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- What is assimilation ?

- Numerical  weather  prediction.  Principles  and
performances

- Definition of initial conditions
- Bayesian Estimation

- One first step towards assimilation : ‘Optimal Interpolation’

- The Best Linear Unbiased Estimate (BLUE)

The temporal dimension : Kalman Filter and Variational
Assimilation



- Numerical  weather  prediction.  Principles  and
performances



Results from

European Centre for Medium-range Weather Forecasts
(ECMWF)

(Centre Européen pour les Prévisions Météorologiques 2 Moyen Terme,
CEPMMT)

Located in Reading (UK), Bologna (Italy) and Bonn (Germany)
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ENS Meteogram
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Control (Cluster 3)

Operations (Cluster 3)

ECMWF ENSEMBLE FORECASTS
Monday 25 January 1993 12z ECMWF Forecast t+168 VT: Monday 1 February 1993 122

500 hPa geopotential
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Fig. 1: Members of day 7 forecast of 500 hPa geopotential height for the ensemble originated from
25 January 1993.
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Figure 6 Hurricane Katrina mean-sea-level-pressure (MSLP) analysis for 12 UTC of 29 August 2005 and
t+84h high-resolution and EPS forecasts started at 00 UTC of 26 August:

Ist row:

I* panel: MSLP analysis for 12 UTC of 29 Aug

2™ panel: MSLP t+84h T;511L60 forecast started ar 00 UTC of 26 Aug
3" panel: MSLP t+84h EPS-control T;255L40 forecast started at 00 UTC of 26 Aug
Other rows: 50 EPS-perturbed T;255L40 forecast started at 00 UTC of 26 Aug.

The contour interval is 5 hPa, with shading patters for MSLP values lower than 990 hPa.

ECMWEFE, Technical Report 499, 2006




ECMWF ENSEMBLE FORECASTS

Monday 05 January 2026 0000 UTC ECMWF forecast t+168 VT:Monday 12 January 2026 0000 UTC
MSLP (contour every 5hPa) Temperature at 850hPa (only -~ and 16 isolines are plotted)

Member5  Cluster 2 Cluster 4 Cluster 4

Member 7

Cluster 4

(o

lember 6

Member13

Cluster 4
%

Member24  Clusier 2 Member30  Cluster &

Memberd2  Clusier 2
1=

Memberd7  Clusier 2

PR /r_a\af»,;




Pourquoi les météorologistes ont-ils tant de peine a prédire le temps
avec quelque certitude ? Pourquoi les chutes de pluie, les tempétes
elles-memes nous semblent-elles arriver au hasard, de sorte que bien
des gens trouvent tout naturel de prier pour avoir la pluie ou le beau
temps, alors qu’ils jugeraient ridicule de demander une eclipse par
une priere ? Nous voyons que les grandes perturbations se produisent
genéralement dans les régions ou [’atmosphere est en équilibre
instable. Les metéorologistes voient bien que cet équilibre est instable,
qu’'un cyclone va naitre quelque part ; mais ou, ils sont hors d’etat de
le dire ; un dixieme de degré en plus ou en moins en un point
quelconque, le cyclone eclate ici et non pas la, et il étend ses ravages
sur des contrées qu’il aurait epargnées. Si on avait connu ce dixieme
de degre, on aurait pu le savoir d’avance, mais les observations
n’étaient ni assez serrées, ni assez précises, et c’est pour cela que tout
semble dii a [’intervention du hasard.

H. Poincaré, Science et Méthode, Paris, 1908



Why have meteorologists such difficulty in predicting the weather with any
certainty? Why is it that showers and even storms seem to come by chance,
so that many people think it quite natural to pray for rain or fine weather,
though they would consider it ridiculous to ask for an eclipse by prayer?
We see that great disturbances are generally produced in regions where
the atmosphere is in unstable equilibrium. The meteorologists see very
well that the equilibrium is unstable, that a cyclone will be formed
somewhere, but exactly where they are not in a position to say; a tenth of a
degree more or less at any given point, and the cyclone will burst here and
not there, and extend its ravages over districts it would otherwise have
spared. If they had been aware of this tenth of a degree they could have
known it beforehand, but the observations were neither sufficiently
comprehensive nor sufficiently precise, and that is the reason why it all
seems due to the intervention of chance.

