050

Concentration on arc ARC100

9

Concentration on arc ARC200

Concentration on arc ARC400

Concentration on arc ARC800

...

Check that you now have two arrays named centreline sim for simulation results and
centreline exp for experimental results:

>> centreline_exp.shape

(43, 5)

You can now use functions of the atmopy library to compare the two arrays. For example,
to have the correlation between the two, use the function stat.correlation:

>> stat.correlation(centreline_exp, centreline_sim)

0.784502713668

Note that if you have only imported atmopy with the command import atmopy, you have
to type the command:

>> atmopy.stat.correlation(centreline_exp, centreline_sim)

0.784502713668

You have to type from atmopy import * in order not to have to type ”atmopy.” each time
you call an atmopy function.

You can see that there is a very good correlation between the two. There are other useful
functions in the module stat: nmse gives the normalized mean square error between observations
and experiments, fb gives the fractional bias...
You can open the file ∼/polyphemus-sessions/Polyphemus-1.1/include/atmopy/stat/measure.py
to see all available functions and their description.

The function loglog is the same as the function plot but in logarithmic scale. Use it to
draw a scatter plot in logarithmic scale. The following example draws figure 4. Points on the
red line represent points where simulation and experimental results are equal. Points between
the two green lines are within a factor of 2. the command axis helps defining x-axis and y-axis
limits.

>> loglog(centreline_exp, centreline_sim, ’v’)

>> loglog([1e-03,1e04],[1e-03,1e04], ’r-’)

>> loglog([1e-03,1e04],[2e-03,2e04], ’g--’)

>> loglog([1e-03,1e04],[0.5e-03,0.5e04], ’g--’)

>> axis([1e-03,1e03,1e-03,1e04])

10

10-3 10-2 10-1 100 101 102 10310-3

10-2

10-1

100

101

102

103

104

Figure 4: Scatter plot of centrelines for Briggs parameterization.

Now, compare results for other parameterizations. Use various statistical indicators to see
which parameterization compares best.

2 Plume-in-Grid Model: application to Chernobyl

2.1 Description

This section provides an example of use of Gaussian models in order to perform better simu-
lations at continental scale. This method is called ”Plume in Grid”. It is based on the fact
that point emissions in Eulerian models are assumed to be instantaneously diluted into the cell,
which is a quite rude assumption, especially when using coarse grids. Hence, the plume-in-grid
method consists in first treating a point emission with a Gaussian model (a puff model in our
case) and, when a puff has reached the Eulerian cell size, in feeding it back to the Eulerian
model. Therefore, the puff is much less diluted. In this part, we will see how this applies to
the simulation of the Chernobyl case. First, the Chernobyl test case will be performed with the
Eulerian model, then with the plume in grid model.

2.2 Chernobyl with Eulerian model

2.2.1 Domain

Here is the description of the domain (it is the same domain for the preprocessing and the
simulation):

• Along x:

– minimal value: -10 ◦

– step: 1.5 ◦

– Number of steps: 49

• Along y:

11

– minimal value: 35 ◦

– step: 1.5 ◦

– Number of steps: 26

• Along z:

– 9 vertical levels

– Interfaces of the levels: 0, 64, 236, 484, 796, 1184, 1616, 1984, 2616, 3184.

and a represention of the domain and how it is meshed:

-10 0 10 20 30 40 50 60
35

40

45

50

55

60

65

70

Figure 5: Domain and mesh considered for the simulation.

2.2.2 Preprocessing

To run this simulation, you need meteorological data. The binary files files contained in
∼/polyphemus-sessions/gaussian-advanced/plume in grid/data/meteo contain all mete-
orological data you will need. They have been created during the preprocessing step described
in the training session about radionuclides, so you have to refer to this session if you want to
know how to create such files. For this session, you do not need to modify them.

There are no initial or boundary conditions, since Caesium 137 is not a species that is
naturally present in the atmosphere. There are no surface or volumic emissions either, just a
point source representing the Chernobyl emission.

