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Chapter 1

Introduction

This user’s guide describes the 3D Eulerian Chemistry-Transport-Model POLAIR, developed by
CEREA (Research Center for Atmospheric Environment) at Ecole Nationale des Ponts et Chaussées.

The purpose of POLAIR is to provide a numerical platform for atmospheric dispersion studies.
POLAIR is supposed to ensure:

• modularity:

Several chemical mechanisms may be used on the basis of a uniform standard for the chemi-
cal preprocessor used by POLAIR, namely SPACK (Simplified Preprocessor for Atmospheric
Chemical Kinetics, [1]).

Several different modules are or will be available for the chemical production term, depending
on the application. They include gas-phase chemistry for tropospheric ozone, multiphase
chemistry (aqueous-phase chemistry inside clouds and aerosols), mechanisms for pesticides,
heavy metals, mercury, radionuclides, aso.

• multiple functions:

POLAIR provides the time evolution of a spatial distribution for a set of given chemical species
(this is the so-called direct model). The adjoint and linear tangent versions of POLAIR may
be automatically computed by use of ODYSSEE (an automatic differenciation tool developed
at INRIA, [2]): the adjoint version is necessary for variational methods in data assimilation,
the linear tangent version for sensitivity analysis.

• multiple scales:

POLAIR may be used at the regional/urban scale (typically 100 kilometers×100 kilometers)
or/and at the regional/continental scale (typically over Europe). One-way nesting is under
development.

This report is organized as follows:

• the background for CTM (modeling and numerics) is described in Chapter 2,

• the software of architecture of POLAIR is described in Chapter 3,

• the main recommendations for using POLAIR is described in Chapter 4,

• some additional details are given in Chapter 5 (including multiphase modeling and data as-
similation),

• some applications can be found in Chapter 6,
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Chapter 1 – Introduction

• planned extensions of POLAIR are described in Chapter 7.
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Chapter 2

3D chemistry-transport model

Comprehensive 3D CTM are now available. We refer to [3, 4] for a description of the underlying
models and to [5] for some numerical issues.

We describe in this chapter the underlying model formulation and numerical algorithms used for
POLAIR. The key modeling (resp. numerical) aspects are investigated in Section 1 (resp. Section
2).

2.1 Model

2.1.1 Dispersion equation

We describe the time and space evolution of some trace gases, let say Xi (i is the index labeling
chemical species, X is the symbol of chemical species). We have then for the concentration ci of
species Xi:

∂ci

∂t
= Ladv(ci) + Ldiff (ci) + [Lconv(c)]i + [Lchem(c)]i + Si (2.1)

where the take into account the following processes:

• Wind advection: Ladv(ci) = −div(V ci),

• Turbulent diffusion: Ldiff (ci) = div(K∇ci),

• Convection: Lconv(c),

• Chemical production: Lchem(c) = χ(c, T, L, I),

• Volume source emissions: Si(x, t) (in practice in the first vertical levels).

We will distinguish diffusion (resp. advection) along x, y and z directions:

Ldiff = Ldiffx + Ldiffy + Ldiffz (2.2)

where for instance (with obvious notations):

Ldiffx(c) = div(Kx∇ci) , Ladvx = −div(Vxci) (2.3)

We have used moreover the following notations:

• ci is the concentration for species Xi in molecules per volume (in practice we will use a mixing
ratio qi = ci

ρ with ρ the air density),

7



Section 2.1 – Model

• V (x, t) is the wind field,

• K(x, t) is the eddy diffusivity matrix (computed with the parameterization of [6]),

• Lconv(c) is the parameterization of convective processes ([7]),

• χi(c, T, L, I) is the chemical production for species i. T (x, t) is the temperature field, L is
the liquid water content, I is the actinic flux whose knowledge is necessary for computing
photolytic rates.

t (resp. x) is the time (resp. spatial) coordinate.
All the meteorological fields are supposed to be known (off-line coupling).

2.1.2 Boundary conditions

For diffusion

At the top of our domain, we have a no-flux boundary condition (free atmosphere):

K
∂ci

∂n
= K∇ci · n = 0 (2.4)

where n is the normal vector to the domain (inward oriented).
At ground, we have:

−K
∂ci

∂n
= K∇ci · n = vdep

i (x, t) ci −Ei(x, t) (2.5)

where vdep
i is the dry deposition velocity and Ei(x, t) is the emission factor for species i. We refer to

[8] for the computation of dry deposition velocities. Emission factors Ei are supposed to be known.
At lateral boundaries, we have:

K∇ci · n = 0 (2.6)

For advection

For boundaries along which n · V > 0 (n is inward oriented), we use:

n · V c = Flux (2.7)

where Flux is given (by a global model or by another way such as inverse modeling).

2.1.3 Inputs/Outputs

Inputs

Solving Equation (2.1) requires several inputs.

The wind speed V is given by a meteorological solver. For instance, data from ECMWF†1

are used. From meteorological forecasts, humidity, temperature, nebulosity and precipitations are
extracted as well.

Initial concentrations are needed too. They may be inferred from observations, or they may be
computed by a CTM. Notice that initial conditions are not a key point for a CTM that has run for
a while (spin-up).
†1European centre for medium-range weather forecasts.
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Chapter 2 – 3D chemistry-transport model

Boundary concentrations are required due to the transport process. A model running at a higher
scale may provide those boundary conditions.

Emissions of species appear in Equation (2.1), though E. Emission inventories, notably based
on traffic and industrial emissions, are provided to the CTM.

Finally, one should add data (such as dry-deposition velocities) related to different processes,
depending on the CTM complexity.

Outputs

Outputs are concentrations of species, at given positions and for given dates.
Of course, if the CTM deals with more complex processes, other outputs may be involved, e.g.

aerosol distributions.

2.1.4 Chemical kinetics

Kinetic scheme

We suppose that the kinetic scheme is described by a set of nr reactions among ns species. For a
species Xi, the chemical source term is:

χi(c, T, L, I) =
j=nr∑

j=1

Sijωj(c, T, L, I) (2.8)

with S the stoichiometric matrix (ns × nr) and ωj the reaction rate for reaction j.
A typical example is given by the tropospheric so-called Chapman’s cycle (with M the third

body):
O2 + O + M 1−→ O3 + M

NO2 + hν
2−→ NO + O

NO + O3 + M 3−→ NO2 + O2

The chemical production term for ozone is then χO3 = ω1 − ω3.