H. Poincaré, Science et Méthode, Paris, 1908
(English transl. by F. Maitland, Science and Method,

T. Nelson and Sons, London, 1914) 7
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ECMWEF data coverage (used observations) - SYNOP-SHIP-METAR
2026010421 to 2026010503
Total number of obs = 101046
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ECMWEF data coverage (used observations) - RADIOSONDE

2026010421 to 2026010503
Total number of obs = 622
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ECMWEF data coverage (used observations) - IASI
2026010421 to 2026010503
Total number of obs = 24255
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ECMWEF data coverage (used observations) - AIRCRAFT
2026010421 to 2026010503
Total number of obs = 526513
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ECMWF data coverage (used observations) - GPSRO
2026010421 to 2026010503
Total number of obs = 96810
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As o1 2023

We receive 800 million observations daily,
and 60 million quality-controlled observations
are available daily for use in the Integrated
Forecasting System (IF'S), the vast majority of
these are satellite measurements, but ECMWF
also benefits from all available observations
from non-satellite sources, including surface-
based and aircraft reports.



Synoptic observations (ground observations, radiosonde observations),
performed simultaneously, by international agreement, in all meteorological

stations around the world (00:00, 06:00, 12:00, 18:00 UTC), and are in practice
concentrated over continents.

Asynoptic observations (satellites, aircraft), performed more or less
continuously in time.

Direct observations (temperature, pressure, horizontal components of the
wind, moisture), which are local and bear on the variables used for describing
the flow in numerical models.

Indirect observations (radiometric observations, ...), which bear on some more
or less complex combination (most often, a one-dimensional spatial integral)
of variables used for for describing the flow

y=H(x)

H : observation operator (for instance, radiative transfer equation)
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Total number of obs = 3990
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Weather prediction, at the occasional exception of very short
range (a few hours at most), 1s performed by using
appropriate numerical models. There exist at present two
forms of numerical models

- Physical models, built on an explicit formulation of the

physical laws which govern the evolution of the state of
the atmosphere.

- In recent years, models based on Machine Learning (or
Artificial Intelligence) have been developed. They are built
on training sets of past atmospheric states.

29



Physical models

Basic physical laws

=  Conservation of mass
Dp/Dt + pdivU = 0

= Conservation of energy
De/Dt - (p/p?) Dp/Dt = Q

= Conservation of momentum
DU/Dt + (1/p)gradp-g +2 QAU=F

= Equation of state
fip,p,e)= 0 (for a perfect gas p/p=rT, e = C,T)

= (Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, ...)

Dq/Dt + g divU =8

These physical laws must be expressed in practice in discretized (and necessarlly

imperfect) form, both in space and time = numerical model 30



Parlance of the trade :

* Adiabatic and inviscid, and therefore thermodynamically
reversible, processes (everything except O, F and S) make
up ‘dynamics’

* Processes described by terms O, F'and S make up ‘physics’



All presently existing physical models are built on more or
less simplified forms of the general physical laws. Global
numerical models, used either for large-scale
meteorological prediction or for climate simulation, are at
present built on the so-called primitive equations. Those
equations rely on several approximations, the most
important of which being the hydrostatic approximation,
which expresses balance, in the vertical direction, of the
gravity and pressure gradlent forces. This forbids explicit
descnptlon of thermal convection, which must be
‘parameterized’ in some appropriate way.

More and more [limited-area models have been developed
over time. They require appropriate definition of lateral
boundary conditions (not a simple problem). Many of them
are non-hydrostatic, and therefore allow description of
convection.

32



There exist at present two forms of horizontal spatial
discretization

- Gridpoint discretization

- (Semi-)spectral discretization (mostly for global models,
and most often only in the horizontal direction)

Finite element discretization, which is very common in many forms of
numerical modelling, is rarely used for modelling of the atmosphere. It
is more frequently used for oceanic modelling, where it allows to take
account of the complicated geometry of coast-lines.

33






In gridpoint models, meteorological fields are defined by
values at the nodes of the grid. Spatial and temporal
derivatives are expressed by finite differences.

In spectral models, fields are defined by the coefficients of
their expansion along a prescribed set of basic functions. In
the case of global meteorological models, those basic
functions are the spherical harmonics (eigenfunctions of
the laplacian at the surface of the sphere).

35



Modéeles (semi-)spectraux

T(u=sin(latitude), A=longitude) = ZTn’”Yn’" (u,A)

O<n<oo
-nsmsn

ou les Y"(u,A) sont les harmoniques sphériques

Y (u,A) < P" (w)exp(imA)

an (u) est la fonction de Legendre de deuxiéme espece

ﬁ dn+m

an(.u’) X (1 - ‘u2)2 d n+m
U

(u ="
n et m sont respectivement le degré et 1'ordre de ’harmonique Y, (u,A)

n=20,1,... -n<m=<n






Linear operations, and in particular differentiation with
respect to spatial variables, are performed in spectral
space, while nonlinear operations and ‘physical’
computations (advection by the motion, diabatic heating
and cooling, ...) are performed in gridpoint physical space.

