A Comparison Study of Data Assimilation Algorithms for Ozone Forecasts

> Lin Wu, Vivien Mallet, Marc Bocquet, Bruno Sporstisse

> > CEREA, INRIA clime

Atelier Polyphemus, Oct 27, 2008

# Problem and Objective

#### Data Assimilation Problem

Estimate the uncertainties for a better prediction from diverse resources, i.e. model simulations, observations and statistics information.

#### Background

- Key issue in environmental problems, e.g. meteo., ocean, soil...
- Many experiences in meteorological data assimilation.

#### Air Quality, Short-Range Ozone Forecasts?

- Evaluate the performances of different data assimilation schemes.
- Help to design suitable assimilation algorithms for in realistic applications

# Air Quality Model

#### Chemistry-transport equation for air quality model

$$\frac{\partial c_i}{\partial t} = \underbrace{-\operatorname{div}(Vc_i)}_{\text{advection}} + \underbrace{\operatorname{div}\left(\rho K \nabla \frac{c_i}{\rho}\right)}_{\text{diffusion}} + \underbrace{\chi_i(c)}_{\text{chemistry}} + \underbrace{S_i - L_i}_{\text{sources and losses}}$$

#### Facts

- Nonlinear due to chemical reaction term  $\chi_i(c)$
- High dimension (typically  $10^6 \sim 10^7$ )
- Strong uncertainties mainly due to uncertain parameters; initial conditions tend to be forgotten.



48 ensemble samples, Vivien & Bruno, JGR, 2006

# $\begin{array}{l} \mbox{Probability density function (PDF) of model state} \end{array} \\$

- PDF evolution
- Not possible (high dimension  $10^6 \sim 10^7$ )
- Ensemble approximations

#### Uncertainties of model parameters

- Biogenic emission ±100%
- Anthropogenic emissions ±50%
- Boundary condition ±20%
- Cloud attenuation ±30%
- Deposition velocity (O<sub>3</sub>, NO<sub>2</sub>)  $\pm 30\%$
- . .

• Model and observations at time step k :

$$\begin{cases} \mathbf{x}_{k} = M_{k-1}[\mathbf{x}_{k-1}] + \epsilon_{k-1}^{f} & \text{Model} & M_{k-1} \\ \mathbf{y}_{k} = H_{k}[\mathbf{x}_{k}] + \epsilon_{k}^{o} & \text{Observation} & \mathbf{y}_{k} \end{cases}$$

• Minimization of a cost function  $J(\mathbf{x})$  that deals with obs. :

$$\frac{1}{2}(\mathbf{x} - \mathbf{x}_k)^T \mathbf{P}_k^{-1}(\mathbf{x} - \mathbf{x}_k) + \frac{1}{2} \left( \mathbf{y}_k - H_k[\mathbf{x}] \right)^T \mathbf{R}_k^{-1} \left( \mathbf{y}_k - H_k[\mathbf{x}] \right)$$

# Probabilitic Formulation of Data assimilation Problem

• Model & Obs. : 
$$\mathbf{Y}_k \equiv {\mathbf{y}_i^o, i = 1, ...k}$$
  

$$\begin{cases} \mathbf{x}_k^t = M_{k-1}[\mathbf{x}_{k-1}^t] + \epsilon_{k-1}^f \\ \mathbf{y}_k^o = H_k[\mathbf{x}_k^t] + \epsilon_k^o \end{cases}$$

- <u>Forecast</u> (governed by dynamics) : Chapman-Kolmogorov equation, or Fokker-Planck equation (SDE)  $p(\mathbf{x}_{k}^{t}|\mathbf{Y}_{k-1}) = \int p(\mathbf{x}_{k}^{t}|\mathbf{x}_{k-1}^{t})p(\mathbf{x}_{k-1}^{t}|\mathbf{Y}_{k-1})d\mathbf{x}_{k-1}^{t}$
- Analysis (conditioned by observations) :

• Discrete observations : Bayes rule  

$$p(\mathbf{x}_{k}^{t}|\mathbf{Y}_{k}) = \frac{p(\mathbf{y}_{k}^{o}|\mathbf{x}_{k}^{t})p(\mathbf{x}_{k}^{t}|\mathbf{Y}_{k-1})}{p(\mathbf{y}_{k}^{o}|\mathbf{Y}_{k-1})}$$

- Continuous observations : Zakai or Kushner equations
- Estimation criteria : maximum likelyhood, minimum variance

...

