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Results from

European Centre for Medium-range Weather Forecasts 
(ECMWF)

(Centre Européen pour les Prévisions Météorologiques à Moyen Terme, 
CEPMMT)

Located in Reading (UK), Bologna (Italy) and Bonn (Germany)
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ECMWF, Technical Report 499, 2006





Pourquoi les météorologistes ont-ils tant de peine à prédire le temps
avec quelque certitude ? Pourquoi les chutes de pluie, les tempêtes
elles-mêmes nous semblent-elles arriver au hasard, de sorte que bien
des gens trouvent tout naturel de prier pour avoir la pluie ou le beau
temps, alors qu’ils jugeraient ridicule de demander une éclipse par
une prière ? Nous voyons que les grandes perturbations se produisent
généralement dans les régions où l’atmosphère est en équilibre
instable. Les météorologistes voient bien que cet équilibre est instable,
qu’un cyclone va naître quelque part ; mais où, ils sont hors d’état de
le dire ; un dixième de degré en plus ou en moins en un point
quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages
sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième
de degré, on aurait pu le savoir d’avance, mais les observations
n’étaient ni assez serrées, ni assez précises, et c’est pour cela que tout
semble dû à l’intervention du hasard.

H. Poincaré, Science et Méthode, Paris, 1908
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Why have meteorologists such difficulty in predicting the weather with any
certainty? Why is it that showers and even storms seem to come by chance,
so that many people think it quite natural to pray for rain or fine weather,
though they would consider it ridiculous to ask for an eclipse by prayer?
We see that great disturbances are generally produced in regions where
the atmosphere is in unstable equilibrium. The meteorologists see very
well that the equilibrium is unstable, that a cyclone will be formed
somewhere, but exactly where they are not in a position to say; a tenth of a
degree more or less at any given point, and the cyclone will burst here and
not there, and extend its ravages over districts it would otherwise have
spared. If they had been aware of this tenth of a degree they could have
known it beforehand, but the observations were neither sufficiently
comprehensive nor sufficiently precise, and that is the reason why it all
seems due to the intervention of chance.

H. Poincaré, Science et Méthode, Paris, 1908
(English transl. by F. Maitland, Science and Method, 

T. Nelson and Sons, London, 1914)

















As of 2023
We receive 800 million observations daily,
and 60 million quality-controlled observations
are available daily for use in the Integrated
Forecasting System (IFS); the vast majority of
these are satellite measurements, but ECMWF
also benefits from all available observations
from non-satellite sources, including surface-
based and aircraft reports.



§ Synoptic observations (ground observations, radiosonde observations),
performed simultaneously, by international agreement, in all meteorological
stations around the world (00:00, 06:00, 12:00, 18:00 UTC), and are in practice
concentrated over continents.

§ Asynoptic observations (satellites, aircraft), performed more or less
continuously in time.

§ Direct observations (temperature, pressure, horizontal components of the
wind, moisture), which are local and bear on the variables used for describing
the flow in numerical models.

§ Indirect observations (radiometric observations, …), which bear on some more
or less complex combination (most often, a one-dimensional spatial integral)
of variables used for for describing the flow

y = H(x)

H : observation operator (for instance, radiative transfer equation)
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E. Rémy, Doctoral Dissertation, 1999
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Weather prediction, at the occasional exception of very short
range (a few hours at most), is performed by using
appropriate numerical models. There exist at present two
forms of numerical models

- Physical models, built on an explicit formulation of the
physical laws which govern the evolution of the state of
the atmosphere.

- In recent years, models based on Machine Learning (or
Artificial Intelligence) have been developed. They are built
on training sets of past atmospheric states.
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Physical models

Basic physical laws

§ Conservation of mass
Dr/Dt + r divU = 0

§ Conservation of energy
De/Dt - (p/r2) Dr/Dt = Q

§ Conservation of momentum
DU/Dt + (1/r) gradp - g + 2 W ÙU =  F

§ Equation of state
f(p, r, e) = 0 (for a perfect gas p/r = rT, e = CvT)

§ Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, …)
Dq/Dt + q divU = S

These physical laws must be expressed in practice in discretized (and necessarily
imperfect) form, both in space and time Þ numerical model



Parlance of the trade :

§ Adiabatic and inviscid, and therefore thermodynamically
reversible, processes (everything except Q, F and S) make
up ‘dynamics’

§ Processes described by terms Q, F and S make up ‘physics’
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All presently existing physical models are built on more or
less simplified forms of the general physical laws. Global
numerical models, used either for large-scale
meteorological prediction or for climate simulation, are at
present built on the so-called primitive equations. Those
equations rely on several approximations, the most
important of which being the hydrostatic approximation,
which expresses balance, in the vertical direction, of the
gravity and pressure gradient forces. This forbids explicit
description of thermal convection, which must be
‘parameterized’ in some appropriate way.