This requires constant transformations from one space to

the other, which are made possible at an acceptable cost

through the systematic use of Fast Fourier Transforms.

For that reason, those models are called semi-spectral.

38



Numerical schemes have been gradually developed and
validated for the ‘dynamics’ component of models, which
are by and large considered now to work satisfactorily
(although regular improvements are still being made).

The situation 1s different as concerns ‘physics’, where many
problems remain (as concerns for mstance the water cycle
and the associated exchanges of energy, the interactions
between the atmosphere and the underlying medium, or the
statistical representation, or ‘parameterization’, of subgrid
scale processes). ‘Physics’ as a whole remains the weaker
point of models, and is still the object of active research.

39



5. SCHEMA DES INTERACTIONS PHYSIQUES DANS LE MODELE
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Many other processes have been introduced with time in
numerical models

- different phases of water (in particular cloudiness, including
various types of clouds)

- radiative impact of aerosols, either natural or anthropogenic
- water run-off (including underground run-off)

- secondary components (ozone, ...)

effect of solar eclipses (ECMWF Technical Memorandum 920,
December 2024)

41



Machine Learning models

Machine Learning (aka Artificial Intelligence)
Set of empirical (vector) data
(xiﬁyi) ” 1= laN

with no a priori explicitly known relationship between the
inputs x;‘s and the outputs y;‘s.

Look for an explicit relationship of the form

y = f(x)

at least over a practically useful domain of variation of x.



Machine Learning (2)

Inputs x;°s @ > Outputs y;‘s

Replace black box with (possibly approximate) function y = f(x)

Neural networks define the function f as a composition of basic
‘stmple’ functions, called activation functions.




Machine Learning (3)

Sigmoid functions, e.g. the hyperbolic tangent function tanh(x),
are very commonly used as activation functions

tanh(x) = (e**-1) / (e*+ 1 2o——————————
@)= (@) (@+1) —

1.0f

0.5r

0.0

-0.5F

-1.0

Affine change of coordinates. Four degrees of freedom : two for
the coordinates of the central point, and one for the range of
variation in each direction.



Machine Learning (4)

A typical network consists of layers of elementary activation
functions, or neurons, the neurons 1n each layer being
compositions of neurons in previous layers. Weights given to the
neurons are determined by minimization of a loss function that
measures the misfit between the original and computed outputs
(for example a quadratic difference).



Machine Learning (5)
Nonlinearities

2.51 —— RelLU

= GELU
2.0 -

1.5 A

1.0

0.5 -

0.0 A

Other commonly used activation functions

ReLU (rectified linear unit) (blue)

Gaussian-error linear unit (GELU) (green)



Machine Learning (6)

Neural networks

This approach, with many variants, has proved to be extremely
efficient, and 1s now used for innumerable applications 1n many
different domains.

It has been applied to numerical weather prediction. A number of
recently developed ML softwares are

GraphCast
Pangu-Weather
FourCastNet
FuXi

AIFS (ECMWF)



Machine Learning (6). Neural networks

FuXi ({RZ£) has been trained on 39 years of ERAS5. It has a

spatial resolution of 0.25° (28 km, against 9 km for ECMWF

HRES) and produces forecasts for a number of meteorological
variables

-

8
Lead Time (days)

Fig. B.2: Skillful forecast lead times (ACC >0.6) of ECMWF HRES, Graph-
cast, and FuXi for 4 surface variables (M SL, T2M, U10, and V10) and 4
upper-air variables (Z500, 7500, U500, and V'500) at 500 hPa pressure level.



European Centre for Medium-range Weather Forecasts
(ECMWF)

(Centre Européen pour les Prévisions Météorologiques 2 Moyen Terme,
CEPMMT)

Centre 1s a common service to 23 European countries, with cooperative
agreements with 12 other countries.