Kinetic and reaction rates

Due to Mass Action Law, we have for the reaction rate of reaction j:

ωj = kjΠi=ns
i=1 c

Sij

i (2.9)

where kj is the kinetic rate to be computed according to the reaction type:

• For thermal reactions, the Arrhenius’ law is used:

kj(T ) = AjT
Bjexp(−Cj/T ) (2.10)

Aj , Bj and Cj are given for each reaction.

• For fall-off (or TROE) reactions:

kj(p, T ) =
a0(T )M

(1 + a0(T )M)a1(T )
0.6(1+(log10(a0(T )a1(T )M))2)

−1

(2.11)

with an(T ) = a
(300)
n (T/300)−bn for n = 0 and n = 1. The parameters a300

0 , a300
1 , b0 and b1

have then to be defined for each reaction. M is the concentration of the third body (function
of p and T ).
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Section 2.1 – Model

• For photolytic reactions Xi + hν(λmin
j ≤ λ ≤ λmax

j ) → . . .:

ωj(c, I) = Jj(I)ci (2.12)

where the photolytic rate Jj is computed through:

Jj(I) =
∫ λmax

j

λmin
j

qλ(j)I(λ)σa
λ(i)dλ (2.13)

where qλ(j) is the quantum yield for reaction j and σa
λ(i) is the absorption cross section for

species i (defined as the only reactant for reaction j). Photolytic rates used to be computed
by Fast-J ([9]). They are now pre-computed by JPROC which provides clear sky photolysis
rates (see chapter 14 of CMAQ documentation at http://www.epa.gov/asmdnerl/models3/
doc/science/science.html). A cloud attenuation factor is applied to correct clear sky rates.

Preprocessing

We use the preprocessor SPACK (see [10] and appendix) for generating in an automatic way the
Fortran code giving Lchem(c) and the associated Jacobian matrix Achem = ∂Lchem

∂c .

Extension to a multiphase model

The next step (POLAIR 2.0) is to extent the previous scheme to multiphase models (aerosols, see
Chapter 5).

2.1.5 Wet scavenging

Wet Scavenging by rain is parameterized by:

Lwet(ci) = −Λi(t)ci (2.14)

where Λi is a parameterization of wet scavenging and is computed through meteorological data (see
[11] for instance):

Λi =
6.10−6 p0 Ki

3.6Urain D
exp

(
− 6 (h− z) Ki

D HiRT Urain

)
(2.15)

with p0 the rain intensity (in mm.hr−1), z the height (in m), h the height of cloud basis (in m), Hi the
Henry’s coefficient for species i (in mol.l−1.atm−1), R the perfect gas constant (in atm.l.mol−1.K−1),
Urain the rain velocity (in m.s−1), D the raindrop diameter (in m) and Ki the mass transfer coeffi-
cient for a falling drop (in m.s−1).

Usually, the following parameterizations are used:

Urain = 9.58
(
1− e−[ D

0.171 ]
1.147)

(2.16)

Remark: in equation (2.16) D should be given in cm.

Ki =
Dgi

D
Shi (2.17)

with Dgi the gas-phase molecular diffusion for species i (in m2.s−1) and Sh the Sherwood number:

Shi = 2 + 0.6
(

DUrain

νair

)1/2(νair

Dgi

)1/3

(2.18)

with νair the kinematic viscosity (in m2.s−1).
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Chapter 2 – 3D chemistry-transport model

2.1.6 Parameterization for Kz

We use the classical Louis parameterization for vertical diffusion due to turbulence ([6]):

Kz = l(z)2||∂V

∂z
||F (Ri, z) (2.19)

where:

• l(z) is a mixing length:

l(z) = Ka
z + z0

1 + Ka
z+z0

L

(2.20)

where Ka ' 0.4 is the Von Karman constant and z0 and L are scale factors (z0 ' 1 m and
L ∼ 100 m).

• Ri is the Richardson number:

Ri = g
∂lnθ

∂z

1
||∂V

∂z ||2
(2.21)

where θ is the potential temperature and g the gravity constant.

• F is the following function:

F (Ri, z) =
1

1 + 3B Ri

√
1 + D Ri

if Ri ≥ 0 (2.22)

F (Ri, z) = 1− 3B Ri

1 + 3B C

√
|Ri|
27

(
l(z)

z+z0

)2 if Ri ≤ 0 (2.23)

where usually B = C = D = 5.

For horizontal diffusion a constant value is usually advocated. Its magnitude depends on the
scale. For urban scale (typically 100km×100 km), we advocate:

Kx = Ky ' 500 (2.24)

while we advocate for continental scale:

Kx = Ky ' 105 (2.25)

Parameterizing diffusion makes then necessary the choice of z0, L and Kx = Ky which remains more
or less a kind of tuning.

2.1.7 Convective parameterization

Parameterizing convective processes is necessary for large-scale applications in order to take into
account subgridscale transport induced by cumulus clouds. The sugridscale fluxes are defined in the
following way:

Lconv(c) = − ∂

∂z
(Fu(c) + Fd(c) + Fs(c)) (2.26)

where Fu (resp. Fd) stands for the updraft (resp. downdraft) flux and Fs is the subsidence flux.
These fluxes are computed on the basis of entrainment and detrainment rates into the updraft and
into the downdraft (see [7, 12]). After discretization, the scheme proposed by Tiedke ([7]) is the
following one:

Lconv(c) = Mconvc (2.27)

where M is defined by the cloud model.
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Section 2.2 – Numerics

2.1.8 Space coordinates

We distinguish different applications:

• for a regional application (photochemical smog), we use cartesian coordinates (x, y, z).

• for a continental application (dispersion of pollutants over Europe), we use spherical and
hybrid coordinates as for ECMWF model: (λ, φ, η).

η is defined in the following way:

p(λ, φ, η, t) = A(η) + B(η)pg(λ, φ, t) (2.28)

where p (resp. pg) is the pressure (resp. at ground level). A and B are given functions: if
A = 0 we have pure σ-coordinates. We refer to [13] for the definition of A and B.

After some tedious calculations the dispersion equation (2.1) reads now:

∂c

∂t
+

1
r cosφ

(
∂uc

∂λ
+

∂vc cosφ

∂φ
) +

1
hη r2

∂wcr2

∂η
=

1
hη

∂

∂η
(
dη

hη

∂c

∂η
) (2.29)

where hη is a scale factor. In the above equation, u, v and w stand for the velocity components
in the λ, φ and η components while r ' 6378 km is the distance from earth center (supposed
to be constant in practice).

2.2 Numerics

2.2.1 Splitting methods

We use different splitting methods in order to solve (2.1). In the following, the volume source term
is supposed to be coupled with chemistry.