More and more limited-area models have been developed
over time. They require appropriate definition of lateral
boundary conditions (not a simple problem). Many of them
are non-hydrostatic, and therefore allow description of
convection.



33

There exist at present two forms of horizontal spatial
discretization

- Gridpoint discretization

- (Semi-)spectral discretization (mostly for global models,
and most often only in the horizontal direction)

Finite element discretization, which is very common in many forms of
numerical modelling, is rarely used for modelling of the atmosphere. It
is more frequently used for oceanic modelling, where it allows to take
account of the complicated geometry of coast-lines.
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Schematic of a gridpoint atmospheric model
(L. Fairhead /LMD-CNRS)
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In gridpoint models, meteorological fields are defined by
values at the nodes of the grid. Spatial and temporal
derivatives are expressed by finite differences.

In spectral models, fields are defined by the coefficients of
their expansion along a prescribed set of basic functions. In
the case of global meteorological models, those basic
functions are the spherical harmonics (eigenfunctions of
the laplacian at the surface of the sphere).



Modèles (semi-)spectraux
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Linear operations, and in particular differentiation with
respect to spatial variables, are performed in spectral
space, while nonlinear operations and ‘physical’
computations (advection by the motion, diabatic heating
and cooling, …) are performed in gridpoint physical space.
This requires constant transformations from one space to
the other, which are made possible at an acceptable cost
through the systematic use of Fast Fourier Transforms.

For that reason, those models are called semi-spectral.
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Numerical schemes have been gradually developed and
validated for the ‘dynamics’ component of models, which
are by and large considered now to work satisfactorily
(although regular improvements are still being made).

The situation is different as concerns ‘physics’, where many
problems remain (as concerns for instance the water cycle
and the associated exchanges of energy, the interactions
between the atmosphere and the underlying medium, or the
statistical representation, or ‘parameterization’, of subgrid
scale processes). ‘Physics’ as a whole remains the weaker
point of models, and is still the object of active research.
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Many other processes have been introduced with time in
numerical models

- different phases of water (in particular cloudiness, including
various types of clouds)

- radiative impact of aerosols, either natural or anthropogenic

- water run-off (including underground run-off)

- secondary components (ozone, …)

- …

- effect of solar eclipses (ECMWF Technical Memorandum 920,
December 2024)



Machine Learning models

Machine Learning (aka Artificial Intelligence)

Set of empirical (vector) data   

(xi , yi) , i = 1, N

with no a priori explicitly known relationship between the
inputs xi‘s and the outputs yi‘s.

Look for an explicit relationship of the form

y ≈ f(x)

at least over a practically useful domain of variation of x.



Machine Learning (2)

Inputs xi‘s Black Outputs yi‘s
box

Replace black box with (possibly approximate) function y ≈ f(x)

Neural networks define the function f as a composition of basic
‘simple’ functions, called activation functions.



Machine Learning (3)

Sigmoid functions, e.g. the hyperbolic tangent function tanh(x), 
are very commonly used as activation functions

tanh(x) = (e2x -1) / (e2x + 1) 

Affine change of coordinates. Four degrees of freedom : two for
the coordinates of the central point, and one for the range of
variation in each direction.



Machine Learning (4)
A typical network consists of layers of elementary activation
functions, or neurons, the neurons in each layer being
compositions of neurons in previous layers. Weights given to the
neurons are determined by minimization of a loss function that
measures the misfit between the original and computed outputs
(for example a quadratic difference).



ReLU (rectified linear unit) (blue)

Gaussian-error linear unit (GELU) (green)

Other commonly used activation functions

Machine Learning (5)



Machine Learning (6)
Neural networks
This approach, with many variants, has proved to be extremely
efficient, and is now used for innumerable applications in many
different domains.