12

2.2.3 Simulation

Configuration files are located in directory:
∼/polyphemus-sessions/gaussian-advanced/plume in grid/config.

• chernobyl.cfg, which gives all options for the simulation and the description of the
domain;

• chernobyl-data.cfg, which gives the input data;

• chernobyl-saver.cfg, which gives the options to save the results;

• source.dat, which describes the point source of Cs137;

• species.dat, which gives information on the species involved.

For more information about all those files, see Polyphemus user’s Guide.
Go in the directory where the configuration files are placed. Run the simulation with polair3d

and the main configuration file chernobyl.cfg. Check your results with get info float.

To visualize results at continental scale with atmopy, you can use the command getmd in
order to display a background map. This command works with a configuration file containing
the size of data to be vizualised and the results file name. For more information about it, see
Polyphemus guide, part Postprocessing/Visualizing results/Configuration file disp.cfg.

Modify the file results/disp.cfg to make it work with your simulation domain. Especially
the number of time steps must be equal to the number of time steps when data are saved and
not to the total number of time steps of the simulation, and the same is true for vertical levels.
Then, use the command dispcf to display concentration maps.

>> m,d = getmd("disp.cfg")

>> dispcf(m, d[0,0])

This works like getd and contourf: the array d is of size Nt × Nz × Ny × Nx. In order
to have a colorbar that goes the whole range of concentrations, and not to have white spaces
where concentrations are equal to 0., use the option extend=‘‘both’’:

>> dispcf(m, d[0,0], extend=’’both’’)

Visualize several time steps. Figure 6 gives an example of what you can obtain at time step
220.

13

-10 0 10 20 30 40 50 60
35

40

45

50

55

60

65

70

0

40

80

120

160

200

240

280

Figure 6: Ground concentration over Europe fo Chernobyl case without plume in grid.

2.3 Chernobyl with Plume in Grid model

2.3.1 Configuration files

The base files for Plume in Grid model are PlumeInGridDriver.hxx and PlumeInGridDriver.cxx.
Basically, it is a model, but it can be used as a driver (which is what we will do here).

To run program plume-in-grid with the Chernobyl case, you basically need the same con-
figuration files as before. The only modifications are:

• in the main configuration file, the option With point emission has to be set to “no”.
There also is a new section named [gaussian] where the name of a configuration file for
the puff model has to be provided (field file gaussian).

• in the data configuration file, there is a new section [gaussian meteo] that provides more
meteorological fields than the ones used for Eulerian model. It consists in cloudiness and
solar radiation data that are used to compute Pasquill stability class. In case those fields
are not provided (like here), put whatever value you want for those fields and use the
Doury parameterization, so that stability class will not be used. There also is the new
section [plume-in-grid] that provides the file containing the source to be treated with
plume in grid model (field [file source].

Note that there is no point emission for the Eulerian model, since the source file is directly
read by the plume in grid model (it is the file provided in section [plume-in-grid] of the
data file). Hence, if you forget to set the option With point emission to ”no”, the source file
will be read and treated twice: once by the Eulerian model and once by the Plume in Grid model.

14

In addition, the Gaussian puff model needs the usual configuration files. However, few of
their information are actually used, since most information are directly provided by the Plume
in Grid model.

The most important information given in puff.cfg is the time step Delta t. If it is larger
than the time step for the Eulerian model, it is considered equal to it. Otherwise, a number
N of iterations for the Gaussian model are performed at each iteration of the Eulerian model,
where:

N = int

[

∆tEulerian

∆tGaussian

]

(1)

You are strongly advised to use a time step for the Gaussian model smaller than the one for the
Eulerian model in order ot perform several iterations of the Gaussian model. Other information
about the domain are still read but not used, except the land category that is used for Briggs
parameterization.

