Improving numerical dispersion modelling in built environments with the IEnKS
Air-pollution modelling at the local scale requires accurate meteorological inputs such as from the velocity field. These meteorological fields are generally simulated with microscale models (here Code_Saturne), which are forced with boundary conditions provided by larger scale models or observations. Local atmospheric simulations are very sensitive to the boundary conditions, whose accurate estimation is difficult but crucial. When observations of the wind speed and turbulence or pollutant concentration are available inside the domain, they provide supplementary information via data assimilation, to enhance the simulation accuracy by modifying the boundary conditions. Among the existing data assimilation methods, the iterative ensemble Kalman smoother (IEnKS) is adapted to urban-scale simulations. This method has already been found to increase the accuracy of wind-resource assessment. Here we assess the ability of the IEnKS method to improve scalar-dispersion modelling—an important component of air-quality modelling—by assimilating perturbed measurements inside the urban canopy. To test the data assimilation method in urban conditions, we use the observations provided by the Mock Urban Setting Test field campaign and consider cases with neutral and stable conditions, and the boundary conditions consisting of the horizontal velocity components and turbulence. We prove the capacity of the IEnKS method to assimilate observations of velocity as well as pollutant concentration. In both cases, the accuracy of pollutant concentration estimates is enhanced by 40–60%. We also show that assimilating both types of observations allows further improvements of turbulence predictions by the model.
This paper, led by Cécile Defforge entitled Improving Numerical Dispersion Modelling in Built Environments with Data Assimilation Using the Iterative Ensemble Kalman Smoother has been published (open access) in Boundary-Layer Meteorology.