Located in Reading (UK), Bologna (Italy) and Bonn (Germany)

49



ECMWFEF's core mission is to:

* Produce numerical weather forecasts and monitor planetary
systems that influence weather

 Carry out scientific and technical research to improve forecast
skill

* Maintain an archive of meteorological data

Produces regular (and in particular daily) forecasts, at
various ranges, for various aspects of the weather system

50
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Integrated Forecasting System (IFS)
June 2023 High-resolution model (HRES, now IFS-CF)

Triangular semi-spectral truncation TCO1279 / O1280 (horizontal resolution
~ 9 kilometres)

Hydrostatic primitive equations. 137 vertical levels (0 - 80 km)
Finite-element vertical discretisation (hybrid coordinate)

Dimension of corresponding state vector > 10°

Integration timestep (semi-Lagrangian semi-implicit scheme): 450 seconds

October 2024 Integrated in ensemble form (1 control + 50 perturbed
forecasts) four times a day (from 00, 06, 12 and 18 UTC) to 6-day range and
twice a day (from 00 and 12 UTC) to 15-day range.
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Integrated Forecasting System (IFS) (contd)

- ECMWF Reanalysis v5 (ERAS5). Covers the period from
January 1940 to present, provides hourly estimates of a large
number of atmospheric, land and oceanic climate variables at
32-km horizontal resolution and 137 pressure levels. Includes
estimates of uncertainty for all variables. It is produced using
4D-Var data assimilation over 12-hour assimilation windows,
and 1s constantly updated.

- Subseasonal and seasonal forecasts.
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Artificial Intelligence/Integrated Forecasting System (AIFS)

AIF'S Single Implemented operationally on 25 February 2025

Developed on Machine Learning through graph neural networks. Trained in-
house on 1979-2018 ERAS reanalyses. Loss function defined on Continuous
Ranked Probability Score (CRPS)

Horizontal grid spacing of 32 km, 13 pressure-levels

90% decrease in computing time wrt IFS, and reduction of approximately
1,000 times 1n energy use for making a forecast.

Run twice a day, with ‘timestep’ of 6 hours, to 15-day range

Ensemble version AIFS ENS implemented operationally on 1 July 2025
(50 + 1 runs at 32-km resolution)
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Results on site of ECMWF www.ecmwf.int

In particular

T. Haiden et al, Evaluation of ECMWFE forecasts,
Technical Memorandum 931, September 2025, ECMWF,
Reading, UK.

Available at the address :
81680-evaluation-of-ecmwf-forecasts.pdf
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Fig. 1. Time series of 12-month running mean forecast skill of the ECMWF high-resolution deterministic Integrated Forecasting System (IFS, solid lines) and ML IFS (AIFS, dashed
lines). Skill is expressed as the anomaly correlation (= correlation between forecasts and verifying analyses, normalised by climatological signal) for the 500 hPa height. Thick
(thin) curves show northern (southern) hemisphere averages for day-3 (blue), day-5 (red), day-7 (green) and day-10 (yellow). (Figure courtesy Martin Janousek, ECMWF).
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Figure 18: As Figure 17 but for verification against radiosonde observations.
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Figure 11: As Figure 8 but for 850 hPa temperature and including the tropics.
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Figure 9: Ensemble spread (standard deviation, dashed lines) and RMS error of ensemble-mean (solid lines) for
winter 20242025 (upper figure in each panel), and differences of ensemble spread and RMS error of ensemble
mean for last three winter seasons (lower figure in each panel, negative values indicate spread is too small);
verification is against analysis, plots are for 500 hPa geopotential (top) and 850 hPa temperature (bottom) over the
extratropical northern hemisphere for forecast days 1 to 15.
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Figure 19: Anomaly correlation of 500 hPa geopotential in the northern hemisphere extratropics at day 5. CAMS
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(thin lines). Also shown are forecasts from machine learning (ML) models: GraphCast (olive), Pangu (grey), and
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IFS-COMPO lower resolution + aerosols



—|FS-EM
Anomaly correlation | 500hPa geopotential —GraphCast
NHem Extratropics -=-AIFS-Single
20240801 OOZ to 20250731 122 | oper_an mean_fair — |FS-CF

100

95 i S AR N ~ S A AR SR
90 4 i SR S S O N S S e
85_ ........... ........... ......... ........... , ............ ........ D ........... ............

80““"'3 ............ ............ ............ ............ ............ ............ I W VR ........... ............

%

75 A L L L P PR LN NN L
70_. ............ ............ ............ ............ ............ ............ ............ ...... > \ ...........

65 S SO S S SO SO NG N

S SRR L . ] SRR SR S S ,

50

Forecast Day
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Figure 21: Lead time at which the 500 hPa anomaly correlation in the northern extratropics drops to 86% (specific
threshold chosen such that lead time does not exceed forecast range of any centre). Comparison of physics-based
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other ML models run at ECMWF.
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Magnusson and Kéllén, 2013, Mon. Wea. Rev., 141, 3142-3153
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Remaining Problems

Mostly in the ‘physics’ of models (Q and F terms 1n basic
equations)

- Water cycle (evaporation, condensation, influence on radiation
absorbed or emitted by the atmosphere)

- Exchanges with ocean or continental surface (heat, water,
momentum, ...)
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1o sum up

Both physical and Machine Learning models are now
used for weather prediction.