S1: Strang Splitting

The first approach is the so-called Strang splitting with the following sequence (∆t is the splitting
timestep):

• Integrate Ladv in the sequence (Ladvx, Ladvy, Ladvz) on [t, t + ∆t
2 ],

• Integrate Lchem on [t, t + ∆t
2 ],

• Integrate Ldiffx on [t, t + ∆t
2 ],

• Integrate Ldiffy on [t, t + ∆t
2 ],

• Integrate Ldiffz on [t, t + ∆t],

• Integrate Ldiffy on [t + ∆t
2 , t + ∆t],

• Integrate Ldiffx on [t + ∆t
2 , t + ∆t],

• Integrate Lchem on [t + ∆t
2 , t + ∆t],

• Integrate Ladv in the sequence (Ladvz, Ladvy, Ladvx) on [t + ∆t
2 , t + ∆t],

After each sequence, initial conditions are changed.
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S2: Coupling of Lchem and Ldiffz

The second approach is a Strang Splitting with a kind of coupling between chemical production and
vertical diffusion since splitting these processes is the main source of errors ([14, 15]):

• Integrate Ladv on [t, t + ∆t
2 ],

• Integrate Ldiffx on [t, t + ∆t
2 ],

• Integrate Ldiffy on [t, t + ∆t
2 ],

• Integrate Ldiffz + Lchem on [t, t + ∆t],

• Integrate Ldiffy on [t + ∆t
2 , t + ∆t],

• Integrate Ldiffx on [t + ∆t
2 , t + ∆t],

• Integrate Ladv on [t + ∆t
2 , t + ∆t],

The way we integrate Ldiffz + Lchem is precised below.

2.2.2 Integration of Lchem and Ldiffz

General formulation

We use a second-order Rosenbrock method (ROS2) for the integration of an Ordinary Differential
Equation:

dc

dt
= f(t, c) (2.30)

The scheme reads as:
cn+1 = cn + (3k1 + k2)∆t/2 (2.31)

where
(1− γ∆tA)k1 = f(tn, cn) , (1− γ∆tA)k2 = f(tn+1, cn + ∆t k1)− 2k1 (2.32)

γ = 1 + 1/
√

2 for stability requirements and A denotes an approximation of the Jacobian matrix
A ' ∂f/∂c.

In (2.32) γi ∆t2∂f/∂t is an nonautonomous term that may be added ([1]). This term is zero in the
case of nonphotolytic activity and constant water content in the considered integration period. We
refer to [16] for more details concerning the use of Rosenbrock methods for atmospheric chemistry.

Coupling between chemistry and diffusion

In the case of coupling integration between chemistry and diffusion we use a so-called “internal
splitting” (or Approximate Matrix Factorization). In this case:

f(c) = Ldiff (c) + Lchem(c) , A = Adiff + Achem (2.33)

We approximate:
(I − γiτA) ∼ (I − γiτAchem)(I − γiτAdiff ) (2.34)

which avoids the inversion of systems whose dimension would be the the product of the number of
grid cells by the number of species.

13
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2.2.3 Advection scheme

For a monodimensional model we use the third-order Direct Space Time (DST) scheme with the
Koren-Sweby flux limiter function as advocated in [13]:

cn+1
i = cn

i + (Fi− 1
2
− Fi+ 1

2
) (2.35)

where:

• for ui+ 1
2
≥ 0:

Fi+ 1
2

= νi+ 1
2
(ci + ψ(νi+ 1

2
, θi)(ci+1 − ci)) (2.36)

• for ui+ 1
2

< 0:

Fi+ 1
2

= −νi+ 1
2
(ci+1 + ψ(νi+ 1

2
,

1
θi+1

)(ci − ci+1)) (2.37)

with the Koren-Sweby flux limiter function:

ψ(ν, θ) = max(0,min(1, d0(ν) + d1(ν)θ, µθ) (2.38)

where

d0(ν) =
1
6
(2− ν)(1− ν) , d1(ν) =

1
6
(1− ν2) , (2.39)

νi+ 1
2

=
∆t

∆x

∣∣∣ui+ 1
2

∣∣∣ (2.40)

and the slopes are:

θi =
ci − ci−1

ci+1 − ci
(2.41)

Let us notice that there is still a free parameter (µ in Eq. (2.38)). As in [5] we take:

µ =
1− ν

ν
(2.42)

For this scheme, the Courant-Friedrichs-Lewy (CFL) condition is:

νi+ 1
2
≤ 1 (2.43)

2.2.4 Diffusion

Diffusion is discretized in the classical way with a three point scheme. For instance for a given
direction (let say x), at point i (namely xi):

div(Kx∇c) ∼
Kx(xi+ 1

2
) c(xi+1)−c(xi)

xi+1−xi
−Kx(xi− 1

2
) c(xi)−c(xi−1)

xi−xi−1

xi+ 1
2
− xi− 1

2

(2.44)

In the above equation we have omitted the dependence with respect to other spatial coordinates for
more clarity.

Boundary conditions are taken into account in the classical way:
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• Horizontal Boundary Conditions.

For i = 1:
Kx(xi− 1

2
)
c(xi)− c(xi−1)

xi − xi−1
= 0 (2.45)

For i = nx:

Kx(xi+ 1
2
)
c(xi+1)− c(xi)

xi+1 − xi
= 0 (2.46)

where nx is the number of grid cells in the x-direction.

• Vertical Boundary Conditions

At the ground (i = 1):

Kz(zi− 1
2
)
c(zi)− c(zi−1)

zi − zi−1
= E − vdepc(zi) (2.47)

At the top (i = nz):

Kz(zi+ 1
2
)
c(zi+1)− c(zi)

zi+1 − zi
= 0 (2.48)

where nz is the number of grid cells in the x-direction.
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Chapter 3

Software structure of Polair

3.1 Short description

Polair is a three-dimensional chemistry-transport model based on the models described in Chapter
2. Polair is a research tool and has been built as a numerical platform for several applications. It
is released under the GNU General Public License.

It was mainly written by Jaouad Boutahar, Denis Quélo and Bruno Sportisse from CEREA†1.
It was written in Fortran 77 so that it could be automatically differentiated†2.

It can handle different chemical schemes and compute concentrations through Equation (2.1).
Extensions enable to perform simulations with aerosols (see Chapter 5).

As for inverse modeling, the adjoint model, generated thanks to automatic differentiation, en-
ables to work on sensitivity analysis, on data assimilation, etc.

3.2 Code

3.2.1 Configuration

Polair is neither a library nor a software. There is script called POLAIR which compiles and launches
Polair. After compilation, Polair is a program that runs on a given case, set up before compilation.
In order to set up a case, one has to write (or to modify) configuration files.