It has been applied to numerical weather prediction. A number of
recently developed ML softwares are

GraphCast

Pangu-Weather

FourCastNet

FuXi

AIFS (ECMWF)



Machine Learning (6). Neural networks

FuXi (伏羲) has been trained on 39 years of ERA5. It has a
spatial resolution of 0.25°(28 km, against 9 km for ECMWF
HRES) and produces forecasts for a number of meteorological
variables



European Centre for Medium-range Weather Forecasts 
(ECMWF)

(Centre Européen pour les Prévisions Météorologiques à Moyen Terme, 
CEPMMT)

Centre is a common service to 23 European countries, with cooperative 
agreements with 12 other countries.

Located in Reading (UK), Bologna (Italy) and Bonn (Germany)
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ECMWF's core mission is to:[

12]

• Produce numerical weather forecasts and monitor planetary
systems that influence weather
• Carry out scientific and technical research to improve forecast
skill
• Maintain an archive of meteorological data

Produces regular (and in particular daily) forecasts, at
various ranges, for various aspects of the weather system
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https://en.wikipedia.org/wiki/European_Centre_for_Medium-Range_Weather_Forecasts
https://en.wikipedia.org/wiki/European_Centre_for_Medium-Range_Weather_Forecasts


Integrated Forecasting System (IFS)
June 2023 High-resolution model (HRES, now IFS-CF) 

Triangular semi-spectral truncation TCO1279 / O1280 (horizontal resolution 
≈ 9 kilometres)

Hydrostatic primitive equations. 137 vertical levels (0 - 80 km)

Finite-element vertical discretisation (hybrid coordinate)

Dimension of corresponding state vector > 109

Integration timestep (semi-Lagrangian semi-implicit scheme): 450 seconds

October 2024 Integrated in ensemble form (1 control + 50 perturbed
forecasts) four times a day (from 00, 06, 12 and 18 UTC) to 6-day range and
twice a day (from 00 and 12 UTC) to 15-day range.

51



Integrated Forecasting System (IFS) (contd)

- ECMWF Reanalysis v5 (ERA5). Covers the period from
January 1940 to present, provides hourly estimates of a large
number of atmospheric, land and oceanic climate variables at
32-km horizontal resolution and 137 pressure levels. Includes
estimates of uncertainty for all variables. It is produced using
4D-Var data assimilation over 12-hour assimilation windows,
and is constantly updated.

- Subseasonal and seasonal forecasts.
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Artificial Intelligence/Integrated Forecasting System (AIFS)

AIFS Single Implemented operationally on 25 February 2025

Developed on Machine Learning through graph neural networks. Trained in-
house on 1979–2018 ERA5 reanalyses. Loss function defined on Continuous
Ranked Probability Score (CRPS)

Horizontal grid spacing of 32 km, 13 pressure-levels

90% decrease in computing time wrt IFS, and reduction of approximately
1,000 times in energy use for making a forecast.

Run twice a day, with ‘timestep’ of 6 hours, to 15-day range

Ensemble version AIFS ENS implemented operationally on 1 July 2025
(50 + 1 runs at 32-km resolution)
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Results on site of ECMWF www.ecmwf.int

In particular

T. Haiden et al., Evaluation of ECMWF forecasts,
Technical Memorandum 931, September 2025, ECMWF,
Reading, UK.

Available at the address :
81680-evaluation-of-ecmwf-forecasts.pdf
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Spatial correlation between anomalies from 
climatology of forecast and verifying analysis

Score of climatology is 0. Score of persistence decreases from 1 to 0 over 4-5 days

Spatial correlation between anomalies from climatology 
of forecast and verifying analysis

Score of climatology is 0. Score of persistence decreases from 1 to 0 over 4-5 days







August 2024 
– July 2025

Verification against 
radiosondes

Northern 
hemisphere 
extratropics
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IFS-COMPO lower resolution + aerosols









Probability at any 
location that a reported 
tropical cyclone will pass 
within 120 km during the 
next 240 hours



Magnusson and Källén, 2013, Mon. Wea. Rev., 141, 3142–3153

ECMWF
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500 hPa 
geopotential



Remaining Problems

Mostly in the ‘physics’ of models (Q and F terms in basic
equations)

- Water cycle (evaporation, condensation, influence on radiation
absorbed or emitted by the atmosphere)

- Exchanges with ocean or continental surface (heat, water,
momentum, …)

- …
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To sum up

Both physical and Machine Learning models are now
used for weather prediction.

The latter are much more economical (by one order of
magnitude). They produce forecasts that are more accurate in
terms of RMS error and correlation coefficients, but bear on a
rather limited amount of predicted parameters. The forecasts are
also spatially smoother than physical forecasts

ML models are certainly going to evolve (and improve)
significantly.