The latter are much more economical (by one order of
magnitude). They produce forecasts that are more accurate in
terms of RMS error and correlation coefficients, but bear on a

rather limited amount of predicted parameters. The forecasts are
also spatially smoother than physical forecasts

ML models are certainly going to evolve (and improve)
significantly.

They are at the present stage trained on data sets
produced by well-established and thoroughly validated physical
models. How will that evolve ?



To sum up (contd)

Will there be some day global end-to-end weather
prediction, based only on machine learning from observations ?
Research work 1s being performed in that direction. What about
new observing devices or istruments ? And on prediction of

quantities which are not observed, but must be predicted
anyway ?

Research 1s active on all those points.

What must we expect 2 Impossible to tell to-day.



- What is assimilation ?

- Definition of initial conditions



Purpose of assimilation : reconstruct as accurately as possible the state of the

atmospheric or oceanic flow, using all available appropriate information. The latter

essentially consists of

The observations proper, which vary in nature, resolution and accuracy, and

are distributed more or less regularly in space and time.

Numerical models that produce (approximate) forecasts of the evolution of the
flow from given initial and boundary conditions. These models can be built on
either explicit description of the physical laws governing the flow or, now, on

Machine Learning trained on past data (models of only the first type will be considered in
the sequel).

‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although
they basically are necessary consequences of the physical laws which govern the flow, these

properties can usefully be explicitly introduced in the assimilation process.



Both observations and ‘model’ are affected with some uncertainty =

uncertainty on the estimate.

For some reason, uncertainty is conveniently described by probability
distributions (don’t know too well why, but it works; see, e.g. Jaynes,
2007, Probability Theory: The Logic of Science, Cambridge University

Press).

Assimilation 1s a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the
system, knowing everything we know (see Tarantola, A., 2005, Inverse
Problem Theory and Methods for Model Parameter Estimation, SIAM).
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Assimilation 1s one of many ‘inverse problems’ encountered
in many fields of science and technology

 solid Earth geophysics

» plasma physics
* ‘nondestructive’ probing

* navigation (spacecraft, aircraft, ....)

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.



Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n = 100-10° parameters to be
estimated, p = 107-10% observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to
be ready in time.

- Non-trivial, actually chaotic, underlying dynamics



Proportion of computing resources devoted to assimilation of observations
in the whole process of Numerical Weather Prediction has gradually
increased over time.

Definition of initial conditions originally required a simple interpolation
from observation stations to model gridpoints, with negligible cost. As of
now, assimilation over 24 hours of observations requires about the same
amount of resources as a 10-day physical forecast, including probabilistic
forecast.



z1=x+ ¢ density function p,(<) oc exp[ - (£2)/2s4]

Z,=x+ & density function p,(<) oc exp[ - (£2)/2s,]

¢; and ¢, mutually independent

P(x= ¢z, z3) ?
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Conditional probability distribution of x, given z, and z, : &/ [x, p“]



Conditional probability distribution of x, given z, and z, : M/ [x¢, p“]
l/pa — l/Sl + I/SZ

p¢ <(sy, s,) iIndependent of z; and z,

x4 = p%(z,/s1 + z,/s,) 1s weighted average of z; and z,, with respective
weights 1/s; and 1/s,. Larger weight is given to more accurate piece of

data.
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Fig. 1.1: Prior pdf p(x) (dashed line), posterior pdf p(z|y?) (solid line), and Gaussian
likelihood of observation p(y°|r) (dotted line), plotted against > for various values of
y°. (Adapted from Lorenc and Hammon 1988.)



Conditional expectation X minimizes following scalar objective function,
defined on &-space

= J&) = (112)[(z1 - &/ 51+ (22 - &)/ 55 ]

In addition

pi=1/7()
Conditional probability distribution in Gaussian case

P(x =&z, z5) o exp[ - (& -x)*/2p°]

Y

J(o) + Cst



Estimate
x4 :pa (ZI/SI + Zz/Sz)
with error p“ such that

l/pa — l/Sl + 1/5'2

can also be obtained, independently of any Gaussian hypothesis, as simply
corresponding to the linear combination of z; and z, that minimizes the
error £ [(x%—x)?]

Best Linear Unbiased Estimator (BLUE)