There is a particular file which is called the input file, because it is the input file of the script
POLAIR. Hence, one launches “POLAIR InputFile.inc” in order to launch a simulation. The input
file contains the directory of configuration files. So, through the input file, configuration files are
determined, and, then, the simulation is set up.

The input file and configuration files are described in chapter 4.

3.2.2 A few numerical issues

Equation (2.1) and equations related to other processes are discretized on an 3D-grid (orthogonal
mesh) containing Nx×Ny×Nz points, Nd being the number of points along direction d. Each point
is a node centered within a cell. Space steps ∆x and ∆y are constant whereas ∆z is not.

†1Centre d’enseignement et de recherche en environnement atmosphŕique – École nationale des ponts et chaussées
http://www.enpc.fr/cerea/
†2Actually, it is automatically differentiable by O∂yssée.
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For instance, for a typical simulation over Paris, we have: Nx = Ny = 25 and ∆x = ∆y =
6000 m. In the vertical direction, the first-node height is 15 m, the second-node height is 90 m, the
third-node height is 250 m.

Data is provided at nodes or at cell interfaces. Concentrations are computed at nodes, in µg·m−3.

3.2.3 Directories tree

Home directory

At home directory (let us say ~POLAIR), one can find the following directories:

3 bin: script POLAIR.

3 Code: code, i.e. Fortran functions “*.f”.

3 Run references: simulations that work (i.e. configuration files are correct) and that should
be used to set up a new case.

3 UsersGuide: this guide.

Code

In directory Code, one may find the GNU General Public License (in file LICENSE) and the version
of Polair (file version).

The code directory contains the following directories:

3 ADVECTION: advection numerical-scheme.

3 CHEMISTRY: chemical schemes (EMEP, MOCA, OZ16, CBM IV, MELCHIOR, RADM, EURORADM, RACM,
MERCURY, PASSIVE TRACERS).

3 DIFFUSION: diffusion numerical-scheme.

3 DIRECT: main function CTMASTER.f.

3 DRYDEPOSITION: dry deposition velocities.

3 INCLUDE: files that are included by many subroutines; those files contain common definitions.

3 MAITRE: integration function ctm.f.

3 POSTRT: functions called to save data from computations.

3 SETUP: initialization functions.

3 SPLITTING: splitting of first and second order.

3 SCAVENGING: gas below-cloud scavenging.
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Run references directory

Run references contains reliable simulations. Each simulation is defined, in a dedicated directory,
by configuration files.

As for a direct simulation, the corresponding directory contains a “.inc” file which is the input
file (see section 3.2.1, and section 4.1 for details). Moreover, it contains too directories: CONTROL
and PARAMETER.

Most of configuration files are in CONTROL. They begin with “NAM” and define most of simulation
parameters. Additional parameters (especially those related to a specific chemical scheme), which
have to be known at compile time because of memory allocation, are in files contained by PARAMETER:
PARADOM.inc and PARACHEM.inc.

Further details may be found in section 4.1.

3.2.4 Code overview

Figures (3.1), (3.2) and (3.3) display code structure.
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Figure 3.1: Code structure – first initializations and post processing.

20



Chapter 3 – Software structure of Polair

initctm2.f

initconcf.f

CONTROL/NAMCONCF
file_concf(i)

COMDATA.INC
COMLUN.INC

COMDATA.INC
COMLUN.INC

initvdepo.f

CONTROL/NAMVDEPO
file_vdep(i)

COMDATA.INC
COMLUN.INC

CONTROL/NAMCL
file_cl(i)

initcl.f

COMDATA.INC
COMLUN.INC

CONTROL/NAMEMIS
file_emi(i)

initemis.f

COMDATA.INC
COMLUN.INC

CONTROL/NAMSOURC
file_sourc(i)

initconsourc.f

COMDOM.INC
COMUSE.INC
CONST.INC

COMKDIFX.INC
COMKDIFY.INC

kdiffh.f

DEPOT.f splna.f

COMDATA.INC
COMLUN.INC

initfastj.f

EMISSION.f

kdiffv.f

CONTROL/NAMSOURC
CONTROL/TABANG_FASTJ

file_sourc(i)

PARACHEM.INC

PARACHEM.INC

PARACHEM.INC

PARACHEM.INC

PARACHEM.INC

PARACHEM.INC
COMCHEM.INC

PARADOM.INC

PARADOM.INC

PARADOM.INC

PARADOM.INC

PARADOM.INC

PARADOM.INC

PARADOM.INC

initmeteo.f

COMDATA.INC

PARACHEM.INC

PARADOM.INC

readmeteo.f

interpol.f bascule.f

switch.f

COMUSE.INC
COMLUN.INC

PARADOM.INC CONTROL/NAMETEO
file_u
file_v
file_wkz
file_temp
file_hum
file_press

PARADOM.INC

PARADOM.INC

PARADOM.INC

Initialization and pre-processing

Run_references/

Code/

CHEMISTRY/-/INCLUDE

DIFFUSION EMISSION

DIRECT INCLUDE POSTRT SPLITTING

MAITRE SETUP

-/CONTROL

ADVECTION DEPOT

CHEMISTRY
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Figure 3.3: Code structure – computations (for chemistry “EMEP”).
This scheme corresponds to the code version 1.1.
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Chapter 4

How to use

4.1 Configuration files

In this section, we describe all files that are needed in order to set up a simulation, except data files
(see section 4.2 for details on input data-files).

Most inputs files have a fixed format which must remain as is. For instance, one should never
remove or add a line in NAM* files.

4.1.1 Input file

The input file is a parameter of script POLAIR. The input file for a simulation with the chemical
mechanism RADM could be:

#############################################################
# Code path (from home directory)
#############################################################
Polair/Code

#############################################################
# "CONTROL" path (from home directory)
#############################################################
Polair/Run_references/Radm/CONTROL

#############################################################
# File "PARADOM.INC" (path from home directory and name)
#############################################################
Polair/Run_references/Radm/PARAMETER/PARADOM.INC

#############################################################
# File "PARACHEM.INC" (path from home directory and name)
#############################################################
Polair/Run_references/Radm/PARAMETER/PARACHEM.INC

#############################################################
# path (from home directory) to the program
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#############################################################
Polair/Code/DIRECT

#############################################################
# Results directory (from current directory)
# If needed, the directory is made.
#############################################################
RESULTS

#############################################################
# Chemistry scheme: EMEP, OZ16, MOCA, RADM, RACM, MELCHIOR
#############################################################
RADM