Neither the PDE nor the integral in Bayes formula is tractable for high dimensional geophysical systems; all assimilation algorithms are approximations.

#### Variational Algorithms

A block of observations. Optimal control theory applies.

 Four dimensional variational assimilation (4DVar) : time interval k = 0,..., N.

#### Sequential Algorithms

Spontaneous observations. Filtering theory applies.

- Optimal interpolation (OI);
- Ensemble Kalman filter (EnKF);
- Reduced-rank square root Kalman filter (RRSQRT);

• 4DVar (Le Dimet 1982)

Maximum likelyhood estimation with assumptions of Markovian dynamics and Gaussian errors in the model and observations; minimization of a cost function  $J(\mathbf{x})$  that deals with a set of obs. :

$$\underbrace{\frac{1}{2}(\mathbf{x}-\mathbf{x}^{b})^{T}\mathbf{B}^{-1}(\mathbf{x}-\mathbf{x}^{b})}_{J_{b}} + \underbrace{\frac{1}{2}\sum_{k=0}^{N} \underbrace{(\mathbf{y}_{k}-H_{k}[\mathbf{x}_{k}])^{T}\mathbf{R}_{k}^{-1}(\mathbf{y}_{k}-H_{k}[\mathbf{x}_{k}])}_{J_{o}}}_{J_{o}}$$

1.

The assimilation window : 0 − N **x**<sub>k</sub> = M<sub>0→k</sub>[**x**] = M<sub>k</sub>M<sub>k−1</sub>...M<sub>1</sub>[**x**]

- Efficient calculation of gradients by adjoint model
  - $\tilde{\mathbf{x}}_N = \mathbf{0}$  ,
  - For k = N, ..., 1, calculates  $\tilde{\mathbf{x}}_{k-1} = \mathbf{M}_{k-1}^T (\tilde{\mathbf{x}}_k \mathbf{H}_k^T d_k)$ , where  $d_k = \mathbf{R}_k^{-1} (\mathbf{y}_k - H_k(\mathbf{x}_k))$ ,
  - $\tilde{\mathbf{x}}_0 := \tilde{\mathbf{x}}_0 \mathbf{H}_0^T(d_0)$  gives the gradient of  $J_o$  with respect to  $\mathbf{x}$ .
- Balgovind isotropic correlation function for **B**. The error covariance between two points is given by :

$$f(d) = \left(1 + \frac{d}{L}\right) e^{-\frac{d}{L}} v$$

- L : the characteristic length
- *d* : the distance between the two points
- v : is the a priori variance

# Assimilation Algorithms - EnKF

- EnKF (Evensen 1994) Monte Carlo solution of Fokker-Planck equations, at analysis step assumptions of Gaussian errors and linear dynamics.
  - Initialization : given initial pdf  $p(\mathbf{x}_0^t)$ , an ensemble of rmembers  $\{\mathbf{x}_0^{a,i}, \dots, i = 1, \dots, r\}$ . Let the bar denote the mean over ensemble members, e.g.  $\bar{\mathbf{x}}_0^a = \frac{1}{r} \sum_{i=1}^r \mathbf{x}_0^{a,i}$  $\tilde{\mathbf{P}}_0^a = \frac{1}{r-1} \sum_{i=1}^r \left(\mathbf{x}_0^{a,i} - \bar{\mathbf{x}}_0^a\right) \left(\mathbf{x}_0^{a,i} - \bar{\mathbf{x}}_0^a\right)^T$
  - Forecast formula :

$$\mathbf{\tilde{P}}_{k}^{f,i} = M_{k-1}[\mathbf{x}_{k-1}^{a,i}] + \epsilon_{k-1}^{f,i}$$
$$\mathbf{\tilde{P}}_{k}^{f} = \frac{1}{r-1}\sum_{i=1}^{r} \left(\mathbf{x}_{k}^{f,i} - \mathbf{\bar{x}}_{k}^{f}\right) \left(\mathbf{x}_{k}^{f,i} - \mathbf{\bar{x}}_{k}^{f}\right)^{T}$$