In addition, it also reads all options and parameterizations. However, for now, scavenging
and deposition cannot be used with Plume in Grid, so the corresponding options have to be set
to ”no”. Radioactive decay can be used. Note that there is no need to provide a meteorological
file or a source file, since those information are feeded to the puff model by the Plume in Grid
model. The species file is still read. It can be the same than the species file for Eulerian model.
Levels file and saver file are still read but not used.

Run the simulation again with the Plume in Grid model (program plume-in-grid). The
main configuration file is chernobyl-ping.cfg. Be careful not to overwrite your previous re-
sults.

Visualize your results and compare them with the previous ones. If you want to display both
at the same time, you can create two figures. Here is an example of commands to achieve that,
supposing you have a configuration file named disp-ping.cfg for Plume in Grid model results.

>> figure(1)

>> m = getm("disp.cfg")

>> concentration = getd("disp.cfg")

>> figure(2)

>> concentration_ping = getd("disp-ping.cfg")

Then, to visualize results at time step i, issue the command:

>> figure(1)

>> dispcf(m, concentration[i, 0], extend=’’both’)

>> figure(2)

>> dispcf(m, concentration_ping[i, 0], extend=’’both’)

To set the scale of your figure, you have first to create an array with the values of the contours
to be displayed.

15

>> V=arange(0, 240, 20)

>> V

array([0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220])

Now that you have created V, display your map with it. Try to change the values of V several
times.

>>dispcf(m, d[220, 0], V=V, extend="both")

Try to visualize your results with the same scale, in order to see the difference between the
two models. To achieve that, you have to create an array of values that goes from the minimum
concentration for both models to the maximum concentration for both model, and use it for the
values of the contours to be displayed.

3 Water liquid content diagnosis: Noroxo case

3.1 Description

The aim of this section is to use the water liquid content diagnosis on the Noroxo case. For that
purpose, we will use the Eulerian model for local scale (program polair3d-local.cpp). This
consists in three main steps:

1. Preprocessing. The Eulerian preprocessing consists in generating meteorological and
ground data used in the main simulation. The preprocessing specific to water liquid
content diagnosis consists in generating volumic emissions of liquid and vapor water.

2. Running simulation. This generates a file containing total water concentration.

3. Post-processing. The program water plume.cpp diagnoses the liquid water content using
the simulation results.

The directory ∼/polyphemus-sessions/gaussian-advanced/water plume contains:

• A subdirectory config/ which holds all the configuration files used for the preprocessing,
simulation and post-processing.

• A subdirectory data/ which holds files containing data files generated during preprocess-
ing:

meteo contains the meteorological data (the files have already been generated).

ground contains the ground data.

emission contains the water emissions.

• A subdirectory results/ to hold the simulation results.

16

3.2 Preprocessing

3.2.1 Ground data

The ground data preprocessing for Eulerian models consists in generating a file containing the
land use cover category of the simulation domain. For more details about it, see Polyphemus
Guide, part Preprocessing/Ground data. As in our case the simulation domain is very small,
it corresponds to only one category, and the usual preprocessing program does not work. Use the
python program ∼/polyphemus-sessions/gaussian-advanced/water plume/data/ground/luc.py

to create a binary file that corresponds to your simulation domain with one chosen usgs land
category.

The command is python luc.py filename Nluc index where filename is the name of the
file containing the simulation domain, Nluc is the total number of land categories that exist (24
for usgs), and index is the index of land category of you simulation domain. For example, for
forest land, the command will be python luc.py ../config/general.cfg 24 4.

Go in the ground data directory. Generate ground data for your simulation domain. This
will generate a file named LUC.bin.

3.2.2 Emissions

The preprocessing program to generate emissions is not available in the current version, so the
file containing water emissions has been directly provided for this session. This file is named
WaterContentVolumicSource.bin and placed in subdirectory data/emission. It contains vo-
lumic emissions of water (liquid and vapor). It must be of size Nt × Nz × Ny × Nx × 4.,
where:

• Nt is the number of emission time steps. It corresponds to the total emission duration
divided by the emission time step Delta t s given in local-emission.cfg.