#############################################################
# Splitting order: ORDRE1, ORDRE2
#############################################################
ORDRE1

#############################################################
# Compilation line
# Debugging compilation: g77 -g -Wall -W -fbounds-check
# Optimized compilation:
# ifc -lg2c -cm -w -align -O3 -tpp7
# g77 -malign-double -mcpu=pentiumpro -march=pentiumpro -mpentiumpro -O3
#############################################################
ifc -lg2c -cm -w -align -O3 -tpp7

The input file mainly provides directories†1:

3 POLAIR/Code: code directory.

3 POLAIR/Run references/Radm/CONTROL: configuration files (mainly “NAM*”).

3 POLAIR/Run references/Radm/PARAMETER/PARADOM.INC: memory allocation, see description
of PARADOM.INC in section 4.1.2.

3 POLAIR/Run references/Radm/PARAMETER/PARACHEM.INC: parameters for the chemical
mechanism.

3 POLAIR/Code/DIRECT: directory containing CTMASTER.f (main function).

3 RESULTS: directory where output files are stored. This directory is a subdirectory of the
directory where the script is launched.

3 RADM: chemical scheme.

3 ORDRE1: choose “ORDRE1” for a first-order splitting and “ORDRE2” for a second-order splitting.

3 ifc -lg2c -cm -w -align -O3 -tpp7: compilation command, used for compilation of all
Fortran functions.

†1Except for results, paths are referred from the Unix HOME directory.
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4.1.2 Configuration files

In configuration-files directory (e.g. POLAIR/Run references/Radm/CONTROL), one may find:

3 NAMCL: names of files for boundary conditions.

3 NAMCONCI: names of files for initial conditions.

3 NAMDATA: initial time, time step and number of stored steps for meteorological data, emissions,
deposition velocities, forced concentrations, boundary conditions, photolytic constants and
cloud attenuation.

3 NAMEMIS: names of files for emissions.

3 NAMETEO: names of files for meteorological data.

3 NAMPHOTOLYSIS: names of files for clear-sky photolysis rates and indices of those reactions (set
in Spack reactions input-file), time steps (i.e. days at which photolysis rates are provided),
time angles, latitudes and heights (at which rates are provided).

3 NAMPHYS: physical constant for chemical species.

3 NAMPOST: dry deposition velocities, scavenging coefficient and which concentrations should be
saved. One chooses for which species and at which vertical levels concentrations have to be
saved.

3 NAMRES: names of files into which computed concentrations are saved.

3 NAMSOURC: names of files for sources.

3 NAMSCAV: names of species for scavenging.

3 NAMSPECIES: names of species. This file is a SPACK input.

3 NAMUSE: main configuration file, described below.

3 NAMVDEPO: names of files for deposition velocities.

3 TABANG.FASTJ: zenithal angles at which photolytic constants are provided.

3 latlon: latitude/longitude coordinates of grid points (on the ground).

3 maillage: heights of cells interfaces (not nodes).

Each time a file name is provided, it is associated to a given species (except for boundary
condition – see in NAMCL). In files NAMCONCI, NAMEMIS, NAMRES, NAMSOURC and NAMVDEPO, files may
be provided in any order, since they are associated to a given species (specified before the file name).
To insert blanks (between species names and file names), one must use whitespaces instead of tabular.

NAMUSE gathers main simulation-options:

3 Integration issues: initial time (GTM time, in seconds from the beginning of the current year),
time step ∆t, and number of iterations.

3 Iterations at which data is saved (if any).
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3 The horizontal-grid format: Cartesian coordinates or latitude/longitude coordinates

3 The horizontal-grid definition: southwestern-most point of the grid, and space steps ∆x and
∆y.

3 Which physical processes have to be included in the simulation: chemical reactions, advection,
diffusion, surface emissions, volume emissions, dry deposition, below-cloud scavenging.

3 Which inputs are available: boundary conditions, forced concentrations, initial concentrations,
photolytic constants, vertical wind, temperature, pressure, humidity, precipitations, height of
cloud basis, horizontal diffusion constant. If the vertical wind is not available, it is computed
by Polair so that the divergence of the wind is zero.

3 For which species we have: surface emissions, volume emissions, dry deposition velocities and
boundary conditions.

3 Whether comments are displayed on screen.

3 Whether post treatment is used.

3 Whether a previous simulation is used to restart, and in this case what is the number of the
output to start from.

PARADOM.INC is used for memory allocation. Since there is no dynamic memory-allocation,
arrays sizes are set. Thus, one sets:

3 The number of grid nodes Nx, Ny and Nz;

3 The number of points Nxt, Nyt and Nzt where temperature is provided;

3 The number of points Nxp, Nyp and Nzp where pressure is provided;

3 The number of points Nxatt, Nyatt and Nzatt where cloud attenuation is provided;

3 The number of points Nxh, Nyh and Nzh where humidity is provided;

3 The number of points Nxr, Nyr and Nzr where precipitations are provided;

3 The number of points Nxf, Nyf and Nzf where forced concentrations are provided;

3 The number of points Nxl, Nyl and Nzl where boundary conditions are provided.

3 The number of points Nxdd, Nydd and Nzdd where data is provided for dry deposition velocities
computing and Nland, Nseason, Nlayer additional dimensions for dry deposition parameters.

In fact, Nx* (i.e. Nxt, Nxp, Nxh, etc.) equals 1 if the involved field is not available, or equals Nx
if the involved field is available. This is due to Fortran 77 which doesn’t enable dynamic memory
allocation. For instance, if temperature is not available, one sets (Nxt, Nyt, Nzt) to (1, 1, 1) to save
memory (i.e. to allocate a 1× 1× 1 array). Otherwise, temperature is available (at all nodes), and
(Nxt, Nyt, Nzt) equals (Nx, Ny, Nz).

If all options are set, the last requirement is to provide input data-files.
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4.2 Input data-files

4.2.1 Notations

Recall the following definitions. Cell centers are called nodes. Cells boundaries are called interfaces.
Along x, there are Nx nodes and Nx + 1 interfaces. For any field, Nt is the number of timesteps at
which data for the field is available.

In all data files, values are stored in single-precision binary files as below:

* Loop on time t

* Loop on z

* Loop on y

* Loop on x

Let those loops be symbolized by {t, z, y, x}.

Recall that the set of dates, in which t is running, is defined in NAMDATA. Spatial loops depend
on the grid and on the kind of data. 3D data may be provided at Nx × Ny × Nz nodes†2 (e.g.
concentrations) or at cells interfaces (e.g. wind speeds) in the normal direction†3 to the interface.