### Assimilation Algorithms - EnKF

• Analysis Formula :

$$\begin{aligned} \mathbf{x}_{k}^{a,i} &= \mathbf{x}_{k}^{f,i} + \tilde{\mathbf{K}}_{k} \left( \mathbf{y}_{k}^{i} - H_{k}[\mathbf{x}_{k}^{f,i}] \right) \\ \tilde{\mathbf{K}}_{k} &= \tilde{\mathbf{P}}_{k}^{f} \mathbf{H}_{k}^{T} (\mathbf{H}_{k} \tilde{\mathbf{P}}_{k}^{f} \mathbf{H}_{k}^{T} + \mathbf{R}_{k})^{-1} \\ \tilde{\mathbf{P}}_{k}^{a} &= \frac{1}{r-1} \sum_{i=1}^{r} \left( \mathbf{x}_{k}^{a,i} - \bar{\mathbf{x}}_{k}^{a} \right) \left( \mathbf{x}_{k}^{a,i} - \bar{\mathbf{x}}_{k}^{a} \right)^{T} \end{aligned}$$

<u>Model Error</u> : approximated by perturbing model input data and model parameters

$$\epsilon_{k-1}^{f,(i)} \simeq M_{k-1}\left(\mathbf{x}_{k-1}^{a,(i)}, \mathbf{w}^{(i)}\mathbf{d}\right) - M_{k-1}\left(\mathbf{x}_{k-1}^{a,(i)}, \mathbf{d}\right)$$

- **d** : the vector of parameters to be perturbed
- w<sup>(i)</sup>: for *i*-th sample, the diagonal matrix whose elements are perturbation coefficients. For instance, for one lognormal parameter p in d, the perturbation is as :

$$\hat{p} = p \times \sqrt{\alpha}^{\gamma}$$

 $\alpha$  : perturbation magnitude;  $\gamma$  : quantity sampled from standard normal distribution (constant for one type of parameter).

| Parameter name       | distribution | $\alpha$ |
|----------------------|--------------|----------|
| Boundary condition   | log-normal   | 3.       |
| Deposition velocity  | log-normal   | 1.5      |
| Photolysis rate      | log-normal   | 1.3      |
| Surface emission     | log-normal   | 1.5      |
| Attenuation          | log-normal   | 1.3      |
| Vertical diff. coef. | log-normal   | 1.3      |
| Cloud height         | log-normal   | 1.3      |
| Vertical wind        | log-normal   | 1.3      |
| Specific humidity    | log-normal   | 1.3      |
| Rain                 | log-normal   | 1.3      |
| Pressure             | log-normal   | 1.3      |
| Air density          | log-normal   | 1.3      |
| Merid. diff. coef.   | log-normal   | 1.3      |
| Zonal diff. coef.    | log-normal   | 1.3      |
| Temperature*         | normal       | 0.005    |

 $T\!AB$ .: The set of perturbed parameters.

# Comparisons Results : EMEP Network



# Comparisons Results : Four Methods



#### Notes

OI : overall better performance (explicit parameterization of model error); EnKF : better prediction; RRSQRT : poor overall performance (SVD truncations?); 4DVar : better assimilation worst prediction.



ensemble size.



Forecast scores for EnKF against different uncertain parameter definitions.





Forecast scores against the number of assimilation days for the two experiments using 4DVar.

# EnKF performances at nine stations



# The Error Covariance Structure



Balgovind parameterization.



Approximations by EnKF forecast ensemble.

The covariance between the error at the station Montandon and the error in all ground cells at 13 :00 UT, July 2, 2001.



# Conclusions and Perspectives

### Conclusions

- Assimilations improve the forecast significantly.
- Pros and cons for a set of assimilation methods; perturbation methods for assimilation.

#### Perspectives

- Methods that allows control of uncertain parameters (e.g.  $K_z$ ), not just state.
- Better perturbations, e.g. perturbing heterogeneously in space on emissions.
- Serious studies on error covariance modeling.
- Hybridation of variational and sequential assimilation methods.