They are at the present stage trained on data sets
produced by well-established and thoroughly validated physical
models. How will that evolve ?



To sum up (contd)

Will there be some day global end-to-end weather
prediction, based only on machine learning from observations ?
Research work is being performed in that direction. What about
new observing devices or instruments ? And on prediction of
quantities which are not observed, but must be predicted
anyway ?

Research is active on all those points.

What must we expect ? Impossible to tell to-day.

-



- What is assimilation ?
- Numerical weather prediction. Principles and
performances

- Definition of initial conditions

- Bayesian Estimation

- One first step towards assimilation : ‘Optimal Interpolation’

- The temporal dimension : Kalman Filter and Variational
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Purpose of assimilation : reconstruct as accurately as possible the state of the
atmospheric or oceanic flow, using all available appropriate information. The latter
essentially consists of

§ The observations proper, which vary in nature, resolution and accuracy, and
are distributed more or less regularly in space and time.

§ Numerical models that produce (approximate) forecasts of the evolution of the
flow from given initial and boundary conditions. These models can be built on
either explicit description of the physical laws governing the flow or, now, on
Machine Learning trained on past data (models of only the first type will be considered in
the sequel).

§ ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although
they basically are necessary consequences of the physical laws which govern the flow, these
properties can usefully be explicitly introduced in the assimilation process.
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Both observations and ‘model’ are affected with some uncertainty Þ
uncertainty on the estimate.

For some reason, uncertainty is conveniently described by probability
distributions (don’t know too well why, but it works; see, e.g. Jaynes,
2007, Probability Theory: The Logic of Science, Cambridge University
Press).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the
system, knowing everything we know (see Tarantola, A., 2005, Inverse
Problem Theory and Methods for Model Parameter Estimation, SIAM).



Assimilation is one of many ‘inverse problems’ encountered
in many fields of science and technology

• solid Earth geophysics

• plasma physics

• ‘nondestructive’ probing

• navigation (spacecraft, aircraft, ….)

• …

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.



Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n ≈ 106-109 parameters to be
estimated, p ≈ 107-108 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to
be ready in time.

- Non-trivial, actually chaotic, underlying dynamics



Proportion of computing resources devoted to assimilation of observations
in the whole process of Numerical Weather Prediction has gradually
increased over time.

Definition of initial conditions originally required a simple interpolation
from observation stations to model gridpoints, with negligible cost. As of
now, assimilation over 24 hours of observations requires about the same
amount of resources as a 10-day physical forecast, including probabilistic
forecast.



z1 = x + z1 density function p1(z) µ exp[ - (z2)/2s1]

z2 = x + z2 density function p2(z) µ exp[ - (z2)/2s2]

z1 and z2 mutually independent

P(x = x | z1, z2) ?



x = x Û z1 = z1-x and z2 = z2 -x

P(x = x | z1, z2) µ p1(z1-x) p2(z2 -x)
µ exp[ - (z1-x)2/2s1] exp[ - (z2-x)2/2s2]
= exp[ - A/2 ]

with A = (z1-x)2/s1 + (z2-x)2/s2
= (x - xa)2/pa + terms independent of x

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1 + z2/s2)

P(x = x | z1, z2) µ exp[ - (x - xa)2/2pa ] = N [xa, pa]

Conditional probability distribution of x, given z1 and z2 :N [xa, pa]



Conditional probability distribution of x, given z1 and z2 :N [xa, pa]

1/pa = 1/s1 + 1/s2

pa < (s1, s2) independent of z1 and z2

xa = pa (z1/s1 + z2/s2) is weighted average of z1 and z2, with respective
weights 1/s1 and 1/s2. Larger weight is given to more accurate piece of
data.





Conditional expectation xa minimizes following scalar objective function,
defined on x-space

x ® J(x) º (1/2) [(z1 - x)2 / s1 + (z2 - x)2 / s2 ]

In addition

pa = 1/ J’’(xa)

Conditional probability distribution in Gaussian case

P(x = x | z1, z2) µ exp[ - (x -xa)2/2pa]

J(x) + Cst



Estimate

xa = pa (z1/s1 + z2/s2)

with error pa such that

1/pa = 1/s1 + 1/s2

can also be obtained, independently of any Gaussian hypothesis, as simply
corresponding to the linear combination of z1 and z2 that minimizes the
error E [(xa-x) 2]

Best Linear Unbiased Estimator (BLUE)