Let xi, yi and zi be nodes coordinates. Let αi, βi and γi be coordinates of cell corners (which
provide “interfaces coordinates”) so that:

xi−1 < αi < xi, yi−1 < βi < yi, and zi−1 < γi < zi

As for xi, yi and zi, index i runs in J1, NdK where d ∈ {x, y, z}. As for αi, βi and γi, index i runs
in J1, Nd + 1K where d ∈ {x, y, z} (respectively).

4.2.2 Data provided at cells interfaces

Vertical-diffusion constant Kzz

Along z, the vertical-diffusion constant Kzz is provided on interfaces (along z). Then, the corre-
sponding loops are {t, γ, y, x}†4; Nx ×Ny × (Nz + 1) values are read.

Notice that values at the domain bottom and at the domain top (i.e. for γ1 and γNz+1) is
provided, but it is not used by Polair.

Wind speed

Wind speeds are provided in format {t, z, y, α}, {t, z, β, x} and {t, γ, y, x} for winds speeds along x,
y and z respectively.

In case where the domain bottom is at ground level (i.e. γ1 = 0), notice that ground-level
wind-speeds along z is provided and should be set to zero.

If latitude/longitude coordinates are used, then horizontal winds must be transformed. Let u
be the zonal wind and v the meridional wind. Wind fields must be transformed according to the
following transformations:

U =
u

cosϕ
and V = v cosϕ

where ϕ is the latitude.
U and V are zonal and meridional winds for Polair.

†2i.e. cells centers.
†3The normal is directed along increasing coordinates.
†4Previously defined as symbol for: loop on t, loop on γ, loop on y and loop on x.
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4.2.3 Data provided at nodes

3D data

Emissions (volume) and initial concentrations are written in format {t, z, y, x}; Nx×Ny×Nz values
are read. Notice that initial concentrations are needed for every species. One cannot choose for
which species initial concentrations are provided.

Specific humidity (also called water mass fraction), temperature (in K) and pressure (in Pa) are
written in the same format, {t, z, y, x} values are read. For the EMEP chemistry model relative
humidity is needed, and note that dry deposition velocities have to be read and not computed.

For each photolysis reaction, clear-sky photolysis rates are read in files in format {d, angle, lat, z}
where d is the time, angle the time angle (in [0, 12]), lat is the latitude and z is the height. Those
coordinates are defined in NAMPHOTOLYSIS.

Cloud attenuation coefficients are numbers by which all photolytic constants are multiplied.
They are provided in format {t, z, y, x}.

2D data

Surface emissions are in format {t, y, x}. If read (i.e. computed outside Polair), deposition velocities
are provided in format {t, y, x}. Otherwise, they are computed according to the following data set.
Surface temperature (in K) surface pressure (in Pa), snow depth (in m), rain intensity (in mm.h−1),
surface solar radiation (in W.m−2.s), surface latent heat flux (in W.m−2.s), soil wetness level (in m)
and module of surface wind (in m.s−1) are in format {t, y, x}. Land Use Category data (in %) are
in format {LUC, y, x}.

For scavenging height of cloud basis (in m) are in format {t, y, x}.
Boundary conditions are known concentrations outside the domain. They are provided on an

extra layer around the domain. For instance, along x direction, one provides concentrations at
nodes (x0, yj , zk) and (xNx+1, yj , zk) where j ∈ J1, NyK and k ∈ J1, NzK. If boundary conditions are
provided in x or y direction, they are available at both sides, e.g. for x0 and xNx+1. In z direction,
boundary conditions are provided only at the top (zNz+1).

4.2.4 Remarks

Notice that the time step for input data (specified in NAMDATA) cannot be strictly smaller than the
integration time step (specified in NAMUSE).

4.3 Output files

4.3.1 Simulation configuration

In the results directory, the directory info stores the configuration of the simulation. CONTROL
directory, PARADOM.INC, PARACHEM.INC, and the script input-file are saved. Moreover, the file
config.log stores NAMUSE, NAMPOST and the version of Polair which was used. Finally, the file
timing.log stores: the name of the host which computed results, the date and the CPU time used
by the simulation.
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4.3.2 Concentrations

Concentrations are stored in binary files. Concentrations of species (indicated in NAMRES†5) are
stored in format {t, z, y, x} (z runs in a set specified in NAMPOST†5). Concentrations may be integrated
(in time) or not†6. See explanations below.

Integrated concentrations

Measurements may be integrated (over a given period, e.g. one hour) concentrations, not instanta-
neous concentrations. So, Polair is able to perform a trapezoidal integration over a given period of
time.

A number Nint of iterations over which concentrations are to be integrated is provided in
NAMPOST. Let the initial state (initial concentrations) be the step #0 and the state after one step be
the step #1 of the simulation. Then the first integration is performed between steps #0 and step
#Nint. The second integration is performed between steps #Nint and #(2×Nint).

Instantaneous concentrations

If instantaneous concentrations are chosen, notice that initial concentrations are saved.

4.3.3 Remarks

In the absence of diffusion, there will be no deposition and surface emissions.

4.4 Compiling and running Polair

4.4.1 Requirements

To run Polair, one needs a Fortran 77 compiler, BLAS and LAPACK.

4.4.2 Getting Polair

In order to use Polair 1.1 (for instance), one uses CVS features. Let $CVSROOT be the CVS root-
directory which stores Polair (for instance, at CEREA, it is /u/cergrene/0/sportiss/cvsroot).
In your home directory, launch the command: “cvs -d [$CVSROOT] export -r Polair-1 1
Polair”.

It is even possible to perform this download from a remote server. Please refer to CVS
documentation for that purpose. If you want to import the code in another directory (the default
directory being Polair), type: “cvs -d [$CVSROOT] export -r Polair-1 1 -d [your Polair
directory] Polair”. Nevertheless, simulations in Run references work if Polair is downloaded
in directory Polair (from the home directory)†7.

Data should be obtained by other means: it is not included in the CVS root-
directory. At CEREA, data (for simulation in Run references) is mainly in
/u/cergrene/0/sportiss/POLAIR/Data.

†5See section 4.1.2.
†6The choice is made inNAMPOST.
†7See the input file of the script, which provides directories.
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Then, add the Polair-script directory (Polair/bin) in Unix variable PATH. It may be done by
adding, in the file “.tcshrc” (in your home directory), the following line: “set path = ($path
$HOME/Polair/bin)”. Then, open a new terminal so that PATH should be changed (when a terminal
is launched, the file “.tcshrc” is read in order to set up the configuration).