• Nz is the number of emission levels Nz out given in local-emission.cfg.

• Ny and Nx correspond to the size of the cartesian simulation domain. They are given in
section [domain cartesian] of file local-emission.cfg and also in section [domain] of
the main configuration file for simulation.

3.2.3 Simulation

The simulation is an Eulerian simulation for local scale, that is, it uses the driver StationaryDriver.
This consists in running the number of time steps given in section [stationary] of the con-
figuration file, but with an inner-loop with smaller time steps, given in section [domain],
that ensures to find the stationary solution. The species is Water, and the volumic emis-
sions are given by the file WaterContentVolumicSource.bin. The program to be used is
∼/polyphemus-sessions/Polyphemus-1.1/driver/polair3d-local.

Launch the simulation for two hours. The main configuration file to be used is noroxo.cfg.

17

3.2.4 Liquid water content diagnosis.

The post-processing program water plume.cpp is located in cmd∼/polyphemus-sessions/Polyphemus-
1.1/postprocessing/water plume/. It uses meteorological data and a concentration field of water
(liquid and vapor) and diagnoses the proportion of liquid water. It uses a configuration file con-
taining the following information:

• [simulation] contains the simulation data (path to the results, first simulated day and
time discretization over each day). The number of time steps that are given correspond
to the number of times concentrations have been saved.

• [meteo] contains the meteorological files to be read, and to the file containing water
concentrations (the simulation result file).

• [parameters] gives source parameters that are needed in order to do a similarity assump-
tion to compute liquid potential temperature.

• [output] gives the output file name where liquid water content will be written.

Note that the output liquid water content is the sum of plume liquid water content (that is, emit-
ted by the source) and of ambient liquid water content (already in the atmosphere). For more
information about the configuration file, see Polyphemus Guide, part Postprocessing/Liquid
water content diagnosis.

The values that are given in section [parameters] are:

• source temperature is the the liquid water potential temperature at the source (in K).

• source water content is the total water content (i.e. mass fraction) at the source.

Those two parameters have been computed during preprocessing. Their values at each emission
time step have been written in the file results/Plume BC values.dat. In this file, each line
corresponds to one emission time step. The first value is the mass water fraction, the second is
the liquid potential temperature. This looks like:

1.442387e-02 2.913831e+02

1.441417e-02 2.913278e+02

1.440427e-02 2.912713e+02

1.437619e-02 2.911111e+02

1.438118e-02 2.911396e+02

1.438800e-02 2.911786e+02

1.439229e-02 2.912030e+02

1.438458e-02 2.911590e+02

Choose values corresponding to the last emission time step and provide it in the configura-
tion file.

The water content diagnosis is done at each simulation time step for the whole domain. The
domain description is contained in general.cfg. The program is launched with two configura-
tion files, cmdwater plume.cfg and general.cfg, and the simulation date. Note that you may

18

have to change the number of vertical levels in general.cfg and to put the number of levels
you saved during the simulation.

Launch the liquid water content diagnosis program. The output on screen will be:

Reading configuration files... done.

Memory allocation for data fields... done.

Extracting data... done.

Performing diagnoses... done.

Writing data... done.

The resulting file, PlumeLiquidWaterContent.bin, must be of the same size as the file
Water.bin. You must erase it if you want to rerun the postprocessing, otherwise your results
will be append to the previous file.

Use ipython to visualize the map of total water concentration and the map of liquid water.

3.2.5 Simulation with Gaussian model.

The aim of this section is to perform the same simulation with Gaussian model. It takes into
account a continuous point emission emitting a total water flux. The simulation domain is the
same as before. The file config/plume-meteo.dat provides all meteorological information that
have been extracted at the source location for the Gaussian model.

Copy configuration files for Gaussian plume model in the subdirectory config. Change the
simulation domain and all data to test the noroxo case. Note that source data (temperature,
speed, surface) are needed and the option With plume rise has to be set to yes in order to take
plume rise into account. Run the simulation with program plume.

19