4.4.3 Compiling and running Polair

The Polair script enables to launch Polair easily. Launch: “POLAIR InputFile.inc” where
InputFile.inc is the input file described in section 4.1.1. Then, Polair is compiled and is launched.

One may launch a reference simulation (in Run references). To do so, one may copy one
of Run references directories (let’s say Radm). Then, one must change paths in the main input
file (Radm.inc, for Radm), and maybe the compilation line. Finally, paths (to input data) in
configuration files should be changed. Then, “POLAIR Radm.inc” will launch the right simulation.

4.4.4 Working with Polair

One of the best ways to work with Polair is to make a working directory (for instance, ∼/runs) in
which all simulations are stored in dedicated directories: ∼/runs/Radm IOP2, ∼/runs/Radm IOP5,
∼/runs/Mercury 2999, ... Actually, one may store several simulations in the same directory pro-
vided that they are similar (recall that the simulation configuration is stored with results – see
section 4.3.1).

Those simulations may share the same code (e.g. ∼/codes/Polair-1.1). If changes in the code
are needed for a given simulation, then one could copy the modified code in the working directory.
For instance, if one wants to modify the code for the simulation in ∼/runs/Radm IOP5, one could
put the modified code in ∼/runs/Radm IOP5/Polair.
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Additional abilities

5.1 Modal models of atmospheric aerosols

5.1.1 Modeling

The aerosol distribution may be modeled by the general dynamic equation:

∂n

∂t
= (

∂n

∂t
)adv + (

∂n

∂t
)diff + (

∂n

∂t
)coag + (

∂n

∂t
)cond + (

∂n

∂t
)nucl + (

∂n

∂t
)emi

where n(v, t) is the number distribution of aerosols, which volume ranges between volumes v and
v + dv. A similar equation gives the evolution of chemical species in the aerosols. Adv, Diff, Coag,
Cond, Nucl and Emi stand respectively for advection (including gravitational settling), diffusion,
coagulation, condensation/evaporation, nucleation and emission.

In modal models the number of aerosols is fixed as the sum of two (or three) log-normal distribu-
tions: for instance, the first one describes the nuclei mode, the second one the accumulation mode.
In practice evolution equations for three moments, M0, M3 and M6, of each mode are solved. To
know chemical composition of aerosols the third moment is subdivided in as many parts as there are
involved chemical gaseous species. Finally to model the aerosol distributions Naero = 2 ∗ (2 + Ngas)
moments and Ngas concentrations need to be computed (Ngas = number of gaseous species involved).

5.1.2 Aerosols in POLAIR

To compute aerosols, the first step is to set LAERO = .TRUE. in NAMUSE. It is impossible to
compute aerosol if LCHIM = .FALSE. because the chemistry routines chem.f calls the aerosol
solver.

As for gaseous concentrations it is possible or not to take into account advection (LADV EC)
or diffusion(LDIFF ) for example. For aerosols other booleans need to be set to solve the general
dynamic equation, LNUCL, LCOND, LCOAG, LEMISAER, respectively for nucleation, con-
densation, coagulation and emission. Some of them need complementary information if activated
(see NAMAERO). The last one LSPLAER allows to choose a solving method, aerosol processes
are splitted and solved with a second-order midpoint explicit scheme (Explicit Trapezoidal Rule) or
not splitted and solved with Rosenbrock.

Initial values must be given in NAMAERO, for each mode number of aerosol, mean diameter
and standard deviation. Percentage of sulfate, nitrate and ammonium in the initial distribution.

The output are set in NAMPOST, moments are written in result files . A post-treatment is
needed to compute the number of aerosols, the diameter or their composition.
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5.1.3 More information

More detailed informations are available in [17]:

1. about modal models,

2. about aerosol programming in POLAIR→ sartelet/POLAIR/Code/README.MODIF AERO.

5.1.4 Future

The next version of POLAIR should contain a size-resolved simulation of aerosols.
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5.2 Inverse modeling and data assimilation

5.2.1 Theory

The purpose of inverse modeling and data assimilation is to combine observations (measurements)
and model results. The classical approach for variational methods (like 4Dvar) yields to minimizing
a cost function (let say J), defined as a gap between model outputs and observations, with respect
to parameters (for example: initial conditions, emission factors,...).

A gradient-like method is used in order to find iteratively the solution of the control problem.
This makes necessary to compute several times the gradient of J . Due to RAM limitations a tricky
algorithm is used in order to compute it. The key point is to get the adjoint code of calc conc†1

and its dependencies. It is provided by O∂yssée ([2]), an automatic differentiation tool, on the basis
of some of the subroutines of Polair.

5.2.2 The algorithm to compute the gradient

Polair may be described at the algorithmic level as follows:

1. Initialization of time-independent data,

2. Time loop (labelled by 1 ≤ i ≤ n):

• read forced data φi−1 (this contains data needed by the solver to compute concentrations
at time ti),

• compute new state Ci = F (Ci−1, φi−1)†2,

• compute the cost function at time ti,

• update the cost function: J = J + Ji.

Computing ∇J may be directly done. This is unfortunately unaffordable due to storage require-
ments: it would need to store all the forced data (φ0, . . . , φn−1) and the trajectory (C0, . . . , Cn).
We use another approach by noticing that ∇J =

∑
i ∇Ji, that is in the case of data assimilation:

∇uJ =
∑

1≤i≤n

(
∂C1

∂C0

)T

|t0
. . .

(
∂Ci

∂Ci−1

)T

|ti−1

(
∂Ji

∂Ci

)T

|ti

= . . .×
[(

∂Jn−2

∂Cn−2

)T

+
(

∂Cn−1

∂Cn−2

)T
[(

∂Jn−1

∂Cn−1

)T

+
(

∂Cn

∂Cn−1

)T (
∂Jn

∂Cn

)T
]]

(5.1)

We now need adjoint models in order to compute, for any vector z (with coherent dimension):

(
∂Ci

∂Ci−1

)T

|ti−1

z (5.2)

This requires as well to store the trajectory (C0, C1, . . . , Cn) (practically in files).
The algorithm now reads:

1. Ĉn =
(

∂Jn
∂Cn

)T
,

†1Polair subroutine computing one timestep.
†2Actually, F is subroutine calc conc.
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2. backward time loop (labelled by n ≥ i ≥ 1):

• read forced data φi−1,

• read saved state Ci−1,

• compute Ĉi−1 =
(

∂Ci
∂Ci−1

)T

|Ci−1,φi−1

Ĉi,

• update Ĉi−1 = Ĉi−1 +
(

∂Ji−1

∂Ci−1

)T
.

3. the output is ∇C0J = Ĉ0.

An example of this implemented algorithm can be found in ??.

5.2.3 How to get the adjoint subroutine of calc conc

The purpose is to obtain the derivative code of calc conc with as few manual interventions as
possible.

Using O∂yssée

O∂yssée is an automatic differentiation tool for Fortran77 code whose user’s guide can be downloaded
at http://www.inria.fr/rrrt/rt-0224.html.

Let’s see through a simple example how to obtain the derivative code of the subroutine example
contained in file example.f. It may be achieved in three steps:

1. Load the subroutine in O∂yssée: load example.f

2. Differentiate in adjoint mode (cl) with respect to the input variables: diff -h example -cl
-vars input

3. Get the adjoint code in adjoint.f: getdiffprogram examplecl adjoint.f

Adjoint of solvlin

The adjoint code of the linear solver solvlin can not be obtained directly by using O∂yssée. In
fact, solvlin calls subroutines dgetrf and dgetrs coming from the Lapack library that is not
automatically differentiable by O∂yssée. Moreover it is cheaper (in terms of CPU time) to write
the adjoint by hand. The general algorithm of the adjoint of linear solvers may be found in [18].

Differentiation of Polair

The ody.file contains the commands to get the adjoint code of calc conc:
load CODE/ADVECTION/NU U.f CODE/ADVECTION/NU V.f CODE/ADVECTION/NU W.f
CODE/ADVECTION/advech.f CODE/ADVECTION/advecv.f CODE/ADVECTION/advecx.f
CODE/ADVECTION/advecy.f CODE/ADVECTION/phi.f CODE/ADVECTION/soladvx.f
CODE/ADVECTION/soladvy.f CODE/ADVECTION/soladvz.f

load CHIMIE/chem.f CHIMIE/fexchem.f CHIMIE/jacdchemdc.f CHIMIE/roschem.f
CHIMIE/kinetic.f CHIMIE/convers.f CHIMIE/splnb.f CHIMIE/angzen.edf.f

load CODE/DIFFUSION/diff x.f CODE/DIFFUSION/diff y.f CODE/DIFFUSION/diff z.f
CODE/DIFFUSION/fexdiff x.f CODE/DIFFUSION/fexdiff y.f CODE/DIFFUSION/fexdiff z.f
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CODE/DIFFUSION/jacddiffdc x.f CODE/DIFFUSION/jacddiffdc y.f
CODE/DIFFUSION/jacddiffdc z.f CODE/DIFFUSION/rosdiff x.f CODE/DIFFUSION/rosdiff y.f
CODE/DIFFUSION/rosdiff z.f CODE/DIFFUSION/solvtridiag x.f CODE/DIFFUSION/solvtridiag y.f
CODE/DIFFUSION/solvtridiag z.f

load CODE/EMISSION/sourc.f

load SPLITTING/calc conc.f

load solvlin.f

libgraph

diff -cl -h calc conc -vars DLCG
getdiffprogram calc conccl calc conccl

where CODE, CHIMIE and SPLITTING have to be replaced by the directory where files may be
found.

Notice that the routine solvlin has to be replaced by a fake subroutine that respects the variable
dependencies without any calls to the Lapack library.

One can launch ody.file through the command line:
echo "loadbatch ody.file" | odyssee.

The script ”nettoie”

The adjoint code provided by O∂yssée can not be directly used:

• The saving lines before each call to solvlin has to be suppressed.

• O∂yssée includes systematically an include file odyparam.inc in each adjoint subroutines.
This file has to be created.

• O∂yssée copies some of the include files (used by the direct code) in each adjoint subroutines.
It is not done properly and that can lead to errors when compile them. So, it is more convenient
to suppress systematically all the declaration coming from the include files and to put them
in the file odyparam.inc.

One can apply the script ”nettoie” that automatically performs the operations mentioned above.

5.2.4 Validation

The Taylor’s test indicates the validity of the resulting adjoint model by computing the ratio of
∇J given by the adjoint model over the value provided by finite differences, with different values
of the perturbation. The ratio is plotted in Figure 5.1 and is close to 1 for “appropriate values” of
perturbation (if the perturbation is too small, round-off errors appear; if it is too large, linearization
is no more valid).

Moreover, our tests indicate that the ratio of the CPU time needed for the adjoint model over
the CPU time for the initial model is about 4 ∼ 5, which corresponds to a rather classical ratio.
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Figure 5.1: Taylor’s test for POLAIR. DF is the gradient
computed with finite differences, GRAD with the adjoint
model.

5.2.5 Description of a future reference run

The required functionalities to perform 4D-var are:

• a cost function cost,

• adjoint subroutines of calc conc and cost,

• the algorithm that combines the adjoint subroutines in order to compute the gradient of J ,

• the optimization driver BFGS.
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Chapter 6

Some Results obtained with POLAIR

6.1 Results

6.1.1 Continental scale: EMEP Chemistry

POLAIR has been used for simulating EMEP chemistry at continental scale. Benchmarks have
been performed with respect to the CTM DIFEUL developed at Electricité de France.

6.1.2 Continental scale: ETEX campaign

POLAIR has been used in order to simulate the campaign ETEX and perform inverse modeling of
sources. For direct simulation, POLAIR ranks in the best models.

6.1.3 Regional scale: ESQUIF campaign

The ESQUIF†1 campaign was a deep study on air quality in Île de France, i.e. Paris region.
Twelve intensive observation periods (IOP) brought interesting data to which a CTM is likely to be
compared.

On IOP #2, Polair computations were compared to measurements and to Azur computations
(a CTM written by LISA†2). Results were as good as Azur results. Ozone-prediction accuracy was
satisfactory.

Figures (6.1) and (6.2) display some results that were computed by Polair.

†1Étude et simulation de la qualité de l’air en Île de France – http://climserv.lmd.polytechnique.fr/esquif/.
†2Laboratoire inter-universitaire des systèmes atmosphériques – http://www.lisa.univ-paris12.fr/.
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Figure 6.1: Ozone concentration in Paris 18th, from 7th to 9th August 1998, compared to measure-
ments.

Figure 6.2: Ozone concentations over Île de France, at t = 14h and at ground level (z = 15 m).
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Chapter 7

Future and work in progress

The following features of POLAIR are currently under development or are planned:

1. parameterization of convective processes at continental scale,

2. size-resolved description of aerosols,

3. extension to new “chemical” mechanisms: pesticides, radionuclides, heavy metals and mercury,

4. a Plume-In-Grid model will be included in POLAIR,

5. sequential data assimilation will be provided for POLAIR,

6. the meteorological and chemical preprocessors of POLAIR will be updated.